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Abstract
We present the CMU Syntax Augmented Machine Trans-
lation System that was used in the IWSLT-08 evaluation
campaign. We participated in the Full-BTEC data track for
Chinese-English translation, focusing on transcript transla-
tion. For this year’s evaluation, we ported the Syntax Aug-
mented MT toolkit [1] to the Hadoop MapReduce [2] parallel
processing architecture, allowing us to efficiently run exper-
iments evaluating a novel “wider pipelines” approach to in-
tegrate evidence from N -best alignments into our translation
models. We describe each step of the MapReduce pipeline
as it is implemented in the open-source SAMT toolkit, and
show improvements in translation quality by using N -best
alignments in both hierarchical and syntax augmented trans-
lation systems.

1. Introduction
While the IWSLT evaluation represents a limited domain,
scarce resource condition machine translation task, the
choice of models and experimental design parameters can
create a computationally expensive experimental life-cycle.
For such resource-scarce machine translation tasks, we hope
to squeeze every last drop of useful data out of our valuable
but limited parallel corpora. Typically, machine translation
systems use several early pruning strategies to keep compo-
nent models small, allowing them to easily fit into memory
during parameter estimation phases and when used during
translation (decoding). For scare resource tracks, we prefer
to retain as much data as possible, letting the decoder make
the final decisions to deliver the best translation quality.

In this work, we use the IWSLT evaluation task to ex-
periment with widening the pipeline that carries data from
the initial parallel corpora, through the identification and es-
timation of probabilistic synchronous context-free grammar
(PSCFG) rules, and finally to the decoder, where this data
is used with an n-gram language model to generate trans-
lations. Current phrase-based and hierarchically structured
systems rely on the output of a sequential “pipeline” of max-
imum a posteriori inference steps to identify hidden trans-
lation structure and estimate the parameters of their transla-

tion models. The first step in this pipeline typically involves
learning word-alignments [3] over parallel sentence-aligned
training data. The outputs of this step are the word align-
ment model’s most probable word-to-word correspondences
within each parallel sentence pair. These alignments are used
as the input to a phrase extraction step, where multi-word
phrase pairs are identified and scored (with multiple fea-
tures) based on statistics computed across the training data.
The most successful methods extract phrases that adhere to
heuristic constraints [4, 5]. Thus, errors made within the
single-best alignment are propagated (1) to the identification
of phrases, since errors in the alignment affect which phrases
are extracted, and (2) to the estimation of phrase weights,
since each extracted phrase is counted as evidence for relative
frequency estimates. Methods like those described in [6] and
[7, 8] address this problem by jointly modeling alignment
and phrase identification, yet have not achieved the same em-
pirical results as surface heuristic based methods, or require
substantially more computational effort to train.

For this evaluation we experimented with an approach
that “widens” the pipeline, rather than performing two steps
jointly. We present N -best alignments to the downstream
phrase extraction algorithm and define a probability distri-
bution over these alternatives to generate expected, possi-
bly fractional counts for the extracted translation rules, under
that distribution. These fractional counts are then used when
assigning weights to rules. This technique is directly applica-
ble to both flat (phrase-based) and hierarchically-structured
translation models. This approach has the potential to have
a significant impact on hierarchically structure models since
the choice of initial phrases has an impact on the re-ordering
as well as translation operations.

Since our experiments vary parameters at the start of
this sequential pipeline and because we want to ensure that
all extracted rules are used to estimate the features of our
model, we face a significant computational challenge. Us-
ing N = 50 best alignments to extract rules, we can easily
generate over 2GB of compressed data (text format SAMT
rules) that needs to be manipulated and sorted to generate
features on each rule. While this data is still tractable on cur-
rent hardware, applying this wider pipeline technique to large
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scale data becomes quickly unfeasible on a single machine.
We take this opportunity to port the Syntax Augmented Ma-
chine Translation (SAMT) toolkit to the Hadoop MapReduce
[2] parallel processing architecture. Extending the SAMT
open-source toolkit has allowed us to experiment with wider
pipelines for the IWSLT 2008 evaluation task as well as ap-
ply these techniques to large scale tasks such as those in the
NIST MT evaluation.

