
Discriminative, Syntactic Language Modeling through Latent SVMs

Colin Cherry and Chris Quirk
Microsoft Research
One Microsoft Way

Redmond, WA, 98052
{colinc,chrisq}@microsoft.com

Abstract

We construct a discriminative, syntactic lan-
guage model (LM) by using a latent support
vector machine (SVM) to train an unlexical-
ized parser to judge sentences. That is, the
parser is optimized so that correct sentences
receive high-scoring trees, while incorrect
sentences do not. Because of this alternative
objective, the parser can be trained with only
a part-of-speech dictionary and binary-labeled
sentences. We follow the paradigm of dis-
criminative language modeling with pseudo-
negative examples (Okanohara and Tsujii,
2007), and demonstrate significant improve-
ments in distinguishing real sentences from
pseudo-negatives. We also investigate the re-
lated task of separating machine-translation
(MT) outputs from reference translations,
again showing large improvements. Finally,
we test our LM in MT reranking, and investi-
gate the language-modeling parser in the con-
text of unsupervised parsing.

1 Introduction

A language model is an important tool in any
task involving natural language generation. Lan-
guage modeling has been especially useful in speech
recognition and machine translation; by model-
ing the likelihood of generated sentences, language
models greatly increase fluency, and provide con-
textual disambiguation between possible interpreta-
tions of the input.

Given the success of discriminative training in
many machine learning tasks, there has been recent
interest in discriminative language modeling. It is

possible to train a language model that corrects er-
rors in a particular task (Gao et al., 2006; Collins et
al., 2005); however, if one wants to build a general-
purpose, discriminative language model, the ques-
tion becomes: between what should the system dis-
criminate? What are the negative examples?

Okanohara and Tsujii (2007) propose an interest-
ing answer to this question, where positive exam-
ples are taken from a corpus, while negative exam-
ples are sampled from an n-gram language model.
In that work, they confirm that native speakers can
easily discriminate between human-generated and
machine-generated sentences, as sampled sentences
include both syntactic disfluencies and semantic
nonsense, such as:

• Basically, we are a fighter jet.

• The shortage of topsoil moisture in a personal
basis, unlike his book, and extended last sum-
mer’s semiconductor’s partner in a big banks.

Discriminating between sampled and human sen-
tences has the appeal of specifically addressing
weaknesses of n-gram language modeling by build-
ing a system that selects the most human-looking
sentence when all the candidates contain likely n-
grams. It is also appealing as a challenging clas-
sification problem, as the obvious representation to
capture surface structure, a bag of n-grams, has been
rendered nearly useless by the careful construction
of the negative set. Using an online training method
to learn from 500k examples, Okanohara and Tsu-
jii show that a large margin classifier built over
bigrams of automatically-induced segment clusters
can achieve a classification accuracy of 74.11, with

[8th AMTA conference, Hawaii, 21-25 October 2008]

65

a standard bag-of-trigrams system built using a poly-
nomial kernel not far behind at 73.65.

Okanohara and Tsujii dismiss parsing as a so-
lution to this classification task after demonstrat-
ing that two parsers can successfully parse all neg-
ative examples. This seems uncharitable; to avoid
brittleness, broad coverage parsers use highly per-
missive grammars, and can parse almost any input.
They are not meant to reject ill-formed sentences. A
more fair assessment would judge inputs according
to the probabilities of the returned parses. Genera-
tive parsers calculate maxzP (x, z) in their search
for the best tree z for an input sentence x. This
score can be viewed as a max approximation to the
language model P (x) =

∑
z P (x, z). This form

of language model, with its syntactic hidden struc-
ture, might be able to outperform n-gram methods
by capturing long-distance dependencies. Unfor-
tunately, even when tested in domain, scores from
generative Treebank parsers fail to consistently rank
real sentences above pseudo-negatives, as we show
in §5.2.

