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Abstract

Recently novel MT evaluation metrics
have been presented which go beyond
pure string matching, and which corre-
late better than other existing metrics with
human judgements. Other research in
this area has presented machine learning
methods which learn directly from human
judgements. In this paper, we present
a novel combination of dependency- and
machine learning-based approaches to au-
tomatic MT evaluation, and demonstrate
greater correlations with human judgement
than the existing state-of-the-art methods.
In addition, we examine the extent to
which our novel method can be generalised
across different tasks and domains.

1 Introduction

There is no doubt that the onset of automatic eva
ation metrics such asi&u (Papineni et al., 2002)

while still being string-based, tries to improve on
the matching schemes ofLBu by incorporating
synonym matching via WordNet.

Given that many of today’s MT systems incor-
porate some kind of syntactic information (e.g.
(Chiang, 2005)), it was perhaps natural that other
researchers would seek to use syntax in automatic
MT evaluation as well. The first step in this di-
rection was by (Liu and Gildea, 2005), who used
syntactic structure and dependency information in
order to see past the surface phenomena. Two of
these metrics are based on matching syntactic sub-
trees between the translation and the reference, and
the third is based on matching headword chains,
but only for unlabelled dependencies. Since
then, (Owczarzak et al., 2007a; Owczarzak et al.,
2007b) have extended this line of research with
the use of a term-based encoding of LEBelled
dependency graphs into unordered sets of depen-
dency triples, and calculating precision, recall, and

Iy-measure on the sets corresponding to the transla-
tion and reference sentences. With the addition of

has led directly to improvements in quality in ma-partial matching and-best parses, (Owczarzak et

chine translation (MT). Prior to their introduction

ral., 2007a; Owczarzak et al., 2007b) considerably

most results were anecdotal, or researchers haddgtperform Liu and Gildea’s (2005) highest corre-

conduct expensive human evaluations in order
validate their work.

Kations with human judgement.
Another line of research has led to machine

However, seven years after their introduction,eaming methods which learn directly from hu-

there is widespread recognition in MT that thesg, 5, judgements (Ye et al., 2007).

In this pa-

string-based metrics are not discriminative €noughler e combine the syntax (dependency)-based

to reflect the translation quality of today’s system
many of which have gone beyonagrams (cf.
(Callison-Burch et al., 2006)).

Sand the machine learning-based approaches, and
show greater correlations with human judgement
than (Owczarzak et al., 2007a; Owczarzak et al.,

With that in mind, a number of researchers haV?OO?b). We use both Ranking and Regression Sup-

come up with metrics which are not wholly string

“port Vector Machines (SVMs) (Burges, 1998) in a

based. Perhaps the best-known alternative m%nge of experiments on different language pairs

ric is METEOR (Banerjee and Lavie, 2005), which

(© 2009 European Association for Machine Translation.

and data sets. We also examine the extent to which
our novel method can be generalised across differ-
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ent tasks and domains. 2008) matchn-best head-modifier dependencies
The remainder of the paper is organised as fokxtracted fromn-best constituency parses. They
lows. In section 2, we outline approaches to awalso consider the probabilities given by the con-
tomatic MT evaluation which are relevant to ourstituency parser.
work. In particular, in section 3 we describe the Dependency information is also used in met-
LFG labelled dependency approach of (Owczarzalics that incorporate different information sources.
et al., 2007a; Owczarzak et al., 2007b). In sectio(Giménez and Marquez, 2008) experimented using
4, we demonstrate how labelled dependencies cdifferent levels of linguistic features and depen-
be matched using SVMs, and describe the range déncy relation-based metrics are among their best
experiments carried out in section 5. The papenetrics at both system and sentence levels. Ma-
ends with our concluding remarks together wittchine learning metrics such as (Ye et al., 2007)

avenues for further research. and (Albrecht and Hwa, 2007) also use some
head-modifier dependency matches or dependency
2 Evaluation Metricsin MT chains as features.

