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Abstract
This paper discusses the automated translation of
Norwegian nominal compounds into English, com-
bining (a) compound segmentation, (b) component
translation, (c) bi-lingual translation templates, and
(d) probabilistic ranking. In this approach, a Nor-
wegian compound will typically give rise to a large
number of possible translations, and the selection of
the ‘right’ candidate is approaches as an interesting
machine learning problem. Our work extends the
seminal approach of Tanaka and Baldwin in several
ways, including a clarification of some fine points
of their earlier work, adaptation to a more adequate
machine learning framework, application to a Ger-
manic language with a small speech community and
very limited existing resources, and systematic ex-
perimentation along several dimensions of variation.

1 Background: The Task

Compounding is a productive feature of the Nor-
wegian language (just as in other Germanic lan-
guage), and because Norwegian compounds are
written in a single word (i.e. as one blank-
separated entity) such constructions pose a chal-
lenge to automatic translation.1 Consider the ex-
amples in (1), where we use a centered dot (‘·’)
to typographically indicate component boundaries
both in Norwegian compounds and literal English
glosses:

(1) a. anlegg·s·vei
construction·road
‘construction road’

b. dokument·stabel
document·pile
‘pile of documents’

c. brud·e·spore
bride·spur
‘fragrant orchid’

Both examples (1-a) and (1-b) can be translated
adequately from the translations of their compo-

© 2009 European Association for Machine Translation.
1The Google translation services, for example, arguably
present the best-performing open-domain Norwegian –
English MT system to date. Nevertheless, the Google
SMT system has no provisions for productively formed com-
pounds.

nent parts: in (1-a) the formative -s- joins together
the two components, where in (1-b) the Norwe-
gian compound merely is the juxtaposition of two
independent ‘words’.2 In terms of aligning com-
ponents during translation, the Norwegian surface
order is preserved in (1-a) (the English transla-
tion being a regular noun – noun compound), while
(1-b) reverses the order of the component parts—in
a different English construction, using the preposi-
tional marker of.3 We will refer to the correspon-
dences between compound parts across languages
as translation templates (see Section 3 below),
where (1-a) and (1-b), for example, instantiate the
templates 〈N1N2〉 → 〈E1E2〉 and 〈N1N2〉 →
〈E2 of E1〉, respectively.

Examples (1-a) and (1-b) are within the scope of
our method, while (1-c) is not. The translation fra-
grant orchid is not accessible merely by translat-
ing the component parts of the Norwegian brude-
spore, and we call (1-c) non-compositional for our
purposes. Furthermore, we limit our discussion to
Norwegian nominal compounds with exactly two
components, i.e. source language (SL) forms of
the type 〈N1N2〉. We approach the task of trans-
lating such compounds as a processing pipeline of
(a) compound analysis, (b) component translation,
(c) template instantiation, and (d) ranking of trans-
lation candidates.

The number of candidate translations grows
with the fertility of each component and the over-
all number of translation templates. We treat
the selection of the best candidate as a ranking
problem, employing a Maximum Entropy (Max-
Ent) machine learning approach, and using a wide

2We use the term word in a purely technical sense here, i.e.
for an independent unit of translation. In terms of the mor-
phological structure of Norwegian compounds, the predomi-
nant analysis is as the combination of two (uninflected) stems
(or lexemes), with inflection applying after compounding.
3For this example, it would seem appropriate to analyze pile
as a relational noun, which would make the of PP a comple-
ment to the head noun. But for the purpose of the present
discussion, nothing much will hinge on the specifics of the
internal syntactic structure of English translations.
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range of so-called features, encoding both mono-
lingual and bi-lingual information for each trans-
lation candidate. Various MaxEnt ranking models
are trained on a hand-crafted gold standard of 750
Norwegian compounds and preferred translations,
and evaluated by means of cross-validation. Using
this method, the best-performing model was able
to select the exact gold standard translation for un-
seen test data in well above 50% of all cases.

In the following, we review closely related ear-
lier work (Section 2), sketch the selection of exper-
imental data, available resources, and specifics of
our approach (Section 3), lay out the design of our
experiments (Section 4), present a wealth of empir-
ical results (Section 5), and finally conclude with a
critical discussion of our findings (Section 6).

