
Identification of Duplicate News Stories in Web Pages

John Gibson, Ben Wellner, Susan Lubar

The MITRE Corporation
202 Burlington Rd.
Bedford MA 01730

USA

Abstract
Identifying near duplicate documents is a challenge often faced in the field of information discovery. Unfortunately many algorithms
that find near duplicate pairs of plain text documents perform poorly when used on web pages, where metadata and other extraneous
information make that process much more difficult. If the content of the page (e.g., the body of a news article) can be extracted from
the page, then the accuracy of the duplicate detection algorithms is greatly increased. Using machine learning techniques to identify the
content portion of web pages, we achieve duplicate detection accuracy that is nearly identical to plain text and significantly better than
simple heuristic approaches to content extraction. We performed these experiments on a small, but fully annotated corpus.

1. Introduction
News articles published on the Internet typically appear

on many different websites in either identical or revised
form. For users, identical and nearly identical duplicates
are an annoyance. Duplicates slow down the process of
finding new information on a topic, and potentially cause
missed information if the user mistakenly identifies two
documents as identical duplicates when in fact one con-
tains new information. For automated processing such as
named entity recognition and visualization, redundant data
can cause incorrectly weighted results, markedly skewing
search engine results and automated text processing appli-
cations.

While it is straightforward to find identical news stories
in plain text documents, finding identical news stories em-
bedded in web pages is considerably more complex. This is
due to the large amount of “extraneous” information, such
as navigation links, ads, Javascript, and other miscellaneous
content contained in these pages. While the actual news
story text on two separate web pages may be identical, the
extraneous content on the pages will not be. Thus standard
approaches for determining identical duplicates will fail.

In our system, named CEDAR which stands for Con-
tent Extraction and Duplicate Analysis and Recognition,
we have taken a two-part approach to this problem. First,
we have created a method for extracting news story text
from web pages that is not website-specific (Gibson et al.,
2007). We then use the extracted content to identify pairs
of documents with the same news story content, ignoring
any extraneous information on the pages. By calculating a
resemblance score for pairs of documents based on a tech-
nique called shingling (Broder et al., 1997), we can identify
both identical and near duplicate news stories.

2. Background
Duplicates are undesirable for many types of data.

These include databases, mailing lists, file systems, email
and image data. It is common practice to locate identical
pieces of data using hashing strategies. Each piece of data is

Approved for public release; Distribution Unlimited; Case
#08-0238

hashed using one of the standard algorithms, such as MD5.
Any data represented by the same hash value is considered
to be an identical duplicate.

Near duplicate documents are typically determined by
computing a similarity score for each pair of documents in a
collection. As presented by Chowdhury (Chowdhury et al.,
2002) the two most common similarity measures are resem-
blance (Broder et al., 1997) and cosine similarity (Salton
et al., 1975).

2.1. Cosine Similarity

To compute cosine similarity, documents are mapped
into a vector space, typically based on term weights. The
weight for each term is computed by the number of occur-
rences of the term in the document and an inverse measure
of its frequency across a document collection. Document
similarity is then measured by the cosine distance between
the vectors.

2.2. Shingling

To compute the resemblance of two documents, each
is broken into overlapping fragments called shingles. To
do this, a shingle length, � , is specified. The first shingle
is comprised of the first � words of the document. The
second shingle consists of the second word in the document
through the word located at ����� , and so on. Resemblance
for the two documents is computed as the intersection size
of the two documents’ shingle sets divided by the size of
the union of these sets. Let � and � denote the two sets of
shingles for two distinct documents, then their resemblance
is defined as:

�	� ��
���
��
� � � ��
�� � � ��
 �� � � ��
�� � � ��
 �

One of the main drawbacks to shingling is the massive
number of shingles generated, especially for large docu-
ments. Several strategies are used to reduce the number
of shingles, while only slightly reducing the effectiveness
of the algorithm. The first is sketching, which is the pro-
cess of taking a uniform subset of the shingles, for exam-
ple by discarding all shingles S for which

��������� �"!�
26

�
(Broder et al., 1997). A further refinement is supersh-

ingling, which takes the shingles for each document that
remain after sketching and shingling them again. These
second order shingles are supershingles. If two documents
have just a single supershingle in common then they can
be considered near duplicates. A final performance en-
hancement comes from discarding very common shingles.
Broder et al. (Broder et al., 1997) experiment with the Al-
taVista dataset; they discarded all shingles that appeared in
1000 or more documents (Broder et al., 1997). This greatly
reduces the size of the shingle sets which leads to large
space and time savings.