Automatic evaluation metrics enable researchers 0o M achine L earning-based Metrics

validate and optimise translation methods quickly. ) i )
Simplen-gram-based metrics such asi (Pap- Three kinds of machine learning-based ap-
ineni et al., 2002) are fundamental to the develogloaches have been used in MT evaluation: (i)
ment and tuning of MT systems. However, thase Classificationbased approaches (Corston-Oliver

gram-based metrics suffer from several shortcontt al., 2001) train a classifier to discriminate be-

ings, such as low correlation with human judgefveen the reference and the hypothesis. The
igher the likelihood of a hypothesis being a ref-

ment on the sentence level, exhibiting a bias thJ ’ I -
wards statistical systems (Callison-Burch et al€€nce, the better its quality is assumed to be; (ii)

2006), and inconsistency in related evaluation chgegressiq{based methods  (Albrecht and Hwa,
narios (Chiang et al., 2008). 2007) train a model to try to reproduce the hu-

Many approaches have been taken to OVepjanjudgement scores for each translation hypoth-
come the insufficiencies of IEU. Word- esis; (iii) Rankingbased approaches (Ye et al.,
2007) train a model with the ranking of different

based metrics like MTEOR (Banerjee and Lavie, h ol . d of th
2005) try to improve on the matching Schemepypot eses on a particular sentence instead of the

paraphrase-based methods such as ParaEval inc\()q'l-ur—“S of the scores. o
porate paraphrases extracted from an external dat"MONg these three approaches, classification
source (Zhou et al., 2006); syntactic methods try t8N1Y captures the difference between the hypothe-

use syntax information in hypothesis and referencefS @nd the reference but ignores any differences
(cf. section 2.1): and machine learning method¥! duality among these hypotheses. Both ranking-

learn directly from human judgements (cf. sectiort'd regression-based methods have been reported

2.2). to be successful in various MT evaluation tasks.
In our experiments we combine them with the
2.1 Dependency-based Metrics dependency-based method of (Owczarzak et al.,

2007a; Owczarzak et al., 2007b) and directly com-

The shortcomings oh-gram metrics have led agIare them in a ranking task.

number of researchers to exploit more grammatic
information in the hypothesis and reference s | FG Labelled Dependencies
ences.

Syntactic features were first introduced in MTOur work extends the method of (Owczarzak et
evaluation in (Liu and Gildea, 2005), who de-al., 2007a; Owczarzak et al., 2007b) who use la-
veloped several metrics using constituency or deéselled dependencies in Lexical-Function Grammar
pendency structure. (Owczarzak et al., 20074LFG). In LFG, a sentence is represented in both a
Owczarzak et al., 2007b) improved on the deperiierarchical tree structure (C-structure) which cap-
dency matching of (Liu and Gildea, 2005) by ustures the organisation of a sentence, and a set of
ing n-best labelled dependency triples produced bhabelled dependencies (F-structure). The depen-
an LFG parser, so that parser noise is reduced adéncies in LFG are attribute-value features such as
partial matchings can be found. (Kahn et al.subj (arrive, Julie) or pers(Julie,
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3) which capture the grammatical relations be- For each pair of parses, we match the depen-

tween constituents. They are more precise thatency triples, and select the pair of parses that

head-modifier unlabelled dependencies. Here theas the highest F-score (cf. (3)) as matching

trigram (DepP, HEAD, MODIFIER) is called atriple. and output the matching detail of this pair. De-

In subj (arrive, Julie), DEP is subj, tails on the effect of multiple parses can be found

HEaD isarri ve and MoDIFIER IS Jul i e. in (Owczarzak et al., 2007a; Owczarzak et al.,
In (Owczarzak et al., 2007a; Owczarzak eR007Db).

al., 2007b) it is shown that LFG F-structures can . .

capture variations between sentences. For e§l3 Calculation of Matching Percentage

ample, “Julie arrived yesterday.” and “Yesterdayl here are two ways of normalising the number of

Julie arrived.” have only one bigrahJul i e, matchings. We can normalise with respect to the

arri ved) in common but the same F-structurestotal number of triples in the hypothesis sentence