2 Earlier Work

In investigating the automatic translation of Nor-
wegian nominal compounds, our starting point is
the influential approach of Tanaka and Baldwin—
henceforth T&B—who explore various ways of
translating Japanese nominal compounds into En-
glish and vice versa (Tanaka and Baldwin, 2003a;
Tanaka and Baldwin, 2003b; Baldwin and Tanaka,
2004). Abstractly, our steps (a) to (d) as sketched
above are all taken from T&B, but there are impor-
tant differences in the specifics of our approach,
as well as extensions beyond the results of T&B.
Besides, our focus on another language pair (with
severely more limited resources available on the
Norwegian source language side), most of the
relevant differences pertain to the ranking step,
arguably the key component in obtaining high-
quality translations.

Tanaka and Baldwin (2003b) suggest to rank
candidate translations based on target language
(TL) distributional properties, essentially corpus
frequencies. They develop an interpolated measure
CTQ (‘Corpus-based Translation Quality’; see Sec-
tion 4 below), essentially ranking candidate trans-
lations according to the probabilities of compo-
nent parts—relative to construction type, i.e. the
English side of each translation template—and the
probability of the candidate as a whole. CTQ is the
reflection of linguistic arguments pointing to the
importance both of the quantitative occurrence of
a compound itself in a corpus, as well as to the
propensity of its component parts to form phrases
(of a specific construction type).

To avoid stipulating CTQ interpolation weights,

Baldwin and Tanaka (2004) turn to a machine
learning approach, proposing the creative (but
mathematically dubious) use of a Support Vec-
tor Machine (SVM) classifier for the ranking task.
The main shortcoming of their use of the SVM
is the non-conditional nature of the probabilistic
model, i.e. much like with CTQ; the task is con-
strued as separating ‘good’ from ‘bad’ translations
independent of the original SL compound.4

At the same time, Baldwin and Tanaka (2004)
introduce additional sources of information, viz.
bi-lingual properties extracted from machine-
readable dictionaries. Intuitively, these additional
machine learning features aim to provide a mea-
sure of the strength of the translation relation hold-
ing between component parts, and of course to ac-
tually capture those cases where SL compounds
are fully listed in the dictionary. Our work extends
Baldwin and Tanaka (2004) in several ways. First,
we deploy a conditional MaxEnt ranker (rather
than a contorted SVM classifier), leading to a for-
mally more adequate and more scalable machine
learning framework. We explore additional fea-
ture combinations of mono-lingual and bi-lingual
sources of information, and provide a systematic
investigation into the relevance of analysis ‘depth’
(contrasting a tagger vs. a syntactic parser) in pre-
processing the training corpus. Finally, we provide
empirical results on the learning curves—with in-
creasing amounts of mono-lingual training data—
of our various methods.

While T&B have been the foremost source of
inspiration for our work, earlier approaches to the
compound analysis and translation problem in-
clude Rackow et al. (1992), who explore the trans-
lation of German compounds into English. While
their task is quite similar, this work has its empha-
sis on the segmentation and analysis of SL com-
pounds, although it proposes using corpus data
(counts) to distinguish between the various candi-
date translations. From the available information,
the approach was not fully implemented or eval-
uated empirically. Grefenstette (1999), translat-
ing German and Spanish compounds, shows how
WWW counts can be used to rank candidates, al-
though his experiments are confined only to com-
pounds for which a translation exists in a bi-lingual
dictionary.

4Baldwin and Tanaka (2004) report that, in their SVM exper-
iments, most of their training runs failed to converge, i.e. did
not result in a functional classifier. This observation may well
be owed to their creative use of the SVM framework.
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3 Methodology and Preparational Steps

We pursued a data-driven approach both in the
selection of training and test compounds and in
the discovery of bi-lingual translation templates.
A balanced set of 750 Norwegian 〈N1N2〉 com-
pounds were extracted from running text, hand-
inspected, and manually translated into English.
Translation templates were then ‘read off’ the
translations (the gold standard).

