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Abstract

Statistically estimated phrase-based mod-
els promised to further the state-of-the-art,
however, several works reported a perfor-
mance decrease with respect to heuristi-
cally estimated phrase-based models. In
this work we present a latent variable
phrase-based translation model inspired by
the hidden semi-Markov models, that does
not degrade the system. Experimental re-
sults report an improvement over the base-
line. Additionally, it is observed that both
Baum-Welch and Viterbi trainings obtain
the very same result, suggesting that most
of the probability mass is gathered into one
single bilingual segmentation.

Introduction

aj uan@lsi c. upv. es

tackled the problem with word-level dictionaries
plus alignments between words. However, current
systems model the inverse conditional probability
in Eg. (1) usingphrase dictionaries. A phrase is
understood here as any sequence of source or tar-
get words. This phrase-based methodology stores
specific sequences of target wordarget phrase)

into which a sequence of source wordsufce
phrase) is translated.

However, a key concept of this approach is the
procedure through which these phrase pairs are
inferred. The common approach consists in us-
ing the IBM alignment models (Brown and others,
1993) to obtain a symmetrised alignment matrix
from which coherent phrases are extracted (Och
and Ney, 2004). Then, a simple count normalisa-
tion is carried out in order to obtain a conditional
phrase dictionary.

Alternatively, some approaches infer the phrase

The machine translation problem is stated as th@ctionaries statistically. For instance, a joint prob-
problem of translating source sentenceq:{ , into
atarget sentencey!. In accordance with the sta- posed in (Marcu and Wong, 2002). In that work,

tistical approach to machine translation, the optiy|| possible segmentations were extracted using the
mal translationy of a source sentence is given

by the fundamental equation of statistical maching,atrix alignment constraint, in contrast to the ap-
translation (Brown and others, 1993)

y = argmax p(x |y) p(y) 1)

yeY*

where p(x |y) is approximated by arnnverse
trandation model andp(y) is modelled with dan-
guage model; which is usually instanced by

ability model for phrase-based estimation is pro-

EM algorithm (Dempster et al., 1977), without any

proach followed in (Och and Ney, 2004). Based
on this work, another work (Alexandra Birch and
Koehn, 2006), constrained the EM to only con-
sider phrases which agree with the alignment ma-
trix, thus reducing the size of the phrase dictionar-
ies (or tables).

A possible drawback of the above phrase-

gramlanguage model (Chen and Goodman, 1996). pased models is that they are not conditional, but
The first approaches to model the translatiofyint models that require a re-normalisation post-
probability in Eq. (1), were based on word dic-p ocessing in order to obtain a conditional model.

tionaries. These word-based models, the so-callgghyever, a generative conditional phrase-based
IBM translation models (Brown and others, 1993), model presented in (DeNero et al., 2006) showed

(© 2009 European Association for Machine Translation.

a worsening of phrase dictionaries.
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In this work, we propose a conditionphrase- these extensions lay far beyond the aim of this
based hidden semi-Markov model (PBHSVIM) that ~ work.
improves the phrase-dictionary estimation. Al- Albeit there are several ways to formalise a
though, the improvements are not impressive, batéSMM, we advocate for a similar formalisation
in mind that the main property of this model is itsof that found in (Murhpy, 2007). Let € X*
clear theoretical foundation, since it is based obe the source sentence agd € )* the target
a well-known statistical modelling technique, thesentence, then we start by decomposing the con-
so-called HSMM (Ostendorf et al., 1996). This al-ditional translation probabilityp(x |y, I, J). We
low us to include several statistical improvementassume that the monotonic translation process has
into future revisions of the model (see section 5)been carried out from left to right in sequences
A previous work (Andrés-Ferrer and Juan-Ciscanf words orphrases. For this purpose, both sen-
2007) already presented a conditional phraseences should be segmented into the same amount
based hidden Markov model (HMM). However ourof phrases. Figure 1, depicts an example of a pos-
model presents significant improvements, both isible monotonic bilingual segmentation in which
theory and practice. the source sentence has a lengt9 @fords, while
The model is detailed in section 2, while its EM-the target sentence is made uplafwords. Note
based training algorithms are analysed in section 8)at each bilingual phrase makes upoacept; for
Experiments are reported in section 4. Finallyinstancec:, ¢z, c3 andcey are concepts in Figure 1.
concluding remarks are gathered in section 5.  To represent the segmentation process, we use two
segmentation variables for both sourteand tar-
2 The model get,m, sentences.
The target segmentation variabe stores each
In this section, we present ouphrase-based target segment length at the position at which
hidden semi-Markov model (PBHSMIM) for ma-  the segment begins. Therefore, if the target seg-
chine translation. Hidden semi-Markov modelsnent length variablen has a value greater than
(HSMMs) (Ostendorf et al., 1996) are a variaqy gt position4, then a segment with lengt;
tion on HMM that allow the emission of segmentssgarts at this positiori. For instance, the target
zj " at each state instead of constraining thgegmentation represented in Figure 1 is given by
emission to one element; as HMM do. There- ,,, — m%l = (3,0,0,3,0,0,2,0,3,0,0). Note