This feature can help us better judge how similaPrecision matching), as in (1):

a reference sentence and a hypothesis sentence are

. . #matching_triples
in MT evaluation. ekl

- F#triples_in_hypothesis

@)

or the total number of triples in the reference sen-

B o _ tence (recall matching), as in (2):
To utilise LFG dependencies in MT evaluation, we

use the LFG parser described in (Cabhill et al., R — _#tmatching triples @)
2004) to generate dependency triples and perform #triples-in.reference

matching on the triples. A hypothesis sentence In (Owczarzak et al., 2007a; Owczarzak et al.,
is considered of higher quality when it has more2007b), precision matching and recall matching

3.1 Matching of Dependency Triples

triples matched with the reference sentence. ~ are combined into an F-score, as in (3):
We perform three kinds of dependency match- 9PR
ings in our experiment: exact matching, partial ~PTR ®3)

matching, and WordNet extended matching. In When using this combination, the relative

exact bma';]chlng all three ellements mhthe _tﬂpl%veights of precision and recall are implicitly set
must be the same to complete a match. With rqz 1.1 1 oy experiment this combination is not

spect to the previous example, in partial ma'[Chimg'necessary, as we can use both precision and recall

two triples can haye diffierent BAD or MODIFIER . values as features and let the SVM determine the
values, whereas in WordNet extended matChmgespective weights of precision and recall

HEAD and MODIFIER can be substituted by syn-
onyms in WordNet. 4 Combining L abelled Dependency
We only perform partial and WordNet ex- M atches with SVM
tended matching onH#EDICATE-ONLY dependen- ) )
cies (Owczarzak et al., 2007a; Owczarzak et ai®1 SVMinMT Evaluation
2007b). Both exact and partial matches on depeiYe use Ranking and Regression Support Vector
dency typex are counted as one match on typeMachines (Burges, 1998) in our experiments.
z. A WordNet extended match is counted as onBoth Ranking and Regression SVMs assign a

match on typer W N. score to an input instancg as in (4):
3.2 Parser Noise and Matching in n-best £(z) = Zaiyiq)(mi) L ®(2)+b @
Par ses i=1

The outputs of MT systems are often syntacticallyhere(z;, y;) is the training example and is the
ill-formed and this makes it difficult for parsers totransformation function which transforms the in-
generate plausible parses. To compensate for thpsit space to the feature space. However, the quan-
problem, we parse the hypothesis and referenditative value from a ranking SVM is meaningless
translations to obtain the 50-best parses of eacand only indicates its ranking.

Using the 50-best parses increases the chance ofThe output of a ranking SVM aims at producing
finding the correct match between the hypothesdhe correct rank of input examples, whereas regres-
and references. sion SVMs aim at producing a value corresponding
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to the input. Thus the ranking SVM maximises triples in the test/reference (based on whether pre-
on a training set, wherg is the metric ranking of cision or recall dependency matching is used) sen-
systems on senten¢@ndr; is the human ranking tence, as in (10):
on sentence, as in (5):
L H(i) = #matig%z;ziype(i)
5217(7%7’1') (5)

In vertical normalisation, only the number of de-
Note that Kendall's measures the relevance ofpendencies of the same type are considered, as in
two rankings:7(rq, ) = p8, whereP and@Q  (17):
are the amount of concordant and discordant pairs
in r, andry,.
Regression SVMs, by contrast, are directly

modelled on the human judgement scores by min-
imising (6): In horizontal normalisation, dependency types

x andz_W N are counted separately. However, in
vertical normalisation:_W N is counted a%;, as
x_W N is produced during matching, and we do
not have this dependency type in the test or refer-
4.2 Kernelsof SVYM ence sentences.

We can often find a kernel functioR’ in (4) with Our horizontal normalisation is equivalent to the
K(z,z) = ®(z) - ®(z). Kernel functions im- approach of (Ye et al., 2007). The vertical nor-
plicitly transform the input space into the featuremalisation is a more radical approach to reflect the
space, while computation is still done in the inputelative ratio of matches on different dependency

space. types.
We use three kinds of kernels in our experi-

ments: ()Linearkernels, the simplest form of ker- 5 Experiments
nel which do not transform the input space:

(10

) #matching-depType(q)
V(i) = .
#depType(i)

(€]

> i f)? ©)