3.1 Source Language Compound Selection

Candidate Norwegian nominal compounds were
selected from a large collection of running text,
comprised of the Norwegian segments of the Oslo
Multilingual Corpus5, and of the smaller LOGON
corpus (Oepen et al., 2004). The text corpus was
analyzed using the Oslo-Bergen Tagger (OBT)
(Hagen et al., 2000), which assigns a special SAM-
SET (‘compound’) tag to candidate compounds
(i.e. input tokens not in the system lexicon, where
a segmentation into known components is possi-
ble). Out of a total of 2,7 million words, 37,058
instances were labelled as compounds and nomi-
nals, of which 22,339 were unique types.6

To gauge frequency of use, Internet searches
(using the Yahoo API) were performed for each of
the unique compounds, and from the 4946 types
that acquired more than 10 hits, we selected 750
at random. Much like in the original T&B exper-
iments, these randomly chosen compounds were
organized according to three frequency bands (ac-
cording to Yahoo hits), henceforth: the low, mid-
dle and high bands. To identify compound-internal
structure and confirm the 〈N1N2〉 construction
type, we applied the procedure of Johannessen and
Hauglin (1996), which is available as an optional
component in the OBT. During this step, candi-
dates that were segmented into more than two parts
or other construction types were rejected and re-
placed with new random samples from the original
set of 4946 words.

3.2 Gold Standard and Templates

Our final selection of 750 Norwegian 〈N1N2〉
compounds was presented to a bi-lingual in-

5See http://www.hf.uio.no/ilos/OMC.
6Note that these figures do not accurately reflect the frequency
of compounding in Norwegian, as the OBT lexicon includes
a relatively large number of high-frequency compounds, in-
cluding many fully transparent and compositional ones. Due
to the current OBT architecture, these instances are no longer
identified with the SAMSET tag.

formant, alongside the results of look-up in a
Norwegian – English dictionary (Eek, 2001). The
informant could either accept the translation, re-
place it or add to it, and provide translations for
the compounds that were not listed in the avail-
able dictionary, which was the case for 95,6% of
the compounds. Although alternatives in the trans-
lation were permitted, the informant was not in-
structed to provide an exhaustive list of possible
translations. This was preferred to limiting the
number of translations to one in all cases (as is the
case in the earlier T&B experiments), as this would
imply the undesirable assumption that any Norwe-
gian compound, independent of context, has one
and only one correct English translation. Of the
750 final SL compounds, 444 are compositional in
our sense, i.e. the gold standard translation is avail-
able, in principle, to our method. The experiments
reported in Section 5 focus on this compositional
sub-set.

All translations were inspected and general-
ized into translation templates, essentially syn-
tactic alignment instructions. The two templates
seen earlier—〈N1N2〉 → 〈E1E2〉 and 〈N1N2〉 →
〈E2 of E1〉—were the by far most frequent ones.
We arrived at a total of 20 templates, includ-
ing possessive constructions (e.g. kvinne·avis –
woman·newspaper – ‘woman’s newspaper’), varia-
tion of the prepositional link (e.g. jakt·lykke – hunt-
ing·luck – ‘luck in hunting’), morpho-syntactic
variation of the non-head component, and even the
reversed 〈N1N2〉 → 〈E2E1〉 (gartner·mester –
gardener·master – ‘master gardener’). This latter
template which was attested only once in the gold
standard, was excluded from our experiments as
non-productive.

3.3 Target Language Statistics

A central element in the ranking of candidate
translations is mono-lingual frequency information
about the target language. To sample appropri-
ate statistics, three large corpora of English text
were used as the basis for the ranking task. The
British National Corpus (BNC), comprising 80M
words, the AQUAINT (AQ) corpus consisting of
375M words and finally the North American News
Text Corpus (NAN) totalling 350M, words were all
processed through the second version of the RASP
parser (Briscoe et al., 2006), to make it possible to
not only gather statistics of word (co-)occurrences
but to also take into account the specific construc-
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tion types. The parsed results were indexed ac-
cording to the various templates, so that occur-
rence statistics for the compounds, their compo-
nent parts, and the TL template structure could be
easily extracted. In Section 4 below, we define var-
ious machine learning features on the basis of this
data, and in Section 5, we investigate the effects of
increasing amounts of available TL training data.