2.3. Locality Sensitive Hashing

As an alternative to computing the resemblance or co-
sine distance, there exist hash functions that yield similar
values for similar documents. These functions produce col-
lisions with a probability equal to the resemblance or cosine
distance. Or as a formal definition from Charikar (Charikar,
2002):

A locality sensitive hashing scheme is a distribution on
a family F of hash functions operating on a collection of
objects, such that for two objects x, y,

� ��������� 	 ��

 � 	 ���
�
 ������� ��

 �

The main performance advantage of this approach is

that the resulting hash values require much less storage
space than the shingles of a document or the full term vec-
tors of the cosine distance approach.

3. Related Work
3.1. Duplicate Detection

Recently Henzinger combined shingling and locality
sensitive hashing (LSH) to achieve good results on a very
large dataset (1.6 billion distinct web pages) (Henzinger,
2006). Henzinger’s experiment was particularly interesting
because a subset of the data was evaluated manually which
allowed for a more rigorous assessment of the accuracy of
the technique. The combined algorithm first used shingling
and then applied an LSH that estimates the cosine distance.
The shingling portion used a variant of Fetterly, et al.’s al-
gorithm (Fetterly et al., 2003) (which is a variant of Broder,
et al.’s algorithm). Specifically it used a minvalue sketching
technique followed by supershingling. Pages were consid-
ered near duplicates if they had at least 2 matching supersh-
ingles. Next, the LSH was applied to all of the documents
identified as near duplicates by the first pass. Then the bit
sequence for each document was divided into pieces and
any pair of documents that had a single piece in common
were compared more thoroughly. If at least 355 of the 384
bits of the hash matched then the pair was kept as a near du-
plicate. The combined algorithm yielded substantial gains
in precision with only a moderate impact upon recall.

A major difference between Henzinger’s work and our
own is that it has a different definition of near duplicates.
Henzinger’s near duplicates are documents that differ not
in content, but in boilerplate or other miscellaneous page
structure (session ids, username, hit count, etc.). We would
consider those to be identical duplicates. This distinction is

important because the aim of Henzinger’s experiment was
to eliminate redundant documents, while ours is to identify
all of the related versions of each document. Henzinger’s
results are difficult to compare to ours for this reason; addi-
tionally the experiments in that work operate over a much
larger set of web documents than we examine here, are fo-
cused more on scalability and examines all types of docu-
ments randomly taken from the Web rather than just news
stories as in our work. That being said, Henzinger reports
pair-wise precision scores of 79%. The level of recall is un-
known because only a subset of their corpus was annotated.
However, the combined algorithm did have a pair-wise re-
call score of 79% on the results of the shingling algorithm
alone.

3.2. Content Extraction

Content extraction tools such as Columbia University’s
Crunch aim to reduce the size of web pages by removing
what they deem as noise or clutter from the pages (Gupta
et al., 2005). Additionally, a tool by the Document Analy-
sis and Recognition Team (DART) at BCL Computers Inc.
further reduces text by providing a summary of what re-
mains (Rahman et al., 2001). These tools are motivated by
a variety of goals including paring down pages for the visu-
ally impaired (Gupta et al., 2005), producing lighter weight
content for small screen devices such as PDAs (Gupta
et al., 2005; Rahman et al., 2001) and reducing page com-
plexity for subsequent processing as in MetaNews (Kang
and Choi, 2003) and in the CLEANEVAL challenge task as
part of the Web as a Corpus Workshop (WAC 2007, 2007).

These Content Extraction tools are related to our work
in that they are focused on determining which parts of web
pages are relevant to their goal. However, they address
the broader problem of operating on any type of web page,
while we are focused solely on pages containing news arti-
cles.

3.3. News Story Content Extraction

MetaNews (Kang and Choi, 2003) and the Columbia
Newsblaster project (Evans et al., 2004) both concentrate
on gathering news articles on the web. MetaNews uses a
two-phased approach. First, it carries out noise removal by
throwing out HTML tags that it believes will not contain
content. Next it uses pattern matching on the reduced page
to extract news articles. Patterns for MetaNews are manu-
ally defined for each news site, and no automatic learning
is involved. Thus although pattern writing is simpler than
for traditional wrapper approaches, this tool is still likely to
fail if a page format changes, and adding new sites requires
some manual labor.