51 Data
K(z,z)=z-2 (1)
We use two data sets in our experiments. We
use the WMTO08 evaluation shared task dataset for
Ranking SVM training and testing. We use 3,249
human rankings on outputs from different MT sys-
In our experimentsy and are setto 1, angis tems. The rankings are just a reflection of the rel-

(i) Polynomialkernels:

K(z,2) = (a+ Bz -2)" ©)

setto 3. ative quality of these systems; no absolute scores
(i) Radial Basis Function (RBRernels: are given. We use 177 sentences from the Czech—
English News Commentary task and 123 sentences

K(z,2) = exp(—l|z — 2[|*) (®)  from the Czech—English News task as our develop-

The RBF kernel is the most complex kernel ofnent set (DEV). We use 358 Czech—English News
the three. In some NLP tasks such as text categofRSk sentences as the test set (TEST).
sation (Joachims, 1998), RBF kernels are shown For the regression SVM we use the MTC4 cor-
to capture the characteristics of the training datAus from LDC. The corpus consists of human-
more accurately than linear or polynomial kernelsassigned fluency and adequacy scores to 11,028

In our experiments is set to 1. outputs of MT systems. We remove the outputs
o that cause parser errors, leaving 11,004 segments,
4.3 Normalisation of Features of which 2,000 sentences are used as our DEV set,

The features in our experiments are the matct?,004 are used as the TEST set and the remaining
ing percentages on different types of dependencie.000 are used for training.

We propose two ways of normalising the value: For generalisablity testing we also run exper-

horizontal and vertical. In horizontal normalisa-iments on WMTO08 data with regression models

tion, the number of matches on a certain depemenerated from MTC4 data, and we run cross-

dency type are normalised by the total number dnguage and cross-domain tests on WMTO08 data.
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rank order correlation, defined in (12), whede

Table 1: Ranking SVM: Different Kernels. Cons.:. . . .

: . ) , s the difference between corresponding values in
Consistency percentage; Corr.: Spearman’s coeffl- ~ . . .o

cient rankings and is the length of the rankings:

Cons. Corr. Cons. Corr. )
DEV DEV TEST | TEST p=1—( 62 d ) (12)
BLEU-4 | 0.3397] 0.1896 | 0.2515| 0.1297 n(n? —1)

BLEU-4s | 0.5251] 0.0909 | 0.5480| 0.1427

[FGF 105892 02521 055651 0.1796 ~ However, in (Calll.son.-Burch et al., 2008), it
PR-HV-L | 0.6325 | 0.2753 | 0.6055 | 0.2057 is argued that averagingis meaningless, and so
PR-HV-P | 0.6083 | 0.2548 | 0.5202 | 0.0806 pair-wise consistent percentage is used instead to
PR-HV-R | 0.5667] 0.2008 | 0.5117] -0.0006 measure correlations in the WMTO08 shared evalu-

ation task. The pair-wise consistent percentage is
Table 2: Ranking SVM: Different Data Represen£dual to the number of correct pair-wise compar-

tation isons made by a metric divided by the total number

Cons. | Corr. | Cons. | Corr. of pair-wise comparisons to make.

DEV | DEV | TEST | TEST W ¢ both istent ; q
BLEU-4 | 0.3397 | 0.1896 | 0.2515 0.1297 e report both consistent percentage an
BLEU-4s | 0.5251 | 0.0909 | 0.5480 | 0.1427 sentence-level Spearman’s correlation in our ex-
LFG-F [ 0.5892] 0.2521 | 0.5565] 0.1796 periments. The Spearman’s correlation is first
E'\;'—L 8'2235 8-12?2 8-22? Sﬁg computed on each ranking, and then averaged.
=RYAR 06152 02815 1 05287 0.1656 Weexplor_ethech0|ceofd|ffere|{KERN_EL}s
R-H-L 0.5771| 0.1988] 0.5309| 0.1903 (Table 1) with PR-HV data representation (the
Eg‘\é"-l_ 8-2(1)12 8-561332 8-;?354 8-212%% best representation) and the choice of different
P-AV-L 1 05685 0.17641 05415 01039 {NORM}alization an_d{[?EP}endency matching
R-AV-L | 0.6153] 0.2751| 0.5522 | 0.2068 schemes (Table 2) with linear kernel (the best ker-
PR-HV-L | 0.6325 | 0.2753 | 0.6055 | 0.2057 nel).

