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What is SMART about
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Online learning in SMT

Interactive Machine Translation
Learning/optimization techniques are used to tune the parameters
of SMT systems

Online learning adjusts parameters incrementally
[Lian et al., 2006; Arun and Koehn, 2007; Tillman and Zhang, 2008]

Especially useful when the system interacts with the user

N. Cesa-Bianchi and G. Reverberi (UNIMI) Online Learning for CAT 3 / 22



Computer Assisted Translation (CAT)
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CAT meets online learning
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Adaptive decoding [Liang, Bouchard-Côté, Klein, and Taskar, 2006]
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Experimental setup (based on Portage SMT system)

Feature set for online weights

A new feature is created for each phrasetable entry

Phase 1 – offline mode
Building of phrasetable on a training corpus
Tuning of loglinear weights on a development corpus

→ This gives the baseline system

Phase 2 – online mode
Online weights are adapted during CAT process

N. Cesa-Bianchi and G. Reverberi (UNIMI) Online Learning for CAT 7 / 22



Experimental setup (based on Portage SMT system)

Feature set for online weights

A new feature is created for each phrasetable entry

Phase 1 – offline mode
Building of phrasetable on a training corpus
Tuning of loglinear weights on a development corpus

→ This gives the baseline system

Phase 2 – online mode
Online weights are adapted during CAT process

N. Cesa-Bianchi and G. Reverberi (UNIMI) Online Learning for CAT 7 / 22



Experimental setup (based on Portage SMT system)

Feature set for online weights

A new feature is created for each phrasetable entry

Phase 1 – offline mode
Building of phrasetable on a training corpus
Tuning of loglinear weights on a development corpus

→ This gives the baseline system

Phase 2 – online mode
Online weights are adapted during CAT process

N. Cesa-Bianchi and G. Reverberi (UNIMI) Online Learning for CAT 7 / 22



Adaptive decoding — basic definitions

f(xt,y) is the vector of phrasetable feature values when
considering y as candidate translation for the source sentence xt

The vector w contains the decoder online weights

The decoder builds a N-best list Yt of candidate translations y by
ranking them according to margin

w>f(xt,y)

The 1-best translation is ŷt = argmax
y∈Yt

w>f(xt,y)

The pseudo-target translation is y∗t = argmax
y∈Yt

(yt,y)
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Adaptive decoding — basic algorithmic framework

Recall:

Decoder ranks translations y according to w>f(xt,y)

Margin difference for weight w when y is chosen instead of y∗

t(y
∗,y) = w>

(
f(xt,y∗) − f(xt,y)

)
Linear constraints the learner tries to enforce at each step t

t(y
∗,y) > (yt,y∗t) − (yt,y) ∀y ∈ Yt

Constraints are approximately enforced by projecting current w

onto (some of the) hyperplanes defined by constraints
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Cost-sensitive margin condition
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Update of parameters

Recall:
y = reference translation
y∗ = pseudo-target translation (highest  in N-best)
ŷ = guessed translation (1-best)
w = current value of online weights

Enforce margin difference between pseudo-target y∗ and 1-best ŷ

min
w ′,ξ

∥∥w − w ′
∥∥2

+ Cξ

such that (y∗, ŷ) >
(
(y,y∗) − (y, ŷ)

)
− ξ

Passive-aggressive update [Crammer et al., 2006]

w← w + ηt
(
(yt,y∗t) − (yt, ŷt)

)
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Theoretical guarantees

For any sequence (x1,y1), (x2,y2), . . . of source/reference pairs

If there exists choice u for the parameters that satisfies all
constraints at each step, then∑

t

(yt, ŷt) >
∑
t

(yt,y∗t) − ‖u‖2

If no such u exists, then
∑
t

(yt, ŷt) is at least

∑
t

(yt,y∗t) − inf
u

(
1 +

1
C

)(
‖u‖2 + C

∑
t

Ht(u)

)

C is the aggressiveness parameter associated with the constraints
Ht(u) measures by how much the margin of u fails
the worst constraint at time t
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Performance measure

Learning algorithms and their analysis do not require 

For robustness reasons, we train and test the system using
, an average of different sentence-level measures
(1  ≈ 0.65 )

Cumulative  difference
The cumulative difference in sentence-level  points between
online system translations ŷt and Portage baseline translations y ′t with
respect to the common reference translation yt

T∑
t=1

(
(yt, ŷt) − (yt,y ′t)

)
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Experimental setup

Corpus: English→ Spanish section of Europarl

Training set: 165,000 sentences

Dev set: (used to tune Portage) 6,000 sentences

Test set: (used for online learning)
Five adjacent nonoverlapping blocks of 1,000 sentences each
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Caveat

Online learner attempts to improve on tuned Portage performance
by a single run over 1,000 sentences
→ less than 0.6% of Portage training set!

Learner does so by simultaneously tuning 1,7M parameters
associated with the phrasetable entries
→ about 1,700 parameters per observed sentence!

We get an improvement of about 0.4  points per observed
sentence
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Weight adaptation
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Oracolar phrasetable adaptation

Dynamic growth of phrasetable ,
Problem: on-the-fly alignment of new segments /

Oracolar PT
Fake alignment by building an oracolar PT on train + test corpora

After translating each new sentence, the relevant segments are
moved from the oracolar PT to the working PT

The weights associated with new segments are incrementally
learned
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Weight adaptation + PT adaptation
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Significance analysis

Nonparametric randomized test [Riezler and Maxwell III, 2005]

We estimate the probability p that the performance difference
increases when each translation in turn is obtained from a random
system (adaptive or baseline)

This is a p-value for the null hypothesis that baseline and adaptive
have the same performance

p-values
0.01 0.28 0.33 0.18 0.45
0.01 0.40 0.20 0.13 0.41
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Weight adaptation — 5 runs
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Weight adaptation + PT adaptation — 5 runs
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Open issues

More stable learning curves

On-the-fly alignment to replace oracolar PTT

TM’s crippling effect
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