forel, the probability of emitting an object sequencenat values for the segment length variable such
2’7" in any state depends on the segment lengs, m = (3,0,0,3,0,0,2,0,1,0,0) or m =

. Note that in hidden Markov models (HMMs), (3,0,0,3,0,0,1,0,3,0,0), are invalid. It is also
the probability of emitting a segment of length worth noting that the domain of the segmenta-
staying in the same statg can only be simulated tion ranges among all the possible segmentation
by transitions to the same stae This yields the |engths,

as follows the length of eaclsource segment at the position
at which its correspondintarget segment ends. If
p(llq) =p(gl)" | (2)  the source segment length variabléas a value
greater thard at positioni; then the length of the
which is not appropriate for many situations. source segment corresponding to the target seg-

The HSMM model introduced in this sectionment that starts at positioi is ;. For instance,
is clearly inspired in the phrase-based translatio Figure 1 the source segment length variable is
models (Koehn et al., 2003). The idea behind thig — lj[l =(3,0,0,2,0,0,3,0,1,0,0).
model is to provided a well-defined monotonic for- - Given a target segmentation variable, saywe

malism that, while remaining close to the phrasedefine its prefix counterparin as follows
based models, explicitly introduces the statistical

dependencies needed to define a phrased mono- B ! )

tonic translation process. Although the mono- m; = ka i=0,1,....1 . (3)
tonic constraint is an obvious disadvantage for h=1

this primer HSMM translation model, it can beln Figure 1, the prefix segments lengths are
extended to non-monotonic processes. Howevem{! = (0,3,3,3,6,6,6,8,8,11,11,11) and
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Figure 1: A generative example of the phrase-based hiddairldarkov model for machine translation.

l_(l]1 =(0,3,3,3,5,5,5,8,8,9,9,9), for target and whereZ(m) or simply Z stands for the set of po-

source segment length variables respectively.  sitionst¢ for which m, is 0. For instance, in the
Mathematically, we express the idea depicted iexample in Figure 12 is instanced toZ(m) =

Figure 1 unhiding the former segmentation lengtf2, 3,5, 6, 8,10, 11}.

variables Provided that one of the two products in Eqg. (8)

simplifies to1, the segment length probability is
p(z|y) = ZZP z,lmly [J) . (4) expressed as

The completed model in Eq. (4) is decomposed as p(m) := H p(m;) . 9)
follows ig¢Z

plx,l,m|y):=p(m)p(l|m)p(x|m,l,y) (5) Since explicitly showing these details forces the

where we have dropped the dependenceydor discourse to be awkward, we will omit these de-

the segment variables. Note that for clarity Wéalls Therefore, we will use equations resembling

have omitted the dependency on the lengtrend  the following

I in all probabilities; and we will henceforth pro- L H -

ceed this way. pAme
Both length probabilities in Eq. (5) are being de-

composed left-to-right. However, in order to keepvhere we have explicitly ommitted thate Z,

the training as fast as possible, a special decorand we have changed the indéxnto ¢ for sub-

position of such probabilities is going to be madetly summarising the whole previous simplification

We detail here the decomposition of the target segrocess. This approach resembles the state prob-

ment length probability model, omitting details forability decomposition in HSMM (Ostendorf et al.,

: (10)

the remaining random variables. 1996).
The probability of the target segment length Similarly to the target segment length model, the
variable is given by source segment length yields the following decom-
s position
= [Ip(miImi™h) (6)
i l | m H p lt ‘ mt . (11)