In our experiments, PR-HV-L, the metric that
uses all variations of features, yields the best over-
all results and outperforms the baseline on both
We tested the ranking SVM with different typespgy and TEST sets. A number of observations
of feature representation. Normalisation (Norm) igresent themselves: (i) In Table 2, recall-based de-
performed with the horizontal (H), vertical (V) or pendency match rates appear to be better features
both (HV) methods. Dependency matching (DEPphan precision-based rates. This pattern is also ob-
is computed in terms of precision (P), recall (R) okerved in other metrics such aseMEor This is
both (PR). We test with SVMs of linear (L), poly- another example of the importance of recall in MT
nomial (P) and RBF (R) kernels (KERNEL) usingevaluation; (ii) In Table 1, more sophisticated ker-
the SVMLight software. Each configuration is demels such as Polynomial and RBF kernels do not
noted with{NORM}-{DEP}-{KERNEL} in both  increase the performance of the metric and some-
ranking and regression experimental results.  times even decrease it. This might appear surpris-

We use the following three metrics as baseng, yet recall that we reserved all Czech—English
lines: BLEU (BLEU-4), add-one BEU (BLEU- translations for the development and test sets, so
4s) and the labelled LFG-based metric (LFG-F) aghe SVM is not exposed to any human judgements
described in (Owczarzak et al., 2007a; Owczarza$n this language pair during training. We did this
et al., 2007b). Note that the result of the LFG-Fn order to show the generality of our machine
metric would have among the highest correlationfarning-based method, but in so doing we may
with human judgement in the WMTO8 shared evalhave caused the more sophisticated kernels to over-
uation task. fit on other language pairs. It tells us that selection
of features is more important for our method than
the learning algorithm itself; (iii) Vertical match
We train ranking SVMs on WMTO08 data to pro-features produce some good results but are more
duce rankings of different system outputs on therone to overfitting. Using the RBF kernel on ver-
same sentence. tical match features often leads to lower correla-

Usually, the correlation between a metric andions. The problem with the vertical match feature
human rankings can be measured by Spearmaissthat it ignores the total number of dependencies

5.2 Experimental Settings

5.3 Experimentson Ranking SVM
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test the choice of kernels on the R-V representa-

Table 3: Regression SVM: Different Kernels. F/Ation, which performs better than PR-HV in this

Corr.: Correlation on fluency/adequacy

FCormr T ACorm_ T ECorr T ACor. task._ In this expe_rlment, we do not see a partlcglar

DEV | DEV | TEST | TEST metric that consistently outperforms the baseline
BLEU-4 | 0.0679] 0.145 | 0.1179 | 0.2087 with respect to fluency. However, all metrics that
BLEU-4s | 0.0919 | 0.2077 | 0.1724 | 0.2499 . T
FGF 101076 T 02976 | 02453 03779 are based on horizontal normalisation and recall-
R-AL 0.0812 ] 0.2987 | 0.2506 | 0.3992 style dependency matching perform better than the
R-H-P 0.0869 | 0.2998 | 0.2322 | 0.3948 baseline with respect to adequacy, for several rea-
R-H-R [ 0.0880]| 0.2996 | 0.2302] 0.3935 sons. Firstly, the features of our SVM models are

the decomposed parts of LFG-F. LFG-F is better
Table 4: Regression SVM: Different Data Repreat evaluating adequacy than fluency (Owczarzak

sentation et al., 2007a; Owczarzak et al., 2007b). Thus we
F Corr. | ACorr. | FCorr. | ACorr. hav rf res for r -oredictin
oev | pev | TEST | TEST ave better features for our adequacy-predicting
BLEU-4 | 0.0679| 0.145 | 0.1179 | 0.2087 SVM model.
BLEU-4s | 0.0919 | 0.2077 | 0.1724 | 0.2499 Secondly, note that the fluency correlation on

LFG-F 0.1076 | 0.2926 | 0.2453 | 0.3779

P-V-L 0.0961 | 0.2025 | 0.1993 | 0.2723
P-H-L 0.1030 | 0.2331 | 0.2040 | 0.2723

the DEV set is generally at a very low level, which
indicates that the sentences in our DEV set are very