There have been other indications that parse
scores do not always behave as useful language
models. While investigating the poor performance
of parser score as a re-ranking feature for statistical
machine translation (SMT), Och et al. (2004) dis-
covered that their Treebank parser had a tendency
to rank MT outputs above human reference transla-
tions. This is attributed to the fact that MT outputs
use fewer unseen words, which causes the parser’s
terminal productions to dominate any syntactic dis-
tinctions. Attempts to normalize for word choice did
not improve the performance of parser probability as
a translation feature. Sentence length is another fac-
tor that could produce spurious differences in parser
probability; however, SMT systems already include
a length term in their discriminatively weighted lin-
ear models, so this does not explain the poor perfor-
mance of the parser feature.

As a response to the above issues, we train a
parser specifically so that its parse score reflects the
quality of its input. We adopt latent support vector
machines, or LSVMs (Felzenszwalb et al., 2008),
to train our parser with a classification objective.
The LSVM is tasked with altering the weights on
a context-free grammar to transform our parser into
a classifier, where positive sentences produce high-

scoring parse trees, while negative sentences do not.
In this setting, the classification objective over-rides
Treebank accuracy as a parsing goal. One can view
our approach as a form of unsupervised parsing, in
the sense that we are not training the parser to match
Treebank annotations. In fact, we are able to train
our parser-classifier with only a part-of-speech dic-
tionary and a binary-labeled training set. However,
we show that the classifier does benefit substantially
from the use of a Treebank-derived grammar. We
demonstrate superior accuracy when discriminating
human sentences from n-gram samples. Further-
more, we apply our models to the related tasks of
recognizing SMT output, and SMT reranking.

We begin by reviewing related research areas,
including unsupervised parsing and structured lan-
guage modeling. We then describe the latent SVM
as a general-purpose classifier, followed by the par-
ticulars of our parser-classifier. We present results in
a number of tasks related to discriminative language
modeling: sample detection, SMT output detection,
and SMT reranking. We also examine the Treebank
accuracy of the latent trees learned during classifier
training. Finally we conclude and speculate on fu-
ture work.

2 Background

2.1 Unsupervised parsing

Our method is similar to unsupervised parsing in
that we train a parser using sentences that are not
annotated with parse trees. The main difference be-
tween our approach and unsupervised parsing is the
motivation behind inducing trees. In unsupervised
parsing, the tree is the end product and progress is
measured by comparing to the Treebank. In our
work, the tree is a means to an end; improved classi-
fication is our true goal, and the tree is useful to the
extent that it can improve accuracy. We also differ
from past work in unsupervised parsing in terms of
scale. We train over tens of thousands of sentences,
with no sentence-length limit, and leave punctuation
intact. However, our work is influenced by unsuper-
vised parsing. We briefly review a number of rele-
vant methods below.

Chen (1995) describes a Bayesian model for
grammar induction, where the resulting grammar is
employed for language modeling. This approach

[8th AMTA conference, Hawaii, 21-25 October 2008]

66

shares our motivation, but employs a generative
technique to maximize the likelihood of a corpus; it
does not make use of negative examples. A number
of attempts have been made to induce context-free
constituency structures, with the goal of matching
Treebank annotations (Carroll and Charniak, 1992;
Klein and Manning, 2004). These generative mod-
els share little in common with our discriminative
approach, but we do borrow their basic grammar
structure for our uninformed Gx grammar in §4.
Our method is similar to the contrastive estima-
tion approach of Smith and Eisner (2005), which
also employs automatically-generated negative ex-
amples. However, they construct negative exam-
ples by mutating their positive sentences in ways
designed to improve Treebank accuracy, while we
sample incorrect, but locally likely, sentences to im-
prove language modeling.