3.4 Task Definition and Evaluation

Our task is to automatically translate compounds
according to the method outlined earlier. Seeing
that the search space (the set of candidate trans-
lations) is fully determined by the bi-lingual dic-
tionary and set of bi-lingual templates, the main
factor of variation in our investigation is the rank-
ing method applied to picking the ‘best’ candi-
date. In our experiments, we apply various rankers
and evaluate against the gold standard translations.
More precisely, we report the success rate as the
percentage of Norwegian compounds for which
the highest-ranked translation candidate is identi-
cal to the gold standard translation (or, in case of
multiple references in the gold standard, is a mem-
ber of that set). For the machine learning experi-
ments, we apply ten-fold cross-validation, i.e. train
the ranker on 90% of the gold standard and eval-
uate on the remaining 10%, repeating this proce-
dure for all ten distinct splits, and averaging suc-
cess rates over all runs. Thus, no model is tested
on compounds that were part of its training data.

4 Experimental Setup

Recall that for the actual translation of a given
compound, its component parts are looked up
in the bi-lingual dictionary, and each component
translated into its English counterparts. We will re-
fer to the fertility of each component as n1 and n2,
where for our example (1-a) above, say, n1 = 22
and n2 = 5, i.e. there are 22 available translations
for the noun anlegg and 5 for vei, respectively.

4.1 Preparatory Steps

All component translations are ‘slotted’ into the
translation templates, resulting in a set of transla-
tion candidates. The total number of candidates
is the cross-product of n1, n2, and the number of
distinct templates (20, in our experiments). This
is indeed one of the richer examples, and in our
experiments the maximum number of translation
candidates did not exceed a couple of thousand

possible outcomes. For each translation candidate,
a set of quantitative corpus data is extracted from
the pre-processed and indexed TL corpus. These
data are then used to rank the candidates, in vari-
ous ways, either by means of the CTQ of Baldwin
and Tanaka (2004), or as the input to the MaxEnt
ranker. While in the former (heuristic) case the
corpus data can be directly used for ranking and
testing on the gold standard (there is no separate
training step), the MaxEnt approach requires sep-
arate training and test data sets, which we address
by ten-fold cross-validation over the gold standard.

The splitting up of compounds (using the op-
tional OBT component mentioned earlier) and
component translation was carried out as a prepa-
rational step, where each SL compound and its
component parts with TL translations were in-
dexed in an intermediate data structure.

4.2 Candidate Generation with Templates
It was a requirement in the implementation that
the Norwegian compounds could be split up into
two parts, both of which were nouns. For the En-
glish translation, however, it is accepted that one
of the components be translated as multiple En-
glish words, as in example (2). To accommodate
this variation, all TL frequency counts discussed
below can in principle range over any TL phrase,
as observed in any of the candidate translations are
any of the ‘slots’ defined by our set of translation
templates.

(2) hytte·tilsyn
cottage·supervision agency
‘cottage supervision agency’

4.3 Ranking Baseline: Reference
For the ranking task, as a simple baseline (i.e. a
measure of how the more refined ranking meth-
ods performed), a reference ranking based on only
the frequency (in the available TL corpora) of the
translation candidate in full was introduced. Of
two candidates, such as ‘down bag’ vs. ‘bag of
down’, the most frequent phrase would be chosen.

4.4 Corpus-based Translation Quality
A much stronger baseline, borrowed from Bald-
win and Tanaka (2004), was used—the interpo-
lated CTQ metric7—which extracts the frequency
7Baldwin and Tanaka (2004) give a slightly revised formal-
ization for CTQ, as compared to the earlier version of Tanaka
and Baldwin (2003b). Furthermore, in the earlier publication
there is room for uncertainty as to whether each term, esti-
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Mono-Lingual Features
CTQ

freq(E1, E2, t)
freq(E1, , t))
freq( , E2, t)
freq(E1, t)
freq(E2, t)

Table 1: Corpus-based MaxEnt features, where E1 and E2

denote English phrases ‘slotted’ in as the first or second ele-
ment of a compound template t. Most often, E1 and E2 are
single words.

counts from the target language corpus.