In Section 2 we formally define PSCFGs and the features
on each rule that are estimated from rule occurrence data. In
Section 3, we detail how the SAMT pipeline, from extraction
of rules through to decoding and Minimum Error Rate train-
ing [9] are ported to the Hadoop MapReduce architecture.
We present runtimes for end-to-end systems built on small,
medium and large resource conditions to show the effective-
ness of our implementation. We then show how we used
SAMT on Hadoop, extending [1] to handle N -best align-
ments to deliver significant improvements in translation qual-
ity for the IWSLT evaluation.

2. Synchronous Grammars for SMT
Probabilistic synchronous context-free grammars (PSCFGs)
are defined by a source terminal set (source vocabulary) TS , a
target terminal set (target vocabulary) TT , and a shared non-
terminal set N , and induce rules of the form

X → 〈γ, α,∼, w〉

where

• X ∈ N is a nonterminal,
• γ ∈ (N ∪ TS)∗ is a sequence of nonterminals and source

terminals,
• α ∈ (N ∪ TT )∗ is a sequence of nonterminals and target

terminals,
• the count #NT(γ) of nonterminal tokens in γ is equal to

the count #NT(α) of nonterminal tokens in α,
• ∼: {1, . . . ,#NT(γ)} → {1, . . . ,#NT(α)} is a one-to-

one mapping from nonterminal tokens in γ to nonterminal
tokens in α, and

• w ∈ [0,∞) is a nonnegative real-valued weight assigned
to the rule.

In our notation, we will assume ∼ to be implicitly defined
by indexing the NT occurrences in γ from left to right start-
ing with 1, and by indexing the NT occurrences in α by the
indices of their corresponding counterparts in γ. Syntax-
oriented PSCFG approaches often ignore source structure,
focusing instead on generating syntactically well-formed tar-
get derivations. [10] uses a single nonterminal category, [11]
use syntactic constituents for the PSCFG nonterminal set,
and [1] take advantage of CCG-inspired “slash” categories
[12] and concatenated “plus” categories.

We now briefly describe the identification and estimation
of PSCFG rules from parallel sentence aligned corpora un-
der the framework proposed by [1]. Our contribution of in-
tegrating evidence from N -best alignments can be applied to

any of the other PSCFG approaches mentioned above in a
straight-forward manner.

2.1. Grammar Construction

[1] describe a process to generate a PSCFG given parallel
sentence pairs 〈f, e〉, a parse tree π for each e, the maximum
a posteriori word alignment a over 〈f, e〉, and a set of phrase
pairs Phrases(a) identified by any alignment-driven phrase
induction technique such as e.g. [4, 5].

Each phrase in Phrases(a) is first annotated with a syn-
tactic category to produce initial rules, where γ is set to the
source side of the phrase, α is set to the target side of the
phrase, and X is assigned based on the corresponding target
side span in π. If the target span of the phrase does not match
a constituent in π, heuristics are used to assign categories that
correspond to partial rewriting of the tree. These heuristics
first consider concatenation operations, forming categories
like “NP+VP”, and then resort to CCG style “slash” cate-
gories like “NP/NN.”. The SAMT toolkit can be used to
generate an SAMT grammar as well as a purely hierarchi-
cal grammar that uses a single generic nonterminal symbol
X [10]. The syntax-augmented grammar induction module

also generates a purely hierarchical variant for each syntactic
rule that is generated, giving the decoder the option of using
labelled or non-labelled ( X) rules during translation.

These initial rules form the lexical basis for generalized
rules that include nonterminals in γ and α. Following the
DOP-inspired [13] rule generalization technique proposed by
[10], one can now generalize each identified rule (initial or
already partially generalized)

N → f1 . . . fm/e1 . . . en

for which there is an initial rule

M → fi . . . fu/ej . . . ev

where 1 ≤ i < u ≤ m and 1 ≤ j < v ≤ n, to obtain a new
rule

N → f1 . . . fi−1Mfu+1 . . . fm/

e1 . . . ej−1Mev+1 . . . en

where the two instances of M are mapped under ∼. The re-
cursive form of this generalization operation allows the gen-
eration of rules with multiple nonterminal symbols. Since
we only conside initial phrases up to a fixed length (10 in
this work), and only allow a fixed number of nonterminals
per rule (2), this operation has a runtime that is polynomial
as a function of |Phrases(a)|.

