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What is SMART about
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Online learning in SMT

Interactive Machine Translation

@ Learning/optimization techniques are used to tune the parameters
of SMT systems

@ Online learning adjusts parameters incrementally
[Lian et al., 2006; Arun and Koehn, 2007; Tillman and Zhang, 2008]

@ Especially useful when the system interacts with the user

.
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Computer Assisted Translation (CAT)

SMART Translation wji=ifr )
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The purpose of this reportis to estabiish the scenarios which will be evaluated in the three case 2

studies within the SMART project and to detail the requirements of the case studies towards the
technical work packages (both in terms of required functionality and integration related issues)

A translation memory consists of text segrments in a source language and their translations into one
or more target languages

These segments can be blocks, paragraphs, sentences, or phrases. A translator first supplies a
source text (that is, a text to be franslated) to the translation memory.

The program will hen analyze the text, trying to find seament pairs in ts translation memory where
he fextin the new source segment matches the text in the source segmert in a previously =

0% match from Translation Memory:

Souce: | The purpose of this reportis o establish the scenarios which il be evaluated in the thiee case studies witiin the
SMART project and to detail he requirements of the case studies towards the technical work packages (both interms
of required functionalty and integration related issues).

Taget  Pravajsini spominje jien iz delov besedia iz enega aliveccilinh
ov.
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The purpose of this report is to establish the scenarios which will be evaluated in the three case B
studies within the SMART project and to detail the requirerments of the case studies towards the

The purpose of this report is o establish the scenarios which will be evaluated in the three case studies ithin the SMART
project and to detail the requirements ofthe case studies lowards the technical work packages (both in terms of required
functionality and integration related issuss)

Prevajalni spomin je sestavjen iz delov besedlia iz izvomega jezika in njihovih prevodor v enega ali vec ciljnih jeziko.
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CAT meets online learning
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Adaptive decoding
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Experimental setup (based on Portage SMT system)

Feature set for online weights
A new feature is created for each phrasetable entry

.
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Experimental setup (based on Portage SMT system)

Feature set for online weights
A new feature is created for each phrasetable entry

Phase 1 — offline mode

@ Building of phrasetable on a training corpus

@ Tuning of loglinear weights on a development corpus

— This gives the baseline system
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Experimental setup (based on Portage SMT system)

Feature set for online weights

A new feature is created for each phrasetable entry

Phase 1 — offline mode

@ Building of phrasetable on a training corpus

@ Tuning of loglinear weights on a development corpus

— This gives the baseline system

Phase 2 — online mode
Online weights are adapted during CAT process
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Adaptive decoding — basic definitions

e f(x¢,y) is the vector of phrasetable feature values when
considering y as candidate translation for the source sentence x

@ The vector w contains the decoder online weights

@ The decoder builds a N-best list Y; of candidate translations y by
ranking them according to margin

wa(Xt/y)

N. Cesa-Bianchi and G. Reverberi (UNIMI) Online Learning for CAT



Adaptive decoding — basic definitions

e f(x¢,y) is the vector of phrasetable feature values when
considering y as candidate translation for the source sentence x

@ The vector w contains the decoder online weights

@ The decoder builds a N-best list Y; of candidate translations y by
ranking them according to margin

wa(Xtry)

@ The 1-best translationis Yy = argmax w ' f(x¢, )
YEeEYt

@ The pseudo-target translationis yj = argmaxBLEU(Y¢,Y)
YEY

2o
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Adaptive decoding — basic algorithmic framework

Decoder ranks translations y according to w ' f(xe,y)

@ Margin difference for weight w when y is chosen instead of y*

MARGINt (y*,y) =w ' (f(xe, y™) — f(x¢, 1))

@ Linear constraints the learner tries to enforce at each step t

MARGIN¢ (Y™, y) > BLEU(Y¢, Ui) — BLEU(Yy, Y) VY € Yy

@ Constraints are approximately enforced by projecting current w
onto (some of the) hyperplanes defined by constraints
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Cost-sensitive margin condition

