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Abstract

In this paper we address the problem of
translating between languages with word
order disparity. The idea of augmenting
statistical machine translation (SMT) by
using a syntax-based reordering step prior
to translation, proposed in recent years, has
been quite successful in improving trans-
lation quality. We present a new tech-
nique for extracting syntax-based reorder-
ing rules, which are derived through a syn-
tactically augmented alignment of source
and target texts. The parallel corpus with
reordered source side is then passed to an
N -gram-based machine translation system
and the obtained results are contrasted with
a monotone system performance. In exper-
iments, we show significant improvement
for the Chinese-to-English translation task.

1 Introduction

One of the most challenging problems facing ma-
chine translation (MT) is how to place the trans-
lated words in the natural order of the target lan-
guage. A monotone SMT system suffers from
weakness in the distortion model, even if it is able
to generate correct word-by-word translation. In
this study we propose a reordering model that in-
volves both source- and target-side syntax infor-
mation in the word reordering process.

Our work is inspired by the approach proposed
in Imamura et al. (2005), where a complete syntax-
driven SMT system based on a two-side subtree
transfer is described. In their approach they con-
struct a probabilistic non-isomorphic tree mapping
model based on a context-free breakdown of the
source and target parse trees; extract alignment
templates that incorporate the constraints of the
parse trees; and apply syntax-based decoding. We
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propose to use a similar non-isomorphic subtree
mapping to extract reordering rules, but instead of
involving them directly in the translation process,
we use them to monotonize the source portion of
the bilingual corpus.

In the next step, the rules are applied to the
source part of the same training corpus chang-
ing the source sentence structure such that it more
closely matches the word order of the target lan-
guage. It leads to a simplification of the translation
task due to a shorter average length of bilingual
units which it is more likely to see when translat-
ing an unseen set.

Local and long-range word reorderings are
driven by automatically extracted permutation pat-
terns operating with source language constituents
and underlaid by non-isomorphic subtree transfer.
The target-side parse tree utilization is optional,
but it greatly affects system performance: it is con-
sidered as a filter constraining the reordering rules
to the set of patterns covered by both the source-
and target-side subtrees. Apart from the reorder-
ing rules representing the order of child nodes, a
set of additional rewrite rules based on a deep top-
down subtree analysis is considered, which is an-
other novel aspect of the paper.

We used the N -gram-based SMT system of
Mariño et al. (2006) to test the proposed syntax-
based reordering model, which is an alternative to
the phrase-based state-of-the-art Moses1 system.

2 Related work

In practice, a reordering model operates on a sen-
tence level and is carried out based on word re-
ordering rules derived from the training corpus.
Reordering patterns can be purely statistical (see
Costa-jussà and Fonollosa (2006), for example),
use language-based syntactic information (Collins
et al., 2005); the reordering can be driven by a lat-

1www.statmt.org/moses/
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tice of syntactically motivated alternative transla-
tions (Elming, 2008) or be based on automatically
extracted patterns driven by syntactical structure of
the languages (see Crego and Mariño (2007b) as an
example). Another recent implementation of the
preprocessing approach to syntax-based reorder-
ing though an n-best list generation can be found
in Li et al. (2007).

Word class-based reordering patterns were part
of Och’s Alignment Template system (Och et al.,
2004). The modern state-of-the-art phrase-based
translation system Moses, along with a distance
based distortion model (Koehn et al., 2003), imple-
ments the phrase-based reordering (Tillmann and
Zhang, 2005).

Reordering algorithms specifically developed
for an N -gram system include a constrained
distance-based distortion model (Costa-jussà et al.,
2006) and a linguistically motivated reordering
model employing monotonic search graph exten-
sion (Crego and Mariño, 2007a).

An example of a word order monotonization
strategy can be found in Costa-jussà and Fonol-
losa (2006), where a monotone sequence of source
words is translated into the reordered sequence us-
ing SMT techniques.

In Xia and Mccord (2004) the authors present
a hybrid system for French-English translation,
based on the principle of automatic rewrite pat-
terns extraction using a parse tree and phrase align-
ments. This method differs from the one presented
in this paper, among other distinctions, by a lexical
model underlying the subtree syntax transfer and a
different statistical model used for translation.