2.2. Decoding

Given a source sentence f , the translation task under a
PSCFG grammar can be expressed analogously to monolin-
gual parsing with a CFG. We find the most likely derivation
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D of the input source sentence while reading off the English
translation from this derivation:

ê = tgt

(
arg max

D:src(D)=f

p(D)

)
(1)

where tgt(·) maps a derivation to its target yield and src(·)
maps a derivation to its source yield.

Our distribution p over derivations is defined by a log-
linear model. The probability of a derivation D is defined in
terms of the rules r that are used in D:

p(D) =
pLM(tgt(D))λLM ×

∏
r∈D

∏
i φi(r)λi

Z(λ)
(2)

where φi is a feature function on rules, pLM is an n-gram
probability of the target yield tgt(D), and Z(λ) is a normal-
ization constant chosen such that the probabilities sum up
to one.1 The computational challenges of this search task
(compounded by the integration of the language model) are
addressed elsewhere [14, 15]. All feature weights λi are
trained in concert with the language model weight λLM via
minimum-error training (MER) [9]. Now, we focus on the
estimation of the feature values φ during the grammar con-
struction process. The feature values are statistics estimated
from rule counts.

2.3. Feature Value Statistics

The features φ represent multiple criteria by which the de-
coding process can judge the quality of each rule and, by
extension, each derivation. We include both real-valued and
boolean-valued features for each rule. The following proba-
bilistic quantities are estimated and used as feature values:

• p̂(r| lhs(X)): probability of a rule given its left-hand side
category;

• p̂(r| src(r)): probability of a rule given its source side;
• p̂(r| tgt(r)): probability of a rule given its target side;
• p̂(ul(tgt(r))|ul(src(r))): probability of the unlabeled tar-

get side of the rule given its unlabeled source side; and
• p̂(ul(src(r))|ul(tgt(r))): probability of the unlabeled

source and target side of the rule given its unlabeled tar-
get side.

In our notation, lhs returns the left-hand side of a rule, src
returns the source side γ, and tgt returns the target side α of
a rule r. The function ul removes all syntactic labels from
its arguments, but retains ordering notation. For example,
ul(NP+AUX1does not go) = �1 does not go.

The last two features represent the same kind of rel-
ative frequency estimates commonly used in phrase-based
systems. The ul function allows us to calculate these es-
timates for rules with nonterminals as well. To estimate

1Note that we never need to actually compute Z(λ) since we are merely
interested in the maximum-probability derivation.

these probabilistic features, we use maximum likelihood es-
timates based on counts of the rules extracted from the train-
ing data. For example, p̂(r|lhs(r)) is estimated by comput-
ing #(r)/#(lhs(r)), aggregating counts from all extracted
rules.

As in phrase-based translation model estimation, φ also
contains two lexical weights p̂w(lex(src(r))| lex(tgt(r)))
and p̂w(lex(tgt(r))| lex(src(r))) [4] that are based on the
lexical symbols of γ and α. These weights are esti-
mated based on a pair of statistical lexicons that represent
p̂(s|t), p̂(t|s), where s and t are single words in the source
and target vocabulary. These word-level translation models
are typically estimated by maximum likelihood, considering
the word-to-word links from “single-best” alignments as ev-
idence.

φ contains several boolean features that indicate whether:
(a.) the rule is purely lexical in α and γ, (b.) the rule is
purely non-lexical in α and γ, (c.) the ratio of lexical source
and target words in the rule is between 1/5 and 5. φ also
contains a feature that reflects the number of target lexical
symbols and a feature that is 1 for each rule, allowing the
decoder to prefer shorter (or longer) derivations based on the
corresponding weight in λ.

3. SAMT and Hadoop
Given a cluster of machines, there exist several solutions
to deploy these resources for computational work. Systems
like Condor ([16]) and Sun’s Grid Engine, provide coarse-
grained job management (accepting, scheduling, dispatch-
ing, and managing the remote execution) to a cluster of ma-
chines. These systems are primarily responsible for man-
aging the smooth execution of jobs submitted to the cluster,
while placing minimal constraints on the nature of the run-
ning jobs.