At first stage, we had assumed that each partial

probability in Eq. (6) does not depend neither on Finally, knowing the length segment variables,
y, nor on both lengthsi(and.J). Hence, the prob- the emission probability is also decomposed left-

ability p(m; | mi~') is modelled as follows to-right as follows

(i i1y = 4 P9) iy 1= my 0 pla|l,m,y) : Hp . (12
m; | m =
b 1 mi—1+1#4,m;=0
_ () wherey(t) stands fony!
Finally the segment length probability is ex-,u i.e., thet-th “emitted” phrase and its re-

tme=1 anda(t) stands for

ARERY
pressed as follows spectivet-th target phrase. Note that sintés a
H H p m;) ,  (8) boundary of a target segment, thenis equal to

i€Z(m) igZ(m Ly + 1.
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Summarising, the proposed (completed) condiwe compute the forvvardagf) (z,y), and back-

tional translation model is defined by ward, 515(?)(377’!/)’ recurrences for each sample.
These recurrences are used to compute the frac-
p(@.lm|y) = [ [ p(me) p(le [me) p(@() [ 9(1) fional countsy ), (x,y); and afterwards, a new
' (13) 6 is estimated from those fractional counts. The
Then, the incomplete model introduced in Eq. (4ye-estimated parameter $#t) can be used again
is parameterised as follows to re-compute the recurrences, defining an iterative
process that ensures the log-likelihood to increase
paly):=> Y J[p0m:) p(l: |me) p(x(t)|y(t))  in each iteration (or remain the same). This pro-
1 m t cess goes on until either convergence or a maxi-

. . (14) " mum number of iterations is achieved.
with the following parameter sé&

3.1 Forward recurrence
6 = {p(m),p(l|m), p(u|v)} (15 The forward recurrenca,, is defined as the prefix

wherel andm are positive integersy is a source probability
phrase, i.e.u € X*; andv is a target phrase ¢ ay = ay(x,y) = pe(@}, Iy = I,my = t|y)
g (17)

It is important to smooth the phrase translatiomwherel, = [ andm; = ¢t mean that a source and
probabilities to avoid over-training. For doing so,a target phrase end/start at positioaf the input
we have used the IBM model 1 (Brown and othersand¢ of the output. This prefix probability is re-
1993) as follows cursively computed as follows

p(u|v) = (1—€) p(u|v)+eprByi(ulv) (16) 1 t=0,0=0
Sy opapppl'=Lt'—t) 0<t<I,

Note that in this model, each target phrage) ®u =
o P M ) 'p(m§’+1|yi/+1) 0<l < J

is understood as the “state” of a HSMM in which )
the source phrase(t) is emitted. Obviously this otherwise
is not a pure HSMM in which we have a latent (18)
state variable. The omission of this latent variablé"her? the sum ovet’ ranges from to  — 1 and
is more an assumption than a requirement. Recé'llfew'se the sum ovel tangeé fron0to!—1; and
that in Figure 1 we have depicted each biIinguaYVhere we have use(!’ — I, — ¢) to denote the
phrase pair being emitted by @ncept. There- product of lengths
fore, we could theoretically model this latent vari- p(l' =1t —t) =p({t' —t)p(l'—1|t'—t) , (19)
able as well. This inclusion would not significantly )
change the algorithms proposed here. Howevef Order to compress notation.
this idea is left as future work, since it is firstly3 5 Backward recurrence
needed to check whether this primer model de-
grades or not the system performance as some si
ilar works have previously reported (DeNero et al.,
2006; Marcu and Wong, 2002). Bu = Bu (;c,y):pe(w;]+1|[t =1l,m =t,y)

(20)
wherel; = [ andm; = t mean that a source and a
Since the proposed PBHSMM assumes that tHarget phrase ended/started at positiohthe input
segment length variables are not given in the trair@nd? of the output. The former suffix probability
ing data, some approximate inference algorithr# recursively computed as follows
such as the EM (Dempster et al., 1977) is needed.

he backward recurreng®; is defined as the fol-
owing suffix probability

3 The training

We omit here the EM derivations which lead to , , t=1i=J
the well-known Baum-Welch algorithm (Rabiner, 3, — 2ov 2w Brv p(f _l’t,_t) O<t<l,
1990). This algorithm follows the iterative scheme p(xy lyfy) 0<I<J
of all the EM instantiations. First, we guess an ad- 0 otherwise

equate parameter sé'”), as a start point. Then, (21)
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where the sum ovef ranges fromt + 1to I and with
likewise the sum ovel ranges froni + 1 to J.