CTQ(wE
1
, wE

2
, t) =

αp(wE
1
, wE

2
, t) + βp(wE

1
, t)p(wE

2
, t)p(t)

(1)

Equation 1, firstly computes the probability of two
English words, w1 and w2 occurring as an instance
of the template t, multiplied by an interpolating
weight, α, then adds the product of the probability
of w1 as the first element in a construction licensed
by template t and the probability of w2 being the
second element, respectively. An example would
be the count of machine translation occurring as
two nouns in a sequence (the template) divided by
the total count of all template instances, added to
how often machine is the first word of such cou-
ples, and translation is the second, to capture what
words more often let themselves be combined in
such compounds.

4.5 MaxEnt Basics: Mono-Lingual Features
The Maximum Entropy (MaxEnt) framework has
been applied successfully to NLP tasks before
(Ratnaparkhi, 1996; Ratnaparkhi, 1998; Mikheev,
2000; Charniak and Johnson, 2005; Velldal, 2008)
in areas like parsing, sentence boundary detec-
tion, and PoS tagging, but notably (re-)ranking,
for which it is also used in this paper. The vari-
ous statistics for each translation candidate (which
will be discussed in further detail below), can be
used as features in a conditional MaxEnt model
(the family of MaxEnt models is also commonly
referred to as log-linear or exponential models).8

mated by maximum likehood over the training corpus, should
be conditioned on t or not: Tanaka and Baldwin (2003b) dis-
cuss the terms as ‘conditional’ probabilities, but equation 1
suggests a non-conditional formalization (in contrast to, for
example, p(wE

1 , w
E
2 |t)). We implemented both variants and

found the non-conditional CTQ to perform substantially bet-
ter, hence restrict ourselves to this variant in the following.
Just like T&B, we use α = 0.9 and β = 0.1.
8Like Velldal (2008) and much other current work, we make
use of the open-source TADM framework, see http://
tadm.sourceforge.net (Malouf, 2002).

Bi-Lingual Features
freq(E1, E2|N1, N2)
freq(N1, N2|E1, E2)
freq(E1, E2,→)
freq(E1, E2,←)
freq(E1|N1)
freq(E2|N2)
freq(N1|E1)
freq(N2|E2)

Table 2: Bi-lingual features, extracted from the dictionary.
N1 and N2 denote the first and second element of the Norwe-
gian compound and E1 and E2 designate the English transla-
tions of these components in the current translation template.

Given a source language compound n, our model
estimates the probability of a candidate transla-
tion ei as the normalized dot product of a vector
~f of so-called features—arbitrary properties deter-
mined by so-called feature functions—and a vector
~λ of corresponding weights:

p(ei|n) =
exp

∑
j λjfj(ei, n)

∑n
k=1

exp
∑

j λjfj(ek, n)
(2)

The search for the highest-scoring candidate can
then be formalized as arg maxei

p(ei|n), i.e. find-
ing the translation candidate ei that maximizes the
conditional probability, given n. The machine
learning task, then, is to find the vector ~λ that max-
imizes the (conditional) likelihood of the training
distribution—a problem for which off-the-shelf so-
lutions are available.

To avoid the stipulation of linear interpolation
weights in CTQ, we defined a MaxEnt model with
a feature set consisting solely of (log-)frequencies
extracted from the target language corpus. For all
MaxEnt models that were built, an additional bi-
nary feature identifying the template, which would
inform the model on which template was the most
frequent, was used. The mono-lingual features that
were used are shown in Table 1.

4.5.1 MaxEnt with Bi-Lingual Features
In addition to the two experiments testing the

difference between humanly estimated interpola-
tion weights and the results of using a machine
learning engine, the MaxEnt learner was also
tested on a full feature set, with features also en-
coding information about the individual transla-
tion(s) of the source input, and not just the mono-
lingual target language features of the transla-
tion candidate. Our bi-lingual feature set, ex-
tracted from the one Norwegian – English dictio-
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nary available, is summarized in Table 2. In this
model, bi-lingual features are added ‘on top’ of the
mono-lingual ones.

These dictionary-based features indicate how
often an English component E1 or phrase E1E2 is
counted as a translation of its Norwegian source.
Because there can be multiple senses of an entry in
the dictionary, a translation can have frequencies
above 1, meant to capture what is a more likely
translation for a given source word. In addition,
frequencies of the translation candidates attested
in the dictionary, regardless of the source are cap-
tured, as well as using the dictionary in both direc-
tions. In Table 2 the symbol ‘→’ indicates use of
the dictionary in ‘forward’ direction (Norwegian –
English), and ‘←’ the reverse direction.