The Columbia Newsblaster team originally used indi-
vidual site wrappers to identify news articles. They de-
termined that this approach was difficult for handling new
sites. As a result, they implemented a machine learning
based approach which is similar to ours. The module relies
on “simple surface characteristics of the text” to classify
blocks of text as part of an article, or into various other cat-
egories such as title, caption, or other.

27

4. Data
4.1. Harvesting

To create a data set containing duplicate news stories,
we started by obtaining article titles from the Reuters and
Associated Press (AP) RSS feeds. 1 We then sent each ti-
tle as a query to Google News and downloaded the top ten
results for each query. Because of the large variance in the
pagination methods of each site we limited downloads to
the first page of each article. In total we harvested 2577
documents from 49 separate websites. We only annotated
a subset of these; the resulting data set included 1621 doc-
uments from 27 different websites.

After harvesting, we took two steps to turn the data
into a reference standard that could be used for training
and scoring. First, we annotated the documents to indicate
which portions of text were news story content. Second,
we identified and recorded which document pairs contained
identical or near duplicate news stories.

4.2. News Article Annotation

Manually annotating 2577 documents was a daunting
task, so we instead automated the process by writing site-
specific taggers. In the end, we reduced the size of our
dataset for a variety of reasons. First, we concluded that
it was not worth the effort to write taggers for sites that
contributed only a few documents to the dataset. Secondly,
there were two sites whose page format would have been
difficult to annotate automatically. Finally, we decided to
exclude over 500 articles that came directly from various
Reuters sites. We felt that it would not be as interesting to
use these articles as a basis for content extraction because it
is possible to obtain a plain text feed directly from Reuters.
As a result of these exclusions, our final dataset was com-
prised of 1621 documents from 27 different websites.

For each of these documents, we first corrected poorly
formatted HTML using Beautiful Soup2 and Tagsoup.3 We
then inserted tags around the body of the news article.
Where possible, we also tagged the article’s author, date,
location, source, and title.

4.3. Duplicate Identification

The second step in creating a reference standard was to
identify and record duplicate pairs in the document collec-
tion. First we located identical pairs by normalizing the ar-
ticle text and comparing all of the documents directly. This
analysis found that there were 564 distinct articles.

Marking near duplicate pairs was carried out as a man-
ual process because it requires a user’s judgment to deter-
mine whether two articles are near duplicates. We imple-
mented a basic GUI to accelerate the process. It displays
two articles side by side, and highlights the differences be-
tween the articles’ content. A picture of the viewer ap-
pears in Figure 1. Because there are over 1 million possible
pairings of 1621 documents, a manual comparison of all

1We used different feeds from http://www.reuters.com/tools/rss and
http://hosted.ap.org/dynamic/fronts/RSS?SITE=AP.

2Beautiful Soup was written by Leonard Richardson, et al. and
can be found at http://www.crummy.com/software/BeautifulSoup/

3TagSoup was written by John Cowan and can be found at
http://ccil.org/ cowan/XML/tagsoup/

possible pairs would have been extremely time consuming.
Therefore, we used a few techniques to speed up the pro-
cess. First we display only one document for each unique
article as identified by the first pass, bringing the total num-
ber of documents for comparison down to 564. When a
document pair was marked as near duplicates we automati-
cally added near duplicate pairings for all of the exact dupli-
cates of the two marked documents. Because of the method
we used for harvesting documents, we were confident that
the bulk of the duplicates would also share the same title.
Thus we began by reviewing document pairs that had sim-
ilar titles. Once we had implemented our shingling algo-
rithm we used it to find the few remaining documents that
were near duplicates but had different titles.

We had six annotators review the data and record near
duplicate pairs. Because determining whether a fairly dif-
ferent, but related pair is somewhat subjective, we held
group discussions to determine the status of questionable
pairs. Also, after the first pass of all of the documents was
completed, we assigned a different annotator from the orig-
inal group to carry out a second pass and verify the pairs
that were recorded. In the end the reference standard con-
tained 3591 identical duplicate pairs and 1231 near dupli-
cate pairs.