These two recurrencesganswer the question of IV (l,m) = SN vtnrmnwrny  (29)
which is the probability for a given pair of sen- nort
tences wherel denotes a source phrase length, amc

Po(x|y) = ar; =B - (22)  target phrase length.

Both the forward and backward recurrence re- An alternative training algorithm is obtained
quire a matrix of size)(1.J). In order to compute COMPUting the maximum segmentation instead of
these recurrences a time complexit)@(fﬂ Jz) is the recurrences. This training, the so-called Viterbi

required. However, it can be reduced¢1.JM2) training (Rabiner, 1990), is an iterative training

by defining a maximum phrase lengit. process as well. Each iteration comprises two
stages: computing the maximum segmentation and
3.3 Fractional counts re-estimating the parameters. The Viterbi recur-

compute the probability of segmenting a given

sample in the source positio(ks ') and in the tar- 1 t=0,1=0
get positiongt, ') 5, = ) maxer {oprp(l'=1t'=t) 0<t<I,
, , P(w§/+1|y§/+1)} 0<i<J
» l_atzp(l/ — Lt —t)p(e) | Yi)Ber 0 otherwise
=
Pe(wa y) (30)

(23)
This fractional count is very helpful through the
Baum-Welch training.

A traceback of the decisions made to compyte
provides the maximum segmentatign andl.
Afterwards, the re-estimation equations are the
3.4 Re-estimation similar to Egs. (24), (26), and (28), but in this case
Once we have computed the recurrences and tm:e countsN(u,_u), N{m), and N (i, m) are th_e
actual counts since the latent segmentation is as-

fractional counts, the phrase translation probabili- . .
. . sumed to be the maximum segmentation.
ties are re-estimated as follows

N(u,v) 4 Experiments

P(ulv) == 7= (24) . . o
> N, v) The aim of the experimentation is to see how

the proposed method and algorithm improves the

guality of a any phrase dictionary given as in-

N(u,v) = Yt d(xh, 1, w)s(y! ,,v) Put. Fordoing so, we have tested our algorithm
Zn: Zl:, ; Hl t“ in two corpora: the Europail® and the Europarl-

(25) 20. The former comprises all the sentences from

where §(a,b) is the Kronecker delta function the English-to-Spanish part of Europarl (version

with

which is1 if a« = b and0 otherwise. 3) (Koehn, 2005) with length equal or less thidn
The target phrase length probabilities are estiFhe latter is made up of all the English-to-Spanish
mated as follows Europarl sentences with length equal or less than
N 20. For both corpora we have randomly selected
(m) . )

p(m) = SN (26) 5000 sentences for testing the algorithms. Note

m/ that we have constrained the training length of the
with standard Europarl because of the time requirement

for training the proposed PBHSMM. Table 1 gath-

N(m) = Z Z nyn’t,l,(ﬁm),l/ (27) ers some basic statistics of the training partition;

noi<l t and Table 2 is the counterpart for testing.

Finally, the source phrase length probabilitieszl All th? experlment(sj vlvere cartrlzd %Lrl]tttl]slngt] a
are re-estimated by -gram language model computed wi e stan-

dard tool SRILM (Stolcke, 2002), and a modi-
N(l,m) fied Kneser-Ney smoothing. To define a trans-
p(tm) = S, N, m) (28) |ation baseline, we compare our results with
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Training Europarl-10 Europarl-20 Iterations| En— Sp Sp— En
En Sp En Sp TER BLEU | TER BLEU
sentences 76,996 306, 897 Mosesp(x | y) baseline
avg. length 701 7.0 12.6 12.7 50.0 32.9 \ 472 32.7
running words| 546K 540K | 3.86M 3.91M Iterations Baum-Welch
voc. size 16K 22K 37K 58K 0 51.4 319 | 482 33.2
ble 1: Basi stics of the raini 1 514 319 [479 33.1
Table 1: Basic statistics of the training sets. 2 515 319 | 479 331
4 51.2 32.6 | 48.1 33.1
Test Europarl-10 Europarl-20 8 514 318 | 480 330
En Sp En Sp - - .
Iterations Viterbi
sentences 5,000 5,000
0 51.4 319 | 482 33.2
avg. length 7.2 7.0 12.8 13.0
. 1 51.4 319 | 479 33.1
running words| 35.8K  35.2K | 62.1K  63.0K
pp! (3-gram) 53.4 644 77.6 86.8 2 bL.1 32,6 | 48.0 332
4 51.2  32.6 | 48.0 33.0
Table 2: Basic statistics of the test sets. 8 514 31.8 |48.0 33.0

Table 3: Results obtained with the Europ#il-
Moses (Koehn and others, 2007) but constraircorpus with a maximum phrase lengthdof
ing the model to only use a phrase-based inverse
model.