2.2 Structured Language Modeling

Since we are parsing to judge a sentence, the sub-
field of structured language modeling is highly re-
lated to this work. Structured language models be-
gin with the intuition we presented in §1, namely
that generative parsing models can also serve as lan-
guage models; however, they generally modify the
parser to account for left-to-right incremental pars-
ing (Chelba and Jelinek, 1998; Roark, 2001), and
the use of lexical heads to capture long-distance
language-model contexts (Chelba and Jelinek, 1998;
Charniak, 2001). With the increasing popularity of
parser-like syntactic translation systems (Galley et
al., 2004), we feel that left-to-right processing is
no longer a primary concern, and following Char-
niak et al. (2003), we make no special accommo-
dations for it. We also do not lexicalize our gram-
mar, eliminating the possibility of conditioning one
token on another directly in a language-model-like
fashion. Instead, we test how well we can achieve
our classification objective by re-weighting unlexi-
calized context-free productions. One could always
hope to extend our approach by re-introducing lexi-
calization. Collins et al. (2005) employ similar parse
features to our own in a discriminative language
model for speech recognition, but they do not dy-
namically alter the grammar as we do.

2.3 Machine Translation Evaluation

Recognizing pseudo-negative sentences sampled
from an n-gram language model is similar to the task
of recognizing machine-translated sentences, which
is is explored by Kulesza and Shieber (2004) in the
context of MT evaluation. In that work, both a re-
sponse sentence and a reference translation are pro-
vided as input, and an SVM is trained to recognize
those responses generated by SMT. They use fea-
tures commonly employed in automatic MT evalua-
tion, such as n-gram precision and word-error-rate.
We explore the translation recognition task as well,
with a drastically different feature set and without
the benefit of a reference translation, in order to test
our language models’ discriminative power.

3 Latent SVM

We are interested in training a parser to improve the
accuracy of our sentence classification task. This
is an instance of classification with latent structure.
We adopt a solution, the latent SVM, that has been
successful in the task of object detection in im-
ages (Felzenszwalb et al., 2008). In that case, the
latent SVM is used to train an image classifier with
a latent part-model. The classifier benefits from the
notion that objects have parts (people have heads,
arms and legs; cars have windows and wheels), but
the system designers do not need to specify or label
these parts. Instead, a part model is learned during
classifier training, guided by the classification ob-
jective. Similarly, we want our classifier to benefit
from the notion that sentences have parse trees, and
to learn a parser suited to our classification task.

3.1 Training Algorithm

In a latent SVM, the structure prediction algorithm
(in our case, a parser) produces a classification while
simultaneously searching for a latent structure (a
parse tree). One can abstract away the search pro-
cess by stating that the parser solves the problem:

fβ,Z(x) = max
z∈Z(x)

β · Φ(x, z) (1)

where x is the input sentence, and Z(x) is the set of
all parse trees for x. Φ(x, z) is a feature vector for a
sentence-tree pair, which decomposes over dynamic
programming, and β is a parameter vector, providing

[8th AMTA conference, Hawaii, 21-25 October 2008]

67

a weight for each feature. Note the use of max, as
opposed to the argmax usually used in parsing. The
search for the highest-scoring latent tree z is con-
ducted only to find a score for the input sentence x.
That is, each input is scored according to its best la-
tent structure, and the classification is determined by
the sign of that score.

Given the training set (〈x1, y1〉, . . . , 〈xn, yn〉),
y ∈ {−1, 1}, we wish to train the parser param-
eters β so that positive examples receive positive
fβ,Z scores, while negative examples receive nega-
tive scores. Adopting a large-margin formalism, we
desire a β that minimizes:

λ||β||2 +
n∑
i=1

max (0, 1− yi · fβ,Z(xi)) (2)

where the second term implements a soft-margin.
Each misclassification incurs a penalty proportional
to the degree with which it violates the margin.