5. Content Identification
Once we had created a reference standard we used the

data to develop a machine learning-based system for iden-
tifying the content of the news articles.

5.1. Division into Blocks

The first step in our approach was to divide the web
page into smaller pieces for our algorithms to identify as
CONTENT or NOTCONTENT.

We sanitized the raw HTML by transforming it into
XHTML using Tagsoup and Beautiful Soup. In the rare
case that a document that could not be transformed into
XHTML, we discarded it. Otherwise we tokenized the doc-
ument. We excluded all words inside style and script tags
from tokenization. It is safe to assume that those tags will
never contain any content because they will not be rendered
by a browser.

Next we partitioned the sequences of tokens into blocks.
Intuitively, we define a block as a sequence of text that
when rendered in a browser does not cause a line break.
More formally we defined blocks as sequences of text
that are bounded by any tag except the following: <a>,
<ins>, , , <bdo>, , ,
<dfn>, <code>, <samp>, <kbd>, <var>, <cite>,
<abbr>, <acronym>, <q>, <sub>, <sup>, <tt>,
<i>, , <big>, <small>, <u>, <s>, <strike>,
<basefont>, and .

5.2. Feature Generation and Classification

Once the individual blocks were identified we generated
a variety of feature types from each block that we subse-
quently used to train our algorithms. These feature types
included a simple bag of words with frequency, a count of
the tokens in a block, the percentage of tokens in a block
that were contained within an anchor tag (<a>), tags in and

28

Figure 1: Example duplicates

around the block, inverse stop wording, named entities, and
a few other feature types. A complete list with details can
be found in our previous paper (Gibson et al., 2007).

We experimented with a variety of machine learning ap-
proaches that made use of the above features to identify
content containing blocks. A key insight is to not label each
block independently, but rather to label them using sequen-
tial classification methods that take into account the whole
sequence of decisions over all the blocks in a single arti-
cle. Conditional Random Fields (CRFs), a flexible statis-
tical model able to capture sequential dependencies while
also allowing rich, arbitrary features proved to be the most
successful approach (Gibson et al., 2007).

We also tried using a simpler maximum entropy model
with only word features to judge the effect of the quality of
the content extraction step upon duplicate detection.

5.3. Content Extraction Methodology

In order to determine the effectiveness of content ex-
traction for duplicate identification, we needed to run our
content extraction system over our entire duplicate data set.
However, the content extraction system relies on the same
articles as a source of training data. Further, many of the
articles in the collection are duplicates, and many are from
the same web-site. Ideally, in the most conservative and fair
setting, the content extractor would not be trained on any of
the same articles (including duplicates and near duplicates)
or any of the same sources as to which it is applied.

To achieve this on our collection we used a four-fold
cross validation approach. Each of the four folds contained
6 or 7 sources, with each source only belonging to exactly

one fold. We assigned sources to folds in round-robin fash-
ion by selecting a source at random weighted by the num-
ber articles belonging to that source. This kept each fold at
roughly the same size in terms of the number of articles.

Three folds constituted the training data while a fourth
served as test data. This would allow each article to be
processed with a content extractor that was trained on ar-
ticles from web-sites not appearing in the test data. How-
ever, due to many duplicates in our corpus, the training data
will likely contain many of the same articles as in the test
data, though from different sources. To compensate for this
problem, if any duplicate documents spanned the training
and test data for a particular fold, we removed those arti-
cles from the training set. An illustration of this process
can be seen in Figure 2. This process was repeated four
times, with each fold taking its turn as test data.

6. Experiments and Results

Our experiments in this section aim to demonstrate 1)
the effect that various system parameters and options have
on overall accuracy and 2) how well the system, tuned on
development data, performs on held-out evaluation data.
We believe that the latter is an indicator of how well the
system will perform on new web pages from news sources.

6.1. Evaluation Methods

Before describing our experiments in detail, we high-
light two methods for evaluating duplicate detection accu-
racy.

29

TestingTraining

CNN

ABC

Mercury News

AlertNet

MSN

Forbes

Figure 2: Data partitioning for content extraction model.
Boxes indicate sources, circles are documents. Circles con-
nected by lines are duplicates. Crossed out circles were
dropped from the training set.