For evaluating the quality of the translations wévioses baseline is only given as a reference and not
have used two error measures: bilingual evalu®s @ system to improve. The important question
tion understudy (BEU) (Papineni et al., 2001), is whether the model produces an improvement
and translation edit rate EP) (Snover and Others’ with reSpeCt to the initia“sation, i.e., the result on
2006). iteration 0. Note that this corpus is small, and

The proposed training algorithms need an initiaflthough its complexity allow us to check some
guess. To this aim, we have computed the IBI\)PBHSMM properties, we cannot to obtain further
word models alignments with GIZA++ (Och andconclusions.

Ney, 2003), for both translation directions. Then, On the other hand, Table 4 summarises the re-
we have computed the simmetrisation heurissults obtained with the Européeth. This Table

tic (Och and Ney, 2004) and extracted all tom- only report results for the Viterbi training since
sistent phrases (Och and Ney, 2004). Afterwards@gain Baum-Welch training has no advantage with
we have computed our initial guess by countingespect to it. Typically, oved iterations suffices
the occurrences of each bilingual phrase and théa avoid over-training, and maximise the system
normalising the counts. Instead of directly usingrerformance. The results show a minor improve-
the Moses system to do this work, we have implement over the initialisation. Although the improve-
mented our own version of this process. ment is small, its magnitude is similar to the im-

Since the training algorithm highly depends orProvement obtained when extending the maximum
the maximum phrase length, for most of the exphrase length as shown in Table 5. For instance, it
perimentation we have limited it to. In Table 3, is seen that extending the maximum phrase length
the results obtained for both translation direction§0m 4 to 5 incurs in the same improvement that
are summarised for the Europaf: Surprisingly, performing4 Viterbi iterations with a maximum
Viterbi training obtains almost the same result$hrase length of. In most of the cases the Viterbi
that the Baum-Welch training; probably becaus&aining improves the translation quality.
most of the sentences accumulate all the probabil- Although, in most cases the training does not
ity mass in just one possible segmentation. Maybi@cur in a significant improvement over the base-
that is why our algorithm is not able to obtainline; in practice the quality of the translations is
a large improvement with respect to the initiali-increased by the training. In Table 6, we have se-
sation. Note that since the proposed system anected some translation examples. A detailed anal-
Moses use different phrase-tables, the comparisgsis of the system translations suggest that most
of this two numbers is not fair. Therefore, thecases belong to the cases A or B.
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Case A | Training improves evaluation measures

REF. | sincerely believe that the aim of the present directivestep in the right direction .
IT. 0 I am convinced that the aim of this directive is a step in th@trdirection .

IT. 4 | sincerely believe that the aim of the directive before us $$ep in the right direction .
MOSES | Isincerely believe that the aim behind the directive is alstep in the right direction .
Case B Training improves translation but not evaluation measures

REF. Mr president , i wish to endorse mr posselt 's comments .

IT. 0 Mr president , i support for to our .

IT. 4 Mr president , i join in good faith to our colleague , mr possel

MOSES | mr president , i would like to join in good faith in the wordsair colleague , mr rbig .
Case C | Training degrades evaluation measures

REF. BSE has already cost the uk gbp 1.5 billion in lost exports .

IT. O BSE has cost the uk 1.5 million losses exports .

IT. 4 BSE already has cost in the uk alone 1500 million pounds ivge bf exports .
MOSES | BSE has already claimed to britain 1500 million pounds in&slof trade .

Case D | Other cases

REF. Are there any objections to amendment nos 3 and 14 beingdemesi as null and void from now on ?
IT. 0 Are there any objections to give amendments nos 3 and 14 .

IT. 4 Are there any objections to adopt amendments nos 3 and 14 ?

MOSES | Are there any objections to consider amendments nos 3 and 14 ?