R-V-L 0.0694 | 0.2698 | 0.2222 | 0.3894 hard to judge with respect to fluency. At this level,
R-H-L 0.0812| 0.2987 | 0.2506 | 0.3992 many trivial reasons can lead to an increase or de-
PR-V-L | 0.0793| 0.2669 | 0.2189 | 0.3827 . . :
PRAL T 0.0989 03027 1 02436 03934 crease in correlation. In ge_neral, we can cons_lder
P-HV-L 0.1040 | 0.2165 | 02112 | 0.2894 our R-H-L and PR-H-L metrics to be on a par with
R-HV-L | 0.0850 | 0.2867 | 0.2307 | 0.3999 the baseline as far as fluency is concerned.

PR-HV-L | 0.0933| 0.2828 | 0.2288 | 0.3911

Except for the variance in fluency and adequacy,
many tendencies observed in our ranking exper-
in a sentence. As a result, an output that correctiynent still apply here. The recall-based features
translates ubj in a simple sentence with 2 depen-still prevail and sophisticated kernels do not im-
dencies will receive the same score as an outpptove performance. Vertical normalisation has a
that only translatesubj correctly in a compound bigger negative impact in this experiment. It sug-
sentence of 20 dependencies. This leads to progests that regression is more error-prone than rank-
lematic features and the problem might be exaceing, perhaps because regression is harder.
bated during learning; and (iv) When H, V, P and R
are all used as features, we obtain the best overglb Cross-Task Generalisability

result. This suggests that our different methods .
normalisation and dependency matching are cor&fye choose the two best-performing (R-H-L, PR-

plementary in our ranking experiment. H-L) as well as two §omewhat mediocre (R-HV-

L, PR-HV-L) regression models and use them to
5.4 Experimentson Regresson SVM compute scores for our ranking DEV and TEST
v)\peL We do not run this experiment in the oppo-

In the regression SVM experiment, we use S ) ’ ’ X
to learn the scores which are assigned by huma?rl.te direction, because the MTC4 data is not col-

judges. The models for predicting fluency and adected in a ranking scenario and we consider it in-
equacy scores are trained separately comparable to the results on WMTO08. We calcu-

We calculate Pearson’s correlation on both fluldte Spearman's coefficient between the rankings

ency and adequacy. Pearson’s correlation is dgl_duced from these regression scores and the hu-
fined as: man rankings to validate the generalisability of our

learning method. For regression SVMs trained on

1 z—X oy —Y MTC4, WMTO8 is a corpus that is different with

T:n—lz( Sx ) Sy ) (13 res [ [ .
pect to language pair, domain, and evaluation

where z; is the value of the'” score, X is the criterion. The results are shown in Table 5.

mean score angly is the standard deviation. Basically all four metrics trained on MTC4 out-
The results on different kernels and differenperform the LFG F-Score baseline on the TEST
data representation are reported in Table 3 and Tset, but are on a par or inferior on the DEV set. We
ble 4 respectively. For the regression task, weonsider this tendency to be related to the differ-
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Table 5: Cross-Task Experiments Table 7: Cross-Domain Experiments

Cons. Corr. Cons. Corr. News Non-News

DEV DEV TEST | TEST Cons. Corr. Cons. Corr.
BLEU-4 | 0.3397| 0.1896 | 0.2515| 0.1297 BLEU 0.3035| 0.1653| 0.4739| 0.2906
BLEU-4s | 0.5251 | 0.0909 | 0.5480 | 0.1427 BLEU-4s | 0.5548| 0.2013 | 0.6277 | 0.2992
LFG-F 0.5892 | 0.2521 | 0.5565 | 0.1796 LFG-F 0.6112 | 0.2905| 0.6313 | 0.3007
R-H 0.5875| 0.2269] 0.5714 | 0.2471 PR-V-L 0.6102 [ 0.2540] 0.5858 | 0.2088
PR-H 0.5823 | 0.2152| 0.5991 | 0.2084 PR-H-L 0.6208 | 0.2957 | 0.6129| 0.2745
R-HV 0.5649 | 0.1526 | 0.5479 | 0.1931 PR-HV-L | 0.6134| 0.2694 | 0.5996 | 0.2285
PR-HV 0.5719| 0.1700| 0.5714 | 0.1638

i i half, as well as non-News data. The results are
Table 6: Cross-Language Pair Experiments