6.1.1. Pair-wise Evaluation
The most natural way to evaluate a duplicate detection

system is with a pair-wise evaluation metric. Given a set
of documents, the reference standard provides information
as to whether each pair of documents is a duplicate pair. A
system for duplicate detection is responsible for assigning
a similarity score, � , to each pair of documents. Given a
threshold, � , each pair with a score, ����� is hypothesized
to be a duplicate pair. For a particular threshold, � , we
can evaluate the precision and recall of the duplicate system
where precision is computed as:

correct duplicate pairs
hypothesized duplicate pairs

and recall computed as:

correct duplicate pairs
true (reference standard) duplicate pairs

For different applications, different threshold values
may be appropriate depending on whether precision or re-
call is preferred. A way to compare the results of different
systems across all threshold values is to look at Receiver
Operator Characteristic (ROC) curves, which plots the true
positive rate against the false positive rate, essentially cap-
turing the precision rate at all possible recall levels. The
area under this curve provides a single number useful for
comparing two systems that assign scores to positive and
negative instances. The area under the curve, in our context,
can be interpreted as the probability that the system/model
will provide a higher resemblance score to an arbitrary doc-
ument pair ��� than a pair ��� when ��� is, in fact, a duplicate
pair and ��� is not. We use the area under the ROC, AU-
ROC curve for some of the results that follow. Note that, in
particular, the graphs below plot how the AU-ROC changes
as a parameter is adjusted - the graphs are not ROC curves
themselves.

Note that for our full data set of 1621 web page doc-
uments, there are 1,313,010 unordered document pairs of

which just 4815 are duplicate pairs.

6.1.2. Cluster-Based Evaluation
While pair-wise evaluation is intuitive and appropriate

in many cases, it has the disadvantage of skewing the re-
sults when the pair-wise relation is an equivalence relation4.
This is because mistakes made with documents belonging
to larger equivalence classes will be penalized more than
documents within small equivalence classes. This can pro-
vide for a rather unintuitive evaluation metric. The cluster-
wise evaluation metric considers the degree to which the
resulting equivalence classes match each other rather than
considering all pair-wise relations.

Equivalence class-based evaluation metrics have been
used for evaluation within document and cross document
co-reference in natural language processing (Vilain et al.,
1995; Amit and Baldwin, 1998). For our formal evalua-
tion of the system, we use the B 	 scoring metric (Amit and
Baldwin, 1998) and its implementation within the LingPipe
suite of NLP tools5. Very briefly, the B 	 metric takes as in-
put the reference standard clusters and the clusters derived
from the system output (obtained in our case by asserting
that all pairs with a resemblance above a certain threshold
are duplicates and then taking the transitive closure). For a
document,
 , precision,

���
, and recall,
 � , are computed as

follows:

��� � # of correct documents in the output cluster containing

of documents in the output cluster containing

and

 � � # of correct documents in the output cluster containing

of documents in the truth cluster containing

The final precision and recall scores for the output clus-
ters are the average precision and recall scores across all the
documents.

6.2. System Configuration Analysis

In this section we consider a set of experiments aimed
at identifying the effect of different system parameters on
duplication detection accuracy.

The first set of experiments looks at the effect of varying
the system parameters:

Block size filter This option removes blocks (described
above) if their word/token count is below a certain
threshold. The threshold varies from 1 to 20.

Shingle frequency filter This option removes the � %
most frequent shingles in the corpus, values range
from 0.0% to 10.0%.

Shingle size This parameter controls the size of the shin-
gles in words. It is an integer varying from 1 to 10.

4While we have not restricted our similarity relation to be tran-
sitive, the manually annotated duplicate pairs reveal a similarity
relation that is transitive in nearly all cases. This may be a reflec-
tion on our particular data set, however.

5LingPipe is available at http://alias-i.com/lingpipe/

30

5 10 15 20

0.
82

0.
84

0.
86

0.
88

0.
90

0.
92

Minimum token count within each block

A
re

a
U

nd
er

 R
O

C

Figure 3: Duplicate detection accuracy with different min-
imum word counts per block with word shingles of size 6.

0 2 4 6 8 10

0.
85

0.
90

0.
95

Percentage of most frequent shingles removed

A
re

a
U

nd
er

 R
O

C

Figure 4: Duplicate detection accuracy with different shin-
gle cutoff percentages using word shingles of size 6.