Alternatively, the MapReduce [2] architecture is a pro-
gramming model where large computational tasks are split
into two distinct phases, a Map phase and a Reduce phase. In
the Map phase, unstructured input data is processed by par-
allel tasks generating intermediate output in the form of key-
value pairs. In the Reduce phase, tasks running in parallel re-
ceive this intermediate data with the guarantee that each pro-
cess will receive all intermediate key-value pairs that share
the same key. Under this framework, large computational
tasks and task pipelines (like identifying and estimating pa-
rameters for SAMT rules and running decoding and MER
training) can be distributed to run on a cluster of commodity
hardware.

In order to use our existing codebase (written in C++) as
much as possible, we take advantage of Hadoop Streaming
which allows arbitrary executables to serve as Map and Re-
duce tasks taking text input on the standard input stream and
outputting text on the standard output stream. The architec-
ture treats the tab symbol as a key-value separator. Each step
of SAMT pipeline is described as a MapReduce phase where
outputs from each phase are written to HDFS, a highly fault
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tolerant distributed file system. The Hadoop architecture
pipes data from HDFS as input to the next phase. Our imple-
mentation is based on a Hadoop-on-Demand (HOD) imple-
mentation on a Yahoo! research cluster for Carnegie Mellon
University [17]. HOD allocates dedicated nodes from a large
cluster to each MapReduce job, and de-allocates these nodes
when the job is finished. We use Hadoop v0.17.4, and up to
two tasks run on each node. Each node has 6 GB of physical
memory shared across two CPUs.

For each MapReduce phase of the pipeline, we specify
the MapInput (data received by the Map task), MapOptions
(parameters to the Map task), MapOutput (key-value pairs
output by the Map task), ReduceInput (input guaranteed to
be contiguous to the Reduce task), ReduceOptions (param-
eters to the Reduce task), and ReduceOutput (unstructured
output format from the Reduce task). The SAMT pipeline
assumes input of the format e, f, a(e, f), π(e), where e is a
target language sentence from the training data, f is a source
language sentence from the training data, a(e, f) is a word-
to-word alignment [18, 3] on e, f and π(e) is phrase struc-
ture parse tree on e. The SAMT pipeline can be split into the
following phases: Phrase Extraction, Rule Extraction, Rule
Filtering, LM filtering (optional), Decoding, N-Best Merge
and MER Training. In each phase we try to limit the number
of key-value pairs to reduce I/O overhead, outputting multi-
ple values that share the same key from the same Map task
on a single line. The Rule Filtering and LM Filtering phases
build sentence specific models for each sentence in the de-
velopment and test corpus allowing the Decoding phrase to
load these models directly into memory. We now describe
each phase.

Phrase Extraction Map:
• MapInput: Input lines of the form f, e, a(e, f), π(e)
• MapOptions: Maximum extractable phrase length
• MapOutput: key = sno,

value = 〈f, e, Phrases(e, f), π(e)〉 where sno is the re-
spective sentence number

The Phrase Extraction phase identifies Phrases(e, f) based
on the word-aligned data and adds it to the training data
stream. There is no Reduce step in this Phase.

Rule Extraction Map:
• MapInput: Each line contains f, e, Phrases(e, f), π(e)
• MapOptions: Maximum number of nonterminals per rule,

maximum length of γ, options to select lhs from π

• MapOutput: key = ul(γ)
value = 〈γ, α, lhs, 1〉 and
key = ul(α)value = 1

Rule Extraction uses its input to generate PSCFG rules
via the procedure in Section 2.1, taking several parame-
ters that define the grammar. MapOutput ouputs the unla-
beled source side of each rule ul(γ) as key, with the rule
itself as value. Since the subsequent Reduce input will see

rules grouped by ul (γ), efficient computation of features
p̂(r| src(r)), p̂(ul(tgt(r))|ul(src(r))) is possible in the Re-
duce step. MapOutput also outputs occurrence statistics for
each lhs and for each unlabelled target side of the rule in
order to compute additional features in φ in later phases.