4.6 Variation in Analysis Depth

The RASP analyzer was used for the pre-
processing of the English language text corpora.
RASP results were then searched by means of reg-
ular expressions, corresponding to the TL side of
our translation templates, in order to extract the
frequency of the various types of translations. In
performing these queries, there is a choice as to
whether to use RASP annotations only at the part-
of-speech (PoS) level, or whether to inspect full
phrase chunks. Consider the simplified exam-
ples (3) and (4), showing attachment of a ‘for’ PP
either inside of an NP, or as a VP modifier instead:

(3) (VP (VB buy)
(NP (NNS books)

(PP (IN for) (NP (NN children)))))

(4) (VP (VB buy) (NP (NNS books))
(PP (IN for) (NP (NN children))))

If the regular expression used for counting occur-
rences of the 〈E2 for E1〉 template only inspected
the PoS tags associated to each word, both (3) and
(4) would match, resulting in a false positive count.
A regular expression query requiring all template
elements to be embedded inside an NP, on the
other hand, would count only the first one. Seeing
that RASP annotations are fully automated, where
the syntactic layer is bound to have a higher error
rate than the PoS layer, however, it is not a pri-
ori known which of the two strategies would yield
better approximations of the actual counts. Varia-
tion of analysis depth, in this sense, is a dimension
of variation to all experiments summarized in Sec-
tion 5 below.

4.7 Variation in Corpus Size

The experiments were conducted using the corpora
BNC, AQ and NAN (as mentioned in Section 3),
where additional training data was added incre-
mentally, starting with only the BNC, then adding
AQ, and finally also adding NAN. The amount of
training data used is another, orthogonal dimension
of variation to the experimental results reported be-
low.

4.8 Parameter Tuning — Implementation

The TADM MaxEnt toolkit allows the tuning of
certain hyper-parameters to the estimation process.
Feature weights can be smoothed using a so-called
Gaussian prior, and relative or absolute tolerance
thresholds can be applied in determining learner
convergence. A large space of different combi-
nations for these hyper-parameters was explored
experimentally, but learner performance was rel-
atively stable within substantial intervals around
the TADM default values; no specific combination
lead to significantly improved performance, when
compared to the default hyper-parameters. Thus,
all results reported here assume standard TADM
settings.

5 Results

An overview of experimental results can be found
in Table 3, where REF denotes the simple fre-
quency baseline, CTQ the original T&B metric,
ME1 our mono-lingual MaxEnt model, and ME2 the
full MaxEnt model, including dictionary features.
The results show a notable increase in performance
as we go from REF- and CTQ-based ranking to
MaxEnt ranking, and a smaller, yet significant in-
crease as the bi-lingual features are introduced.
The increase between REF and CTQ shows how
the weighted information about the ‘association
strength’ between single component corpus data
and the translation candidate itself boosts perfor-
mance; and the difference between CTQ and ME1
shows that it helps to combine these data through
a principled machine learning approach. The fully
superior performance of the MaxEnt model with
all features, finally, suggests that adding more in-
formation (by way of features) to the model in-
creases performance further.

In the following few paragraphs, we discuss
these results further, along the various dimensions
of variation that we have set up for these experi-
ments.
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REF CTQ ME1 ME2
Corpora Band Tagger Parser Tagger Parser Tagger Parser Tagger Parser
BNC high 28.03 25.00 32.58 31.82 39.80 38.70 51.10 51.90

middle 20.51 19.23 26.28 33.33 31.80 36.30 51.20 50.90
low 12.10 11.46 19.11 24.20 33.60 31.80 45.90 48.90
all 19.77 18.20 25.62 29.65 34.81 35.42 49.3 50.49

+AQ high 38.64 35.61 40.91 40.91 49.80 54.90 57.40 59.70
middle 23.72 25.00 30.77 36.54 39.00 41.10 52.00 54.20
low 13.38 12.10 19.11 20.38 26.80 27.80 45.50 46.70
all 24.50 23.59 29.66 32.12 37.90 40.5 51.31 53.18

+NAN high 35.61 37.12 38.64 38.64 49.40 51.60 58.70 59.60
middle 23.08 24.52 26.92 29.03 38.60 39.60 51.80 52.20
low 16.56 14.01 18.47 17.20 25.80 26.50 48.00 45.50
all 24.50 24.55 27.42 27.70 37.28 38.54 52.51 52.03

Table 3: Overview of gold standard results, measured as the percentage of correctly translated compounds.