Table 6: Some translation examples (SfEn) before and after training the phrase tabigerations with

the Viterbi training and maximum phrase lengthdof

Iterations| En— Sp Sp— En
TER BLEU | TER BLEU
Mosesp(x | y) baseline
57.3 235 [ 551 24.10 :
Iterations Viterbi lterations| En— Sp Sp— En
1 577 951 | 558 964 Iterations| Maximum phrase length
2 577 251 |55.9 26.4 0 60.5 21.2 | 579 23.5
4 577 959 | 558  26.5 4 60.5 21.2 | 581 23.5
8 577 252 | 558 26.5 Iterations| Maximum phrase lengtB
0 58.6  24.1 | 56.1  25.7
Table 4: Results obtained with the Europ2bl- 4 583 24.1 | 56.4 255
corpus with a maximum phrase length4of Iterations| Maximum phrase length
0 57.7 25.0 | 56.0 26.0
5 C lusi dE K 4 57.7 25.1 | 55.8 26.5
onclusions and Future wor Iterations| Maximum phrase length
. . . 1 . .
We have presented a phrase-based hidden semi- 0 1T 25 558 26.6
. . : . 4 57.4 253 | 55.3 26.9
Markov model for machine translation inspired . s
. . Iterations| Maximum phrase length
on both phrase-based models and classical hidden o Frr or 4 [FE0 6.6
semi-Markov models. The idea behind this model 4 57'3 25.6 55'4 26.8
is to provide a well-defined monotonic formalism - : - -

that explicitly introduces the statistical dependenTgple 5: Results obtained with the Europ2l-

process with theoretical correctness and without

moving away from the phrase-based models.

A detailed practical analysis showed a slight im-
provement by applying the estimation algorithms
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with respect to the baseline. Surprisingly, we havB®empster, A. P., N. M. Laird, and D. B. Rubin. 1977.
observed that both trainings, Viterbi and Baum- Maximum likelihood from incomplete data via the
Welch, obtain the same practical behaviour. There- EM algorithm.J. Royal Statist. Soc. Ser. B, 39(1):1~
fore, we recommend the use of the fastest: the Ny _

Viterbi training. However, we have not used th@exﬁ;ob é'ﬁéjrétci;vlglcgﬁr\;séhrig%’e?gir?deﬁeé?fb rff])osfﬁr
proposed PBHSMM as a feature inside a log-linear face heuristics. IProceedings on the Workshop on
m0de| as most Of the current State-Of-the-art SyS' Satistical Machine Trangation’ pages 31_38' New

tems. We leave this comparison as a future work. York City, June. Association for Computational Lin-
As discussed in section 2, one outstanding and 9uistics.

simple extension to the proposed model is to urkoehn, P. et al. 2007. Moses: Open source toolkit for

hide theconcept variable by having a mixture of statistical machine translation. RFroc. of ACL'07:
phrase-based dictionariep(x |y,c). Actually, Demo and Poster Sessions, pages 177-180, Morris-

. . 2 town, NJ, USA, June. Association for Computational
the requirements of this modification would not Linguistics. P
significantly affect to the proposed estimation al-

: : oehn, P., F.J. Och, and D. Marcu. 2003. Statisti-
gorithms. We are already extending the model tdS cal phrase-based translation. Rroc. of NAACL’ 03,

wards this direction. pages 48-54, Morristown, NJ, USA. Association for
Finally, the most undesirable property of the Computational Linguistics.

proposed model is its monotonicity at phrase levelenn, p, 2005. Europarl: A parallel corpus for statis-
Although the monotonic constraint is a clear dis- tical machine translation. IRroc. of the MT Summit

advantage for this primer PBHSMM translation X, pages 79-86, September.

model, it can be extended to non-monotonic Proyarcu, Daniel and Qilliam Wong. 2002. A phrase-
cesses. However, we leave these extensions as fubased, joint probability model for statistical machine
ture work. translation. InProceedings of the Conference on
Empirical Methods in Natural Language Processing
(EMNLP-2002), Philadelphia, PA, July.

Murhpy, Kevin P. 2007. Hidden semi-Markov Models
Work partially supported by the Spanish research (HSMMs). Technical report, University of British

programme Consolider Ingenio 2010: MIPRCV Columbia.

(CSD2007-00018), by the EC (FEDER), the Spanoch, F.J. and H. Ney. 2003. A systematic comparison
ish MEC under grant TIN2006-15694-C0O2-01 and of various statistical alignment model<Computa-

the Valencian “Conselleria ' Empresa, Universitat tional Linguistics, 29(1):19-51.
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