3 Baseline SMT system

N -gram-based SMT has proved to be competitive
with the state-of-the-art systems in recent evalua-
tion campaigns (Khalilov et al., 2008; Lambert et
al., 2007).

According to the N -gram-based approach, the
translation process is considered as an arg max
searching for the translation hypothesis êI

1
max-

imizing a log-linear combination of a translation
model (TM) and a set of feature models:

êI
1

= arg max
eI
1

{
M∑

m=1

λmhm(eI
1
, fJ

1
)

}
(1)

where the feature functions hm refer to the system
models and the set of λm refers to the weights cor-
responding to these models.

A detailed description of the N -gram-based ap-
proach can be found in Mariño et al. (2006).

As decoder, we used MARIE2 (Crego et al.,
2005), a beam-search decoder implementing a
distance-based constrained distortion model, lim-
ited by two parameters: m - a maximum distance
measured number in words that a phrase can be
reordered and j - a maximum number of "jumps"
within a sentence (Costa-jussà et al., 2006).

4 Syntax-based reordering

Our syntax-based reordering (SBR) system re-
quires access to source and target language parse
trees, along with the source-to-target and target-
to-source word alignments intersection. In the
framework of the study we used the Stanford
Parser (Klein and Manning, 2003) for both lan-
guages, however the system permits using any
other natural language parser allowing for differ-
ent formal grammars for the source and the target
languages.

4.1 Notation
SBR operates with source and target parse trees
that represent the syntactic structure of a string
in source and target languages in a Context-Free
Grammar (CFG) fashion.

This representation is called "CFG form", and
is formally defined in the usual way as G =
〈N, T, R, S〉, where N is a set of nonterminal sym-
bols (corresponding to source-side phrase and part-
of-speech tags); T is a set of source-side terminals
(the lexicon); R is a set of production rules of the
form η → γ, with η ∈ N and γ a sequence of ter-
minal and nonterminal symbols; and S ∈ N is the
distinguished symbol.

The reordering rules then have the form

η0@0 . . . ηk@k →

ηd0
@d0 . . . ηdk

@dk|Lexicon|p1 (2)

where ηi ∈ N for all 0 ≤ i ≤ k; (do . . . dk)
is a permutation of (0 . . . k); Lexicon includes the
source-side set of words for each ηi; and p1 is a
probability associated with the rule. Figure 1 gives
two examples of the rule format.

4.2 Rule extraction
Concept. Inspired by the ideas presented in Ima-
mura et al. (2005), where monolingual correspon-
2http://gps-tsc.upc.es/veu/soft/soft/marie/
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dences of syntactic nodes are used during decod-
ing, we extract a set of bilingual patterns allowing
for reordering as described below:

(1) align the monotone bilingual corpus
with GIZA++3 (Och and Ney, 2003) and
find the intersection of direct and inverse
word alignments, resulting in the con-
struction of the projection matrix P (see
below);

(2) parse the source and the target parts of
the parallel corpus;

(3) extract reordering patterns from the par-
allel non-isomorphic CFG-trees based
on the word alignment intersection.

Step 2 is straightforward; we explain aspects of
Steps 1 and 3 in more detail below. Figure 1 shows
an example of the generation of two lexicalized
rules; we use this below in our explanations.

Figure 1: Example of reordering rules extraction.

Projection matrix. Bilingual content can be rep-
resented in the form of words or sequences of
words depending on the syntactic role of the cor-
responding grammatical element (constituent or
POS).
3http://code.google.com/p/giza-pp/

Given two parse trees and a word alignment in-
tersection, a projection matrix P is defined as an
M×N matrix such that M is the number of words
in the target phrase; N is the number of words
in the source phrase; and a cell (i, j) has a value
based on the alignment intersection — this value
is zero if word i and word j do not align, and is a
unique non-zero link number if they do.