Frequency Bands In the success figures of Ta-
ble 3, there is a general tendency across ranking
methods to perform better on high-frequency com-
pounds, presumably because frequency of use will
impact the reliability of statistics used in rank-
ing. We have not investigated this effect in a sys-
tematic manner, but recall from Section 3 that (a)
the frequency bands were established from web
counts (we lack a Norwegian corpus of sufficient
size) and (b) our compound discovery procedure
using the Oslo-Bergen Tagger is biased, in that a
large number of compositional but frequent com-
pounds have been entered into the system lexi-
con (as simplex words) and, hence, are omitted
from our study. Thus, results presented here prob-
ably under-estimate the actual performance of our
method.

Analysis Depth Table 4 shows the differences
in performance between using tagger-based and
parser-based data. For the three ranking meth-
ods displayed in the table, the parser-based gen-
erally data show an improvement in performance,
i.e. the added precision of counts taking into ac-
count syntactic structure seems to outweigh the ex-
pectation of a higher error rate in RASP results at
this higher depth of analysis. For all ranking meth-
ods, however, the difference is smallest when all
training corpora are used, and parser-based counts
even yield a slightly lower performance for the full
corpus using all MaxEnt features (i.e. our most ad-
vanced model).

Corpus Size As Table 3 indicates, the perfor-
mance of the various rankers generally increases
as the base corpus from which quantitative data

are extracted is larger. But it is also evident that
going from the BNC to the BNC+AQ combination
shows the biggest difference in performance. In
fact, going from there to +NAN surprisingly in-
dicates a decrease in performance, except for one
set of experiments. The difference, however, is
very small for the the most sophisticated ranking
method, the fully-featured MaxEnt model. For 38
Norwegian compounds the top-ranked translation
candidate diverged for the +AQ and +NAN exper-
iments, with half of them going in either direc-
tion. Hence, a sign test exploring the likeliness of
this result if the two methods +AQ and +NAN are
equal, would find such an outcome expected, if the
‘methods’ are equal.

6 Discussion

Our experiments show that the MaxEnt approach
is viable to finding the correct translation of nomi-
nal compounds, just as Baldwin and Tanaka (2004)
show how a SVM can give better results than hu-
manly stipulated interpolation weights. The per-
formance also increases as a full feature set is
used, including translation counts for the individ-
ual compound subparts, instead of only frequen-
cies of the translation candidate itself.

The MaxEnt approach allows just for this com-
bination of features, both features stemming from
linguistic insight, as well as purely quantitative
measures resulting from counts from annotated
corpora. It will be possible to introduce further se-
mantic information into such a model, when avail-
able, depending on the framework in which it is
implemented. In our experiments, only one bi-
lingual dictionary was used (Eek, 2001), but the
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Corpora REF CTQ ME1 ME2
BNC -1,65 3,80 0,53 1,17
+AQ -1,01 2,35 2,73 1,9
+NAN 0,14 0,28 1,3 -0,4

Table 4: Difference in performance when RASP is used as a
parser and a tagger. A negative figure shows that tagger-based
counts led to better ranking results.

counts for a translation could vary because of the
different senses of one word stored in a lexicon
entry. There may, however, also be other system-
atic relations between a compound and its correct
translation, for example a relationship between a
certain joint element and the output construction
type, or the between semantic information and
construction type. Such features could be imple-
mented through the use of binary features, allow-
ing them to be included in a MaxEnt model.

Although a larger corpus would likely yield bet-
ter coverage of rare constructs, and accordingly
help overall performance, a decrease in marginal
benefit from adding words would also be expected.
The low frequency band benefits less from the en-
largement of the corpus, whereas the middle and
high frequency bands show a marked improvement
going from BNC to BNC+ANC. Our expectation
was that the lower frequency band would benefit
more from better coverage in the basis corpus, so
this was an unexpected result. More research is
needed to verify or explain this tendency.
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