The objective in (2) is not convex, due to the in-
ner max over Z in fβ,Z . However, Felzenszwalb
et al. (2008) observe that (2) can be made convex
by fixing the latent structure z for each positive ex-
ample. This implies a coordinate descent algorithm,
alternating between optimizing z for positive exam-
ples, and optimizing β. The descent is guaranteed
to arrive at a local minimum in (2). Optimizing β
with fixed structures for only the positive examples
is not entirely straightforward, so Felzenszwalb et
al. implement an approximation, which fixes z for
all examples. This results in an alternative coordi-
nate descent, iterating over the following two steps
until convergence:

1. Given the current β, find the max structure for
each training example:

∀i : zi ← argmaxz∈Z(xi)β · Φ(xi, z)

2. Using features derived from z[1...n], find new
parameters β, which minimize the standard
SVM classification objective:

λ||β||2 +
n∑
i=1

max (0, 1− yi · β · Φ(xi, zi))

The above algorithm can be implemented eas-
ily, using a parser to find max structures, turn-
ing those structures into labeled feature vectors

〈Φ(xi, zi), yi〉, and then training a linear SVM to
classify those vectors. The resulting parameters β
provide weights for the next round of parsing.

We have found that this approximation does not
necessarily arrive at a local minimum; the coor-
dinate descent is prone to oscillation on negative
examples. Consider a training pair 〈xi, yi〉 where
yi = −1. In the first iteration, the SVM reacts to
the parser by reducing the score for the max struc-
ture zi,1. In the next iteration, the parser finds a zi,2,
which receives a high score because it shares few
productions with zi,1. The SVM reduces the score
for zi,2, forgetting zi,1 and leaving the parser free
to return to zi,1 on the next iteration. We altered
the approximation by maintaining a structure mem-
ory Ẑ for negative examples. In each SVM training
phase, we include the training points derived from
positive structures from the last parsing phase, and
from negative structures seen in any parsing phase.
In this way, we maintain a growing list of negative
structures that must receive low scores, while en-
suring that each positive example has at least one
high-scoring structure. This can be justified as an
approximation to constraint generation, which has
been used effectively in the past for similar struc-
tured optimization problems (Tsochantaridis et al.,
2004). In development, we found that maintaining
this negative structure memory reduced classifica-
tion error rates by up to 30%.

3.2 General Applicability

The latent SVM could potentially become a power-
ful tool for the entire NLP community. It applies
whenever a hidden structure would be useful in a
classification task. In fact, a similar technique has
been previously developed ad-hoc, to detect entail-
ment in sentence pairs by building a latent match-
ing structure between parse trees (Haghighi et al.,
2005). The technique is most useful when no labeled
data exists for the latent structure, or when the latent
structure is not well-defined. As such, we see appli-
cations for latent SVMs in a variety of areas, includ-
ing classifying multilingual word-pairs as cognates
(with a latent character alignment) and biomedical
relation detection (with a latent semantic parse).

[8th AMTA conference, Hawaii, 21-25 October 2008]

68

3.3 An Alternative Approach
Throughout this paper, we adopt a parser-classifier
approach to training our discriminative language
model. That is, a single parameter vector β is
learned for both tree construction and scoring. Al-
ternatively, one could parse the input sentence with
a fixed Treebank parser, and use the resulting tree to
generate features for classification. This approach
involves two parameter vectors, one to parse, and
one to classify. Preliminary tests with this alterna-
tive indicate that it works equally well on this lan-
guage modeling task. However, we focus on the
parser-classifier approach here because we feel that
it is academically interesting to weight a grammar
to classify parser inputs. Furthermore, the parser-
classifier can still be trained in languages and do-
mains where Treebank annotations are not available.