Eronch Other shown in Table 7. In both experiments we test with
Cons. | Corr. | Cons. | Corr. three metrics: PR-V-L, PR-H-L and PR-HV-L.
SI[EB . 85;22 g-gég g-gggé 8.1833 In both tests our methods do not outperform the
[FGF S 0:es0a 02550 T 0.5954 T 05503 baseline on different language pairs or domains.
SRV 106155102420 05813101648 This is because our training set is very small. We
PR-H-L | 06522 | 03131 | 05844 0.2118 are actually using a model trained on just hundreds
PR-HV-L | 0.6227 | 0.2706 | 0.5896 | 0.1931 of samples to rank thousands of samples in a dif-

ferent language pair/domain. In this context, all
.the tested methods obtain consistent percentages

ence in domains. The ranking DEV set is domi- | 0 the baseline in th |
nated by commentary data, but the TEST set confory close 1o e baseline in e cross-language
air experiment. It confirms that our method is

sists of news data only, which is identical to the . . .
ore generalisable over different language pairs,

MTC4 corpus we use to train the Regression svMm!

The results show that our method is generaend. Is somewhat more sensitive to changes in do-

_ ; ) .. mains.
isable to different tasks and evaluation criteria. . ) L
The shortcomings of vertical normalisation are

When tested on similar domains, our regression P ) .
SVM not only performs better than a very highmagnlfled in these experiments. The correlations
baseline, but also approaches the performance tffourtinetrlc?flg alc-of-flloms_mht_esé_se:s f(:IrI‘O\;VS
the best SVM trained specially for Ranking. Fur- € pattern o ~ V. which Indicates tha

thermore, the better performing metrics on MTCA/ertical normalisation causes performance to dete-
continue ,to perform well on WMTO08 riorate. It accords with our assumption in the re-

However, our method is quite sensitive to dodression experiment that vertical normalisation is

main change. The regression SVM trained on qlore prone to error on harder tasks.
completely different domain performs worse tharb Conclusion and Further Work
the Ranking SVM on the DEV set, whereas on
the TEST set it performs better than the Rankingn this paper, we have presented a novel approach
SVM, which is trained on a multi-domain corpus. to automatic MT evaluation, where the labelled de-
, _ pendency approach of (Owczarzak et al., 2007a;
56 CrossLanguage Pair and CrossDomain  gyczarzak et al., 2007b) is combined with the use
Generalisability of both Ranking and Regression Support Vector
We carried out more experiments on the WMTO08achines (SVMs) (Burges, 1998). In our ap-
data to explore the generalisability of our methogbroach, we learn the required labelled dependen-
over different language pairs and different do<¢ies, and show that our method improves over the
mains. As far as language pair generalisability iapproach of (Owczarzak et al., 2007a; Owczarzak
concerned, we divide the dataset by language paies$ al., 2007b) with respect to correlation with hu-
into French—English and Other—English parts. Wenan judgements. In addition, we demonstrate
train the metrics on half of the French—Englistthat our method is generalisable over different lan-
data, and test the model on the other half as wejjluage pairs, but is somewhat more sensitive to
as Other-English data. The results are provided thanges in domains.
Table 6. As far as extensions to this work are concerned,
For domain generalisability, we train the metricave aim to experiment with more features to im-
on half of the News data and test them on the othgarove cross-domain adaptability and to prevent any
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overfitting. In addition, a more in-depth analysisCorston-Oliver, Simon, Michael Gamon, and Chris
needs to be carried out in order to discover which Brockett. 2001. A machine learning approach

. . to the automatic evaluation of machine translation.
tFi)c?:I\(/:vlthlr? therigjnr?j dzoerr]:]ré?::te most to the correla- In Proceedings of 39th Annual Meeting and 10th

Meeting of the European Chapter of the Associa-

tion for Computational Linguisticpages 148-155,
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