Rule Extraction Reduce:
• ReduceInput: All rules that share the same ul(γ)
• ReduceOptions: Minimum occurrence counts for lexical

and nonlexical rules
• ReduceOutput: Rules with subset of features in φ. Rules

that share the same ul(γ) are output on the same line.

Features p̂(r| src(r)), p̂(ul(tgt(r))|ul(src(r))) are com-
puted in the Reduce step since all rules that share the same
unlabelled source are available contiguously to the Reduce
step. Key-value pairs indicating lhs and ul(α) are simply
accumulated.

In the Rule Filtering phase, we select those rules that
can possibly be applied to each sentence in the development
and test corpus in the Map step, and in the Reduce step we
take these rules, add special SAMT rules to handle unknown
words and glue-rule [10], resulting in a sentence specific
PSCFG.

Rule Filtering Map:
• MapInput: Rules from Rule Extraction stage (single

source as key with multiple rules as values)
• MapOptions: Source corpus to filter rules against (whole

source corpus is loaded into memory)
• MapOutput: key = sno

value = 〈γ, α, φ〉
such that all words in the γ are in sentence sno in the
source corpus

Count information for lhs and ul(α) is keyed for every sen-
tence. In the filtering step this count information is used to
generate the remaining relative frequency features.

Rule Filtering Reduce:
• ReduceInput: All rules and special counts for a single sen-

tence
• ReduceOptions: Additional models to generate the re-

maining features φ

• ReduceOutput: Rules with fully formed φ for a single
sentence. Rules for a particular sentence are written to
a canonically named file.

The Rule Filtering phase outputs canonical per-sentence
grammar files as a side-effect file on HDFS, rather than on
the standard output stream. On the standard output stream
we output the potential target vocabulary for each sentence
based on the sentence-specific grammar.

LM Filtering is an optional phase to run with the n-gram
language models used for decoding are too large to fit in
memory. By using the potential target language vocabulary
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System Name Words in Target Text # LM n-grams Dev. Set Test Set 1 Test Set 2
IWSLT 632K 431,292 (n = 5) IWSLT Devset4 IWSLT07 IWSLT08

67M 67M 102,924,025 (n = 4) MT05 MT06 n/a
230M 230M 273,233,010 (n = 5) MT05 MT06 n/a

Table 1: Data configurations used to evaluated SAMT on Hadoop. The number of words in the target text and the number of language model
n-grams represented in the complete model are the defining statistics that characterize the scale of each task. For each LM we also indicate the
order of the n-gram model.

System End-to-End Time Dev. BLEU Test-1 BLEU Test-2 BLEU
IWSLT Hier. 12 mins 0.278 0.360 0.427

IWSLT Hier. with full-sentence rules 0.277 0.367 0.460
IWSLT Syntax 26 mins 0.296 0.335 0.430

IWSLT Syntax with full-s. rules 0.301 0.361 0.440
67M hier 1 hrs 10 mins 0.345 (lc) 0.323 (lc) n/a

230M hier 7 hrs 0.362 (lc) 0.337 (lc) n/a

Table 2: Translation quality as measured by IBM-BLEU on each resource track for appropriate evaluation data sets. (lc) indicates that scores
are lower-cased, otherwise scores are mixed case 4-gram BLEU

for each sentence, we can build sentence-specific n-gram lan-
guage models which are much smaller without losing any
relevant parameters.

LM Filtering Map:
• MapInput: Each line is a line from an ARPA format LM
• MapOptions: Access to a sno → vocabulary map from

the filtering stage (loaded into memory)
• MapOutput: key = sno value = t1 · · · tn if every ti is

in the target vocabulary of sno.

The Map step selects relevant n-gram lines for each sentence,
while the Reduce step re-builds a valid ARPA LM. Just like
the Rule Filtering phase, LM Filtering produces canonically
named sentence-specific language model files as side-effects
on HDFS.

LM Filtering Reduce:
• ReduceInput: All n-grams that are compliant with a single

sentence’s vocabulary
• ReduceOuput: Statistics over n-grams are computed and

output as a header to form a complete ARPA LM

The Decoding phase runs translation accessing the sen-
tence specific translation and language models and out-
putting an n-best list for each sentence.