Figure 3 shows how duplication detection accuracy, in
terms of AU-ROC (on the Y-axis), varies as more and more
blocks are filtered from the documents based on the min-
imum token count (shown on the X-axis). As the mini-
mum count is increased, accuracy improves until a mini-
mum count of 10 with increasing minimum counts not re-
sulting in noticeable improvement and eventually degrada-
tion in accuracy after reaching a minimum of 17 or more.
The shingle size is fixed at 6 while the shingle frequency
filter is inactive.

Figure 4 contains a graph illustrating the effect of re-
moving varying percentages of the most frequent shingles.
Accuracy improves even more substantially as compared
with the block filter here. The explanation for this is that
many of the shingles in the non-content portions of the doc-
ument appear over and over again as part of the web-page
boilerplate, in contrast to shingles found in the content por-
tion of the article. Again, shingle size was fixed at 6 and no
block-level filtering was performed.

A final graph is shown in Figure 5 demonstrating the
effect different shingle sizes have on overall accuracy. The
best duplicate identification accuracy is found with shin-
gles of size 2. Surprisingly, single word shingling performs
very well, outside the standard deviation of accuracy with
shingles of size 4.

In addition to the above contributions, we also exam-
ined the effect of content extraction on accuracy. The hy-
pothesis here is that extracting the article content by remov-
ing extraneous parts of the document, will improve dupli-

2 4 6 8 10

0.
99

75
0.

99
85

0.
99

95

Word Shingle Size

A
re

a
U

nd
er

 R
O

C

Figure 5: Duplicate detection accuracy with different word
shingle sizes. The standard deviation bars, computed using
the approach in (Hanley and McNeil, 1982), demonstrate
significantly lower accuracy with larger shingles.

Shingle/Block Filter AU-ROC
Heuristic 0.91076 � 0.00283
CE-SIMPLE 0.9999922 � 0.0000284
CE-BEST 0.9999933 � 0.0000272
Ref. Standard 0.9999935 � 0.0000259

Table 1: Content Extraction-based results using word shin-
gles of length 2.

cate detection accuracy. We look at four different content
extraction (CE) approaches here:

Heuristic Removal of document regions between
<script> and <style> tags.

CE-SIMPLE A simple maximum entropy classifier to
identify blocks containing article content. The feature
set used for the classifier consisted of only the words
present in the block. The document-level accuracy of
this CE system is 58% – meaning that it is able to per-
fectly identify the content portion of a web-page 58%
of the time. The block-level precision is 96.0 with re-
call at 98.1.

CE-BEST The automatic best content extraction system
based on CRFs using a richer feature set that consid-
ered the presence of particular HTML tags, the pres-
ence of named entities (e.g. people, organizations,
etc.) and other features. Document-level accuracy for
this CE system is 80% with block-level precision and
recall at 97.9 and 99.5, respectively.

Ref. Standard Only the portions of the documents consid-
ered content by site-specific taggers and reviewed by
human annotators were used to compute resemblance.

The results in Table 1 illustrate the effects of these dif-
ferent methods on duplicate detection.

A final analysis shown in Table 2 looks at combining
the block filter and the shingle frequency filter with and
without using the heuristic-based content extraction. The
results here indicate that using the heuristic-based CE to-
gether with filtering out the top 5% most frequent shingles
and removing blocks with fewer than 12 tokens (bottom

31

Shingle/Block Filter AU-ROC

Entire Web Document
None 0.94275 � 0.00233
MinBlock = 5 0.95883 � 0.00200
Shingle Freq. = 7.5% 0.99751 � 0.00005
Heuristic Content Extraction
Heuristic Only 0.91076 � 0.00283
Shingle Freq.= 7.5% 0.99500 � 0.000718
Shingle Freq.= 5.0%
& MinBlock = 12 0.99994 � 0.000079

Table 2: Combinations of block filtering, shingle filtering
and heuristic CE using shingles of length 2.

row) achieves very high results in terms of AU-ROC. These
results appear to be competitive with duplication detection
approaches that use a statistically trained CE system (in Ta-
ble 1). However, as we demonstrate below, statistically-
driven content extraction does significantly improve dupli-
cation detection accuracy over the best system that doesn’t
use statistical CE.

6.3. Formal Evaluation

In this section we describe the results of a somewhat
more formal evaluation with a fixed development and test
split of the data. While the above analysis based on AU-
ROC provides insight into the contributions of different as-
pects of the system on overall accuracy, in a realistic setting
one must pick a fixed threshold.