For the trees in Figure 1,

P =

(
0 0 2 0 0
0 1 0 0 0

)

Alignment and sub-trees interaction. Each non-
terminal from the source and target parse trees is
assigned a string carrying information about ele-
ments from the alignment intersection which are
contained in its child nodes, taking into account
the order of their appearance in the tree (AI). For
example, the AI string assigned to the source-side
internal node V P ∗ in Figure 1 is "1 2" and to the
target-side V P is "2 1". This information is used
to indicate the source-side nodes which are to be
reordered according to the target language syntac-
tical structure. Reordering patterns are extracted
following the source and target-side AIs as shown
in Figure 1 ("main rules").

If more than one non-zero element of the projec-
tion matrix is reachable through the child nodes,
the AI has a more complex structure, providing in-
formation about elements from alignment intersec-
tion belonging to one or another child node. An
example can be found in Figure 2.

Figure 2: Example of complex AI structure.

Here, the subtree IP is assigned with the AIIP

= "1 (2 3)", meaning that it has two child nodes:
the first contains the element 1 from the alignment
intersection and the second, elements 2 and 3 (we
call this subsequence "closed"). The reordering
system considers nodes assigned with one or more

199



children equally discerning the nodes with differ-
ent order alignment elements.

Unary chains. Given a unary chain like
"ADV P → AD → ...", rules are extracted for
each level in this chain. For example in Fig-
ure 1, the directly extracted reordering rules are
equivalent since the node ADV P leads to the leaf
through the node AD and does not have other
edges.

The role of target-side parse tree. Conceptually
speaking, the use of target-side parse tree is op-
tional. Although reordering is performed on the
source side only, the target-side tree is of great
importance: the reordering rules can be only ex-
tracted if the words covered by the rule are entirely
covered by both a node in the source and in the
target trees. It allows the more accurate determi-
nation of the covering and limits of the rules.

4.3 Secondary rules
There are a lot of nodes for which a comparison of
AIs indicates that a subtree transfer can be done,
but segmentation of child nodes is not identical.

Figure 3 illustrates this situation. AI strings as-
signed to the root nodes of the trees contain the
same elements, but segmentation and/or order of

appearance of elements do not coincide. These
subtrees can not be directly used for pattern ex-
traction and more in-depth analysis is required.

We adopt the following six step algorithm for
each parent node from the source-side parse tree:

1. Find the AI sequence for the source-side top-
level element (considering example, IP node
is assigned "(1 2) (3 4)").

2. Go down through the target-side tree, finding
AIs for each node.

3. Find all target-side closed subsequences for
the source-side AI found on step 1. In exam-
ple, it is the subsequence "(1 2)".

4. Find all target-side isolated nodes corre-
sponding to the elements which were not cov-
ered on step 2. In example, these elements are
"3" and "4".

5. Extend the set of source-side nodes found in
steps 2 and 3 with equivalent branches. Since
the words which are not presented in the
alignment intersection do not affect the pro-
jection matrix, "equivalence" means here that
all the branches spanning the elements from

Figure 3: Example of “secondary“ rules extraction.
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the given instance are considered equally (for
example, elements NP 1 are equivalent to the
nodes IP 1, CP 1 and NP 2).

6. Place them in order corresponding to the
target-side AI and construct the final reorder-
ing patterns ("secondary rules").

As illustration of the limitations incurred by
target-side parse tree, the potential reordering pat-
tern NP@0 V P@1 → V P@1 NP@0 (referring
to the top node in the Chinese tree) is not allowed
due to distinct source- and target-side tree cover-
age.

4.4 Rule organization

Once the list of fully lexicalized reordering pat-
terns is extracted, all the rules are progressively
processed, reducing amount of lexical informa-
tion. Initial rules are iteratively expanded such that
each element of the pattern is generalized until all
the lexical elements of the rule are represented in
the form of fully unlexicalized categories. Hence,
from each initial pattern with N lexical elements,
2N−2 partially lexicalized rules and 1 general rule
are generated. An example of the process of delex-
icalization can be found in Figure 4.

Thus, finally three types of rules are available:
(1) fully lexicalized (initial) rules, (2) partially lex-
icalized rules and (3) unlexicalized (general) rules.

On the next step, the sets are processed sepa-
rately: patterns are pruned and ambiguous rules are
removed. Fully and partially lexicalized rules are
not pruned out, but we set the threshold kgener to
3. All the rules from the corresponding set that ap-
pear less than k times are directly discarded. The
probability of a pattern is estimated based on fre-
quency in the training corpus, and only the most
probable rule is stored.