Decoding Map:
• MapInput: A single sentence to translate per line with sno

information
• MapOptions: Options typically passed to a decoder to run

translation. We also specify a path to a HDFS directory
containing per-sentence grammars and language models.

• MapOutput: key = sno value = n-best list

If we are running Minimum Error Rate (MER) train-
ing, we perform an additional Merge phase that takes n-best
list output from all MER iterations and performs a trivial
MapReduce to merge n-best lists across iterations and re-
move duplicates. Minimum Error Rate training is imple-
mented as a MapReduce task as well. We do not parallelize
the inner-working of the MER process, rather we simply al-
low multiple initial parameter configurations to be evaluated
in parallel. In order to pass different parameters to each MER
task, we define MER MapReduce as follows:

MER Map:
• MapInput: N-Best lists for MER optimization
• MapOptions: Multiple parameter conditions for MER.

Each parameter condition includes initial parameters to
start MER

• MapOutput: key = one MER parameter config.
value = all optimization data

In the Reduce step, each Reduce task receives all the N-best
list data and parameters to run the optimization with, allow-
ing each Reducer to run optimization with different parame-
ters.

3.1. SAMT on MapReduce results

To demonstrate the effectiveness of our implementation of
SAMT on Hadoop, we test our system on three resource con-
ditions representing the full spectrum of translation scenar-
ios. These conditions are described in Table 1.

The 67M and 230M resource conditions represent
medium and large data task both in terms of available par-
allel data and monolingual LM data. Training and evaluation
corpora for these resource conditions are available via LDC
for the NIST MT evaluation task. In Table 2, we report ap-
proximate wall-clock times for end-to-end systems built on
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these data sets with corresponding BLEU scores for devel-
opment and test data. Timing is measured from Phrase Ex-
traction phase until Decoding phase using a 20 node HOD
cluster. We report results for IWSLT hierarchical and syntax
augmented systems, and purely hierarchical systems for the
larger corpora.

For the IWSLT data track, we also tested vari-
ants of our hierarchical and syntax-augmented sys-
tems, which treat the beginning-of-sentence and end-of-
sentence as regular words, thereby allowing for extrac-
tion of rules such as (in the syntax-augmented case):
S -> <s> NP VP . </s> / <s> VP NP . </s>

To limit the number of such rules, we only allow the ones
spanning the full sentence (i.e., including < s > as well as
< /s >). As can be seen from Table 2, while not having
much impact on development-set performance, adding these
full-sentence results in impressive increases in BLEU score
on the test sets.

The results in Table 2 demonstrate that we can build
high quality translations systems using the SAMT toolkit
on Hadoop within reasonable time frames. We now use the
toolkit to experiment with wider pipelines, integrating N -
best alignment evidence.

4. N -best Evidence
The PSCFG rule extraction procedure described above re-
lies on high quality word alignments and parses. The qual-
ity of the alignments affects the set of phrases that can be
identified by the heuristics in [4]. Improving or diversifying
the set of initial phrases also affects the rules with nonter-
minals that are identified via the procedure described above.
Since PSCFG systems rely on rules with nonterminal sym-
bols to represent reordering operations, the set of these ini-
tial phrases can have a profound impact on translation qual-
ity. Several recent studies [19, 20, 21, 22], explore the re-
lationship between the quality of the initial decisions in the
“pipeline” and final translation quality.

Here we experiment with weighted N -best alignments to
build PSCFGs and estimate their features. Our approach to-
ward the integration of N -best evidence into the grammar
construction process allows us to take advantage of the di-
versity found in the N best alternatives, while reducing the
negative impact of errors made in these alternatives.

4.1. Counting from N -Best Lists

For this evaluation we experimented with the extraction of
PSCFG rules from N -best alignments making use of proba-
bility distributions over these alternatives to assign fractional
posterior counts to each extracted rule.

We follow [4] in generating a refined bidirectional align-
ment using the heuristic algorithm “grow-diag-final-and” de-
scribed in that work. Since we require N -best alignments,
we first extract N -best alignments in each direction, and
then perform the refinement technique to all N2 bidirectional

alignment pairs. The resulting alignments are assigned the
probability (pf × pr)α where pf is the candidate probability
for the forward alignment and pr is the candidate probability
to the reverse alignment.