We split the data into two roughly equal-sized sets
of documents such that no equivalence classes of dupli-
cate documents (according to the reference standard) over-
lapped both sets. The development portion of the data was
used to tune the threshold value and to optimize various pa-
rameters such as the minimum word count block filter and
the shingle frequency cutoff. Table 3 shows the official re-
sults in terms of the cluster-based B 	 metric as well as the
more standard pair-wise metric.

We also provide scores for using a normalized string
comparison on the reference standard’s content. This ap-
proach finds all of the identical duplicates and none of the
near duplicates.

The most obvious result of these experiments is that
effective content extraction provides a significantly higher
level of accuracy than more basic techniques. By enabling
the duplicate detection algorithm to focus on the article
content, filtering out extraneous web page material, accu-
racy is improved considerably. The overall results here are
very promising indicating that a very high percentage of
duplicate document clusters can be identified perfectly.

Another interesting result here is that even a very simple
machine learning content extraction approach provides for
duplicate detection accuracy that is nearly identical to us-
ing the reference standard extracted content. Implementing
this approach requires little effort provided a set of training
documents with the content portions annotated (see (Gib-
son et al., 2007)).

7. Conclusions
Our approach to detecting identical and near duplicate

news articles embedded in web pages is a two step process.
Our system, CEDAR, first extracts the text of the news arti-
cles from the pages, and then computes resemblance scores
for the articles using a shingling approach. We carried out
a number of experiments which show that basing the du-
plicate detection purely on the extracted content results in
more accurate results than computing resemblance across
the text of the original documents.

Additionally, we have implemented a flexible, non-
brittle approach for identifying news article text in web
pages. We created a model for our CRF classifier based on
the structure of web news pages across twenty-seven differ-
ent news websites. The classifier can now be used to find
news article text embedded in pages from previously un-
seen web sites, and does not break when the formatting on
a web site changes.

Though this content extraction technique does not al-
ways provide perfect results, it is accurate enough to allow
our duplicate detection system to outperform itself when
using more naive approaches to identifying article text.
Moreover, this content extraction module can be used to
improve results for many different tasks involving news ar-
ticles on the web. Some examples are named entity extrac-
tion, visualization, search indexing and display on a small
screen such as a PDA or cell phone.

8. Future Work
Our future work is focused on making CEDAR deploy-

able. For the content extraction this means optimizing the
preprocessing and feature generation as well as moving to
a faster implementation language (currently, we are using
Python). In situations where the only purpose of extracting
content is to improve duplicate detection accuracy, we can
use the simpler MaxEnt system which requires many fewer
features and is faster in general than the full CRF system.

Because of the relatively small size of the dataset, our
duplicate analysis implementation was performed in mem-
ory. To handle larger datasets we will experiment with
sketching and supershingling, as well as redesigning the
code to work on smaller chunks at a time. We can also
switch to an entirely different algorithm such as cosine dis-
tance or fingerprinting. Finally, if we were only concerned
with improving the precision of a system, then we could use
our system on the clusters generated by other systems. As
long as the clusters themselves are not prohibitively large,
our current performance limitations would not be an issue
and we could eliminate a large number of false positives.

Another direction for our work is to experiment with
processing foreign language text, particularly for languages
written in other character sets. It is our expectation that
translating the documents to English before shingling will
generate poor results. However, by applying word segmen-
tation techniques we should be able to achieve reasonable
accuracy using word based shingling. Or, by normalizing
the text to remove all segmentation whatsoever, shingling
based on characters rather than words should achieve very
good results. However, this approach will create an enor-
mous number of shingles and therefore performance can

32

System Threshold Cluster-based Pair-wise
Prec. Rec. F-meas. Prec. Rec. F-meas.