In this version of the reordering system, only the
one-best reordering is used in other stages of the
algorithm, so the rule output functioning as an in-
put to the next rule can lead to situations reverting
the change of word order that the previously ap-
plied rule made. Therefore, the rules that can be
ambiguous when applied sequentially are pruned
according to the higher probability principle. For
example, for the pair of patterns with the same lex-
icon (which is empty for a general rule leading to
a recurring contradiction NP@0 VP@1 → VP@1
NP@0 p1, VP@0 NP@1 → NP@1 VP@0 p2 ),
the less probable rule is removed.

Finally, there are three resulting parameter ta-
bles analogous to the "r-table" as stated in (Ya-
mada and Knight, 2001), consisting of POS- and
constituent-based patterns allowing for reordering
and monotone distortion.

4.5 Source-side monotonization

Rule application is performed as a bottom-up parse
tree traversal following two principles:

(1) the longest possible rule is applied, i.e.
among a set of nested rules, the rule with a longest
left-side covering is selected. For example, in the
case of the appearance of an NN JJ RB sequence
and presence of the two reordering rules

NN@0 JJ@1 → ... and

NN@0 JJ@1 RB@2 → ...

the latter pattern will be applied.
(2) the rule containing the maximum lexical in-

formation is applied, i.e. in case there is more than
one alternative pattern from different groups, the
lexicalized rules have preference over the partially
lexicalized, and partially lexicalized over general
ones.

Figure 5 shows example of the reordered source-
side tree corresponding to the example from Fig-

Figure 4: Example of lexical rule expansion.
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ure 1 with the applied pattern

ADVP@0 VP@1 → VP@1 ADVP@0

and the given lexicon. The resulting reordered Chi-
nese phrase more closely matches the order of the
target language and is considered as a result of the
subtree transfer.

Figure 5: Reordered source-side parse tree.

Once the reordering of the training corpus is
ready, it is realigned and new more monotonic
alignment is passed to the SMT system. In the-
ory, the word links from the original alignment can
be used, however, from our experience, running
GIZA++ again results in a better word alignment
since it is easier to learn on the modified training
example.

5 Experiments and results

5.1 Corpus

The experiments were conducted on two Chinese-
English corpora: the BTEC corpus consisting of
short tourism related sentences and the 50K first-
lines extraction from the NIST’06 corpus belong-
ing to the news domain (NIST50K). The main rea-
son why the Chinese-English translation task was
chosen for experiments is that European languages
are not so crucial for global (long-distance) re-
ordering problem as the translation between Asian
languages and English.

We expect that the need for longer distance re-
orderings would be found in longer sentences, as
in the NIST50K corpus, but we also include the
BTEC corpus to see whether there is an effect for
shorter sentences as well. Basic statistics of the
training material can be found in Tables1 and 2.

Both system were optimized and tested on in-
domain data. BTEC development and test datasets
consist of 489 and 500 sentences, respectively,
and are provided with 7 reference translations.
NIST50K development and test sets are both 541
sentences long, 4 references are provided.

5.2 Experiment setup
Evaluation conditions were case-insensitive and
with punctuation marks considered. We used the
Stanford Parser as a NLP parsing engine (Klein
and Manning, 2003) trained on the Chinese and
English Penn Treebank sets (32 POS/44 con-
stituent categories for Arabic Treebank and 48
POS/14 syntactic tags for English Treebank).

N -gram models were estimated using the
SRILM toolkit (Stolcke, 2002). For both tasks
TM is represented in a 4-gram model form using
modified Kneser-Ney discounting with interpola-
tion, target language model (LM) of words is a 4-
gram model with modified Kneser-Ney discount-
ing, while a target-side POS LM is a 4-gram with
Good-Turing backing-off.

For all system configurations, apart from mono-
tone experiments, parameters of the distance-based
reordering model were set to m = 5 and j = 5 for
a trade-off between efficiency and accuracy.

The optimization criteria was the highest
4NIST + 100BLEU score.