MARGIN(y , y1)
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Update of parameters

Recall:

y = reference translation

y* = pseudo-target translation (highest BLEU in N-best)
y = guessed translation (1-best)

w = current value of online weights

Enforce margin difference between pseudo-target y* and 1-best y
min ||w —w’H2 +CE&
w'E

such that mareiN(y*,U) > (BLEU(yY,y*) — BLEU(Y, 7)) — &

Passive-aggressive update [Crammer et al., 2006]

W — W+ 1¢ (BLEU(Y¢, Y} ) — BLEU(Y¢, Ut))
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Theoretical guarantees

For any sequence (x1,Y1), (x2,Y2), ... of source/reference pairs

o If there exists choice u for the parameters that satisfies all
constraints at each step, then

Y sieu(ye,Ge) > Y Bev(ye, ui) —
t t

@ If no such u exists, then Z BLEU(Yt, Ut ) is at least
t

Z BLEU(Y¢, Yi) — iﬂf <1 4k é) (Hu||2 +C Z Ht(u))
t t

o Cis the aggressiveness parameter associated with the constraints

@ H¢(u) measures by how much the margin of u fails
the worst constraint at time t
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Performance measure

@ Learning algorithms and their analysis do not require BLEU

@ For robustness reasons, we train and test the system using
BLEUMIX, an average of different sentence-level measures
(1 BLEUMIX & 0.65 BLEU)
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Performance measure

@ Learning algorithms and their analysis do not require BLEU

@ For robustness reasons, we train and test the system using
BLEUMIX, an average of different sentence-level measures
(1 BLEUMIX =~ 0.65 BLEU)

Cumulative BLEuMIxX difference

The cumulative difference in sentence-level BLEUMIX points between
online system translations Y and Portage baseline translations y{ with
respect to the common reference translation y+

T

Z <BLEUMIx(yt,@t) — BLEUMIX(yt,yO)
t=1
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Experimental setup

@ Corpus:  English — Spanish section of Europarl
@ Training set: 165,000 sentences
@ Dev set: (used to tune Portage) 6,000 sentences

@ Test set: (used for online learning)
Five adjacent nonoverlapping blocks of 1,000 sentences each

N
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@ Online learner attempts to improve on tuned Portage performance
by a single run over 1,000 sentences
— less than 0.6% of Portage training set!

@ Learner does so by simultaneously tuning 1,7M parameters
associated with the phrasetable entries
— about 1,700 parameters per observed sentence!

@ We get an improvement of about 0.4 BLEUMIX points per observed
sentence
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Weight adaptation
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Oracolar phrasetable adaptation

Dynamic growth of phrasetable

Problem: on-the-fly alignment of new segments ®
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Oracolar phrasetable adaptation

Dynamic growth of phrasetable

Problem: on-the-fly alignment of new segments ®

Oracolar PT

o Fake alignment by building an oracolar PT on train + test corpora

o After translating each new sentence, the relevant segments are
moved from the oracolar PT to the working PT

o The weights associated with new segments are incrementally
learned

A
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Weight adaptation + PT adaptation
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Significance analysis

Nonparametric randomized test [Riezler and Maxwell 111, 2005]

@ We estimate the probability p that the performance difference
increases when each translation in turn is obtained from a random
system (adaptive or baseline)

e This is a p-value for the null hypothesis that baseline and adaptive
have the same performance

p-values
0.01 | 0.28 | 0.33 | 0.18 | 0.45
0.01 | 0.40 | 0.20 | 0.13 | 0.41

Ot
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Weight adaptation — 5 runs

BLEUHIX TO BASELINE
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Weight adaptation + PT adaptation — 5 runs

BLEUHIX TO BASELINE
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Open issues

@ More stable learning curves
@ On-the-fly alignment to replace oracolar PTT

@ TM’s crippling effect
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