The parameter α controls the entropy of the resulting dis-
tribution over candidate alignments. The value α = 1 corre-
sponds to the joint alignment distribution under assumption
of independence of forward and reverse distributions. Higher
values of α > 1 make the distribution more peaked (affecting
the estimation of features on rules from these alignments),
while values of 0 ≤ α < 1 make the distribution more
uniform. A more peaked distribution favors rules from the
top alignments, while a more uniform one gives rules from
lower performing alignments more of a chance to participate
in translation. As a special case, α = 1/2 effectively uses
the geometric mean of forward and reverse alignment distri-
butions.

Taking the alignment N -best list to define a posterior dis-
tribution over alignments we can estimate the posterior prob-
ability of each rule that might be extracted for each alignment
pair. Given the alignments a1, ..., aN , with probabilities
p(a1 | e, f), ..., p(aN | e, f) estimated as described above,
we approximate the alignment posterior by re-normalizing:

p̂(ai) = p(ai | e, f)

/
N∑

j=1

p(aj | e, f) (3)

Given a word-alignment, we can extract rules as de-
scribed in Section 2.1. Our approach is to extract rules from
each of the {a1, ..., aN} alignments, incrementing the partial
count of each rule extracted by p̂(ai). A rule r’s total count
for the sentence pair 〈f, e〉 is thus:

N∑
i=1

p̂(ai) ·

 1 if r can be extracted from
e, f , ai

0 otherwise
(4)

In practice, this can be computed more efficiently through
structure-sharing. Note that if N = 1, this counting method
corresponds to the original counting method.

Instead of using the simple counts for rules given the
derivation inferred using the maximum a posteriori esti-
mated alignment, we now use the expected counts under
the approximate posterior. These posteriors encode (in a
principled way) a measurement of confidence in substruc-
tures used to generate each rule. Possible rule instances sup-
ported by more and by more likely alignments should, in-
tuitively, receive higher counts (approaching 1 as certainty
increases, supported by more and higher-probability alterna-
tives), while rule instances that rely on low probability or
fewer alignments will get lower counts (approaching 0 as
uncertainty increases). In practice however, we find that the
choice of α had no consistent effect on the IWSLT evalua-
tion sets—in fact, for N ≤ 10, even α = 0, corresponding
to the uniform alignment distribution, did not harm develop-
ment and test set BLEU scores. More experiments varying α
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System # Rules (1 sent.) Dev 2007 2008 2007 Time (s) 2008 Time (s)
Syntax N = 1 (lex=1st) 400K 0.309 0.355 0.453 8108 8367

Syntax N = 1 420K 0.301 0.361 0.440 8024 8250
Syntax N = 5 680K 0.322 0.374 0.470 15376 15577

Syntax N = 10 900K 0.313 0.382 0.467 19298 19469
Syntax N = 50 1500K 0.316 0.370 0.478 29500 30894

Hier N = 1 10K 0.277 0.367 0.460 895 1451
Hier N = 5 12K 0.286 0.374 0.472 906 1476

Hier N = 10 13K 0.291 0.382 0.477 944 1516
Hier N = 50 14K 0.282 0.384 0.463 979 1596

Table 3: Grammar statistics and translation quality (IBM-BLEU) on development (IWSLT Devset4) and test sets (IWSLT 2007, 2008) when
integrating N -best alignments. # Rules reflect rules that are applicable to the first sentence in IWSLT 2007. Decoding times in seconds are
cumulative over all sentences in respective test set.

and additional details regarding selecting N -best alignments
and even N ′-best parses can be found in [23]. We use α = 1
in the experiments presented here.

5. Translation Results

5.1. Experimental Setup

We present results on the IWSLT 2007 and 2008 Chinese-
to-English translation task, based on the full BTEC corpus
of travel expressions with 120K parallel sentences (906K
source words and 1.2M target words) as well as the evalu-
ation corpora from the evaluation years preceding 2007. The
development data consists of 489 sentences (average length
of 10.6 words) from the 2006 evaluation, the 2007 test set
contains 489 sentence (average length of 6.47 words) sen-
tences and the 2008 test set contains 507 sentences (average
length of 5.59 words). Word alignment was trained using the
GIZA++ toolkit.