5.3 Results and discussion
The following scores are reported in Table 3: final
score obtained as a result of model weights tun-
ing for development dataset (dev), BLEU and ME-
TEOR scores for the test dataset (test). We present
results for two corpora: BTEC and NIST05K char-
acterized by different domain and sentence length.

We contrast four n-gram-based system configu-
rations comparing the SBR results with the distor-
tion model:

• Baseline: the training data is not reordered
and allows for Constrained Distortion (m =
5, j = 5) during decoding, as described
in (Costa-jussà et al., 2006);

• SynBReor: SBR is applied on the prepro-
cessing step involving main rules only, the
dev/test sets are monotonically decoded;

• SynBReor+SecRules: SBR is applied involv-
ing main and secondary rules and allows for
constrained distortion (m = 5, j = 5).
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Chinese English
Sentences 44.9 K 44.9 K

Words 299.0 K 324.4 K
Average sentence length 6.66 7.22

Vocabulary 11.4 K 9 K

Table 1: Basic statistics of the BTEC training cor-
pus.

Chinese English
Sentences 50 K 50 K

Words 1.18 M 1.25 M
Average sentence length 23.6 25.03

Vocabulary 27.2 K 30.4 K

Table 2: Basic statistics of the NIST50K training
corpus.

Application of the SBR technique demonstrates
an improvement in translation quality according to
the automatic scores. SynBReor+mj is found to be
the best system configuration for both sets of ex-
periments, outperforming the baseline configura-
tion by about 0.4 BLEU points (2.9 %) that is not
statistically significant for the BTEC task, how-
ever, for the NIST50K task the difference is about
0.9 BLEU points (4 %) reaching a statistical sig-

nificance threshold4. The METEOR score also in-
creases with raise of reordering system complex-
ity, supporting the BLEU results. The SBR algo-
rithm is illustrated in Figure 6, where the Chinese
block of words is moved to the end of the sen-
tence that better matches the structure of the En-
glish counterpart.

As usual, for the tasks with scarce resources the
improvements on the test and dev sets are not co-
herent. While a clear improvement of test results
can be observed in the BTEC results, the develop-
ment set score degrades when SBR is applied.

It is possible to see from Table 3 that the intro-
duction of secondary rules influences negatively
the number of extracted tuples and comparing to
the "main rules only" configuration shows a degra-
dation in performance. Generally speaking, sec-
ondary rules include more elements than primary
ones and are more difficult to be seen in the dataset
parsed with the Stanford Parser. However, we
speculate that accurate pruning of secondary rules
could benefit the system performance significantly.

6 Conclusions and future work

In this paper we introduced a syntax-based reorder-
ing technique that monotonizes the word order of

4All statistical significance calculations are done for a 95%
confidence interval and 1000 resamples (Koehn, 2004).

dev test BLEU test METEOR # tuples voc tuples

BTEC experiments

Baseline 48.17 19.50 47.05 150,378 36,643
SynBReor 47.55 19.91 47.50 157,345 36,936

SynBReor+SecRules 47.83 19.70 47.52 141,430 36,501

NIST50K experiments

Baseline 19.16 21.28 41.55 240,609 112,947
SynBReor 19.90 22.21 41.77 252,113 114,702

SynBReor+SecRules 19.45 21.80 42.03 251,012 113,985

Table 3: Summary of the experimental results.

Figure 6: Example of SBR application.
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source and target languages involved in the pro-
cess of bilingual unit extraction. As can be seen
from the results presented, the proposed algorithm
shows competitive performance comparing with a
fundamental distance-based reordering model.

The comparison is done on two smaller
Chinese-English translation tasks with a strong
need for word reorderings. The major part of the
sentences from the BTEC corpus are short and on
the example of the tourism translation task one
can observe the SBR capacity to deal with local
reordering. The NIST50K task demonstrates po-
tential of the SBR algorithm on the translation
task with much longer average sentence length
and much need of long-distance reorderings. In
this case, the reordered system significantly out-
performs the state-of-the-art model.

The proposed approach is flexible and in the
next step will be applied to phrase-based systems.
Further work also includes the algorithm’s applica-
tion to a different language pair with distinct need
for reorderings, analysis of the extracted tuples and
development of the algorithm for accurate selec-
tion of reordering rules.
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