Heur. and Shingle Freq. = 5% 0.35 0.929 0.854 0.89 0.977 0.782 0.869
Heur. and MinBlock = 8 0.4 0.919 0.860 0.889 0.919 0.860 0.889
Heur., Shingle Freq. = 5% & MinBlock = 9 0.35 0.981 0.862 0.917 0.981 0.862 0.917
CE-BEST 0.4 0.992 0.979 0.985 0.992 0.979 0.985
CE-SIMPLE 0.4 0.992 0.977 0.985 0.992 0.977 0.985
Ref. 0.4 0.992 0.977 0.985 0.992 0.977 0.985
Ref. String Comparison N/A 1.0 0.802 0.89 1.0 0.745 0.854

Table 3: Cluster-based and pair-wise results on the evaluation data with threshold and system parameters tuned on the
development data.

become unacceptably slow. Our plan is to experiment with
character based shingling combined with sketching to in-
crease speed while maintaining reasonable accuracy.

Acknowledgements
This work was supported by the Department of

the Army’s Communications-Electronics Lifecycle Man-
agement Command (C-E LCMC) and performed under
MITRE Mission Oriented Investigation and Experimen-
tation (MOIE) project M130 of contract W15P7T-07-C-
F600, sponsored by the Pacific Regional Service Center.
Any opinions, findings and conclusions or recommenda-
tions expressed in this material are those of the author(s)
and do not necessarily reflect those of the sponsor.

9. References
Amit, B. and B. Baldwin, 1998. Algorithms for scoring

coreference chains. In Proceedings of the Seventh Mes-
sage Understanding Conference (MUC7).

Broder, Andrei Z., Steven C. Glassman, Mark S. Manasse,
and Geoffrey Zweig, 1997. Syntactic clustering of the
web. In Selected papers from the sixth international con-
ference on World Wide Web. Essex, UK: Elsevier Science
Publishers Ltd.

Charikar, Moses S., 2002. Similarity estimation techniques
from rounding algorithms. In STOC ’02: Proceedings of
the thirty-fourth annual ACM symposium on Theory of
computing. New York, NY, USA: ACM.

Chowdhury, Abdur, Ophir Frieder, David Grossman, and
Mary Catherine McCabe, 2002. Collection statistics for
fast duplicate document detection. ACM Trans. Inf. Syst.,
20(2):171–191.

Evans, D. K., J. L. Klavans, and K. McKeown, 2004.
Columbia Newsblaster: Multilingual news summariza-
tion on the web. In Proceedings of Human Language
Technology Conference/ North American Chapter of the
Association for Computational Linguistics.

Fetterly, Dennis, Mark Manasse, and Marc Najork, 2003.
On the evolution of clusters of near-duplicate web pages.
In LA-WEB ’03: Proceedings of the First Conference on
Latin American Web Congress. Washington, DC, USA:
IEEE Computer Society.

Gibson, John, Ben Wellner, and Susan Lubar, 2007. Adap-
tive web-page content identification. In WIDM ’07: Pro-
ceedings of the 9th annual ACM international workshop
on Web information and data management. New York,
NY, USA: ACM.

Gupta, S., D. Daiser, P. Grimm, M. Chiang, and J. Star-
ren, 2005. Automating content extraction of html docu-
ments. World Wide Web - Internet and Information Sys-
tems, 8(2):179–224.

Hanley, JA and BJ McNeil, 1982. The meaning and use
of the area under a receiver operating characteristic (roc)
curve. Radiology, 143:29–36.

Henzinger, Monika, 2006. Finding near-duplicate web
pages: a large-scale evaluation of algorithms. In SIGIR
’06: Proceedings of the 29th annual international ACM
SIGIR conference on Research and development in infor-
mation retrieval. New York, NY, USA: ACM.

Kang, D. and J. Choi, 2003. Metanews: An information
agent for gathering news articles on the web. In Interna-
tional Symposium on Methodologies for Intelligent Sys-
tems.

Rahman, A. F. R., H. Alam, and R. Hartono, 2001. Under-
standing the flow of content in summarizing html docu-
ments. In International Workshop on Document Layout
Interpretation and its Applications (DLIA).

Salton, G., A. Wong, and C. S. Yang, 1975. A vector
space model for automatic indexing. Commun. ACM,
18(11):613–620.

Vilain, Marc, John Burger, John Aberdeen, Dennis Con-
nolly, and Lynette Hirschman, 1995. A model-theoretic
coreference scoring scheme. In MUC6 ’95: Proceedings
of the 6th conference on Message understanding. Mor-
ristown, NJ, USA: Association for Computational Lin-
guistics.

WAC 2007, Web as a Corpus, 2007. WAC2007. In Web as
a Corpus. UCLouvain, Louvain-la-Neuve, Belgium.

33