Initial phrases of up to length 10 were identified using the
heuristics proposed by [4]. Rules with up to 2 nonterminals
are extracted using the SAMT toolkit [1], modified to handle
N -best alignments and parses and posterior counting. Note
that lexical weights [4] as described above are assigned to φ
based on “single-best” word alignments. Rules that receive
zero probability value for their lexical weights are immedi-
ately discarded, since they would then have a prohibitively
high cost when used during translation. Rules extracted from
single-best evidence as well as N best evidence can be dis-
carded in this way. As an alternative, we use IBM Model 4
translation weights to estimate lexical weights. Using these
IBM Model 4 weights allows a larger number of rules to be
added to the grammar since more rules have non-zero lexical
weights.

The n-gram language model is trained on the target side
of the parallel training corpus and translation experiments
use the decoder and MER trainer available in the same
toolkit. We use the cube-pruning decoder option [14] in these
experiments.

5.2. Empirical Results

We measure translation quality using the mixed-cased IBM-
BLEU [24] metric as we vary N . Each value of N im-
plies that the first N alignment alternatives have been con-
sidered when building the grammar. For each grammar we
also track the number of rules relevant for the first sentence
in the IWSLT 2007 test set (grammars are subsampled on a
per-sentence basis to keep memory requirements low during
decoding). We also note the number of seconds required to
translate each test set.

N -best alignments (Syntax augmented grammar. Ta-
ble 3 shows translation results on the IWSLT translation task
for the development (IWSLT 2006) and two test corpora
(IWSLT 2007 and 2008) using the Syntax Augmented and
Hierarchical grammars. In this table we vary the number
of alternative alignments, consider first-best (1), 5, 10 and
50 best alternatives. We also compare using lexical weights
from the first-best alignment (lex = 1st) and the default
Model 4 weights.

For the Syntax-Augmented grammar, using Model 4
weights slightly increases the number of rules in the gram-
mar, but only adds benefit for the 2007 test set. We continue
to use Model 4 weights for the remaining experiments since
we do not want to discard rules based on the lexical weights.
Increasing N = 1 to N = 5 brings significant improvements
in translation quality on all 3 evaluation corpora, while in-
creasing N further to N = 10 and N = 50 retains the im-
provements, but at the cost of a significantly larger grammar
and decoding times.

N -best alignments (Hierarchical grammar). Similar
results are seen with the hierarchical grammar. We see clear
improvements when moving to N = 5, and even further
small improvement up to N = 10, but a slight degradation
going further to N = 50. Surprisingly, while scores on the
development set are significantly lower with the purely hier-
archical grammar compared to the Syntax Augmented gram-
mar, unseen test set scores are very similar, and achieved
at significantly lower decoding times. Since the number of
features in φ are very similar for both models, it is unlikely
that this discrepancy is solely due to overfitting during MER
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training. It is more likely that the overfitting is due to the
number of rules used in the Syntax Augmented grammar be-
ing one to two orders of magnitude more than the Hierarchi-
cal’s. Even though the rules are not free parameters, overfit-
ting is expected to occur if the development set is more sim-
ilar to the training corpus than the test set(s). (Judging from
the sentence length distribution alone, this seems indeed to
be the case.)

6. Conclusion

For the 2008 IWSLT evaluation we evaluated the use of
N -best alignments to take more advantage of the available
data in this scarce resource scenario task. While we did see
substantial improvements in translation quality using N -best
alignments, we note that the variance in BLEU score results
on the IWSLT evaluation sets is still very high. While none
of the result presented here can be considered “statistically
significant” according to the testing criteria in [25], we are
able to see trends across multiple evaluation corpora that we
can use to evaluate the potential of a technique. In order to
efficiently run these experiments, which modify the very be-
ginning of the long MT pipeline, we ported the SAMT toolkit
to the Hadoop parallel processing architecture, allowing us
to quickly run experiments for this evaluation as well as for
medium and large data scenarios. This Hadoop port is inte-
grated into the publicly available open-source SAMT toolkit.
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