4 Implementation

This section describes the details of our latent SVM
parser-classifier, which can be used for any sentence
classification task. We describe the data used to
train our parser as a discriminative language model
in §5.1. A latent SVM has three components:

1. An SVM training algorithm to update β

2. A feature representation Φ(x, z)

3. A search to find maxz∈Z(x) β · Φ(x, z)

For SVM training, we select the freely available
package SVMlight (Joachims, 1999) for its speed
and scalability. The remaining two components
must be designed in tandem, since the feature rep-
resentation needs to decompose into the search. We
adopt an unlexicalized, context-free parse tree as our
latent structure z. For this structure, a natural, de-
composable feature set is the set of indicators on
productions. If G = {gi} is the set of produc-
tions in our context-free grammar, then we define
Φi(x, z) to be the number of times the production gi
occurs in the parse tree z. Thus, β ∈ R|G| provides a
discriminatively-trained weight for each production.
Our structure search is provided by a standard CKY
parser. Since our features are on productions, we
need to provide a fixed grammar G to the training
process. We describe our options for G next.

Our primary grammar Gt is extracted from
the Penn Treebank. Following Klein and Man-

ning (2003), we perform a series of operations on the
Treebank before extraction, to make the productions
more useful for context-free parsing. Because Tree-
bank accuracy is not our primary objective, we use
a small, easily characterized subset of those opera-
tions; we perform only Markovization and parent-
annotation. Markovization is performed head-out,
after identifying production heads using a small set
of rules. Next, each node in the tree is augmented
with the label of its parent. To facilitate feature pars-
ing, we perform one additional operation: chains of
unary productions are replaced with a single non-
terminal whose label is the concatenation of the
original labels (Taskar et al., 2004). This prevents
cycles in the grammar, which can cause problems
when parsing with arbitrary weights. We also extract
terminal productions on broad back-off classes of
words, defined by character classes similar to those
described in (Klein and Manning, 2003).1

We can create a standard probabilistic context-
free grammar by assigning parameters to Gt ac-
cording to the maximum likelihood probabilities
of its productions, as observed in the Treebank:
βi = logP (rhs(gi)|lhs(gi)). Because it is a gener-
ative model, we use this MLE parser as a baseline
syntactic language model. We also use it as an ini-
tializer for our latent SVM training process.

We also employ a secondary grammar Gx, which
uses the Treebank only to determine a part-of-speech
dictionary for types and back-off classes. The re-
maining productions allow all possible binary struc-
tures, similar to dependency-style grammars for un-
supervised parsing (Carroll and Charniak, 1992):

• PoS→ w

• PoS′ → PoS Y | Y PoS | PoS′ Y | Y PoS′

where PoS is a part-of-speech symbol, w is a termi-
nal symbol and Y is any non-terminal in the gram-
mar. This grammar has minimal input from the Tree-
bank, and therefore may be useful for languages

1Our grammar G is not completely fixed; when a back-off
terminal production is used in training to build a non-terminal
NT over a type w not observed in the Treebank, the SVM adds a
production NT→ w to G, enabling a weight for the previously
unseen type. In this way, we can adapt our parser-classifier
to non-Treebank-annotated domains by providing positive and
negative sentences for the new domain.

[8th AMTA conference, Hawaii, 21-25 October 2008]

69

with more modest resources. Unlike recent ap-
proaches to unsupervised parsing (Klein and Man-
ning, 2004; Smith and Eisner, 2005), we do not part-
of-speech tag our sentences before parsing, so as to
not bias the parser-classifier by layering statistically
reasonable parts-of-speech over the lexical items.

5 Experiments

Our primary experiments test various baselines and
parser-classifiers in the task of discriminating be-
tween human and machine-generated sentences. We
describe our training set for this task, our evalua-
tion criteria, and each system to be tested. We then
describe related experiments in machine translation
recognition and machine translation reranking. Fi-
nally, we examine the quality of the SVM-learned
latent trees in terms of the Treebank standard.

5.1 Experimental Design

We extract our training and test data from the BLLIP
Wall Street Journal Corpus, ignoring the provided
parse trees, but maintaining its Treebank-style tok-
enization. Following previous work (Okanohara and
Tsujii, 2007), we randomly split our data into four
parts, with sentence counts listed in parentheses:

• Negative Generating Data (450k)

• Positive Train (50k)

• Positive Development and Test (3k each)

We use the negative generating data to train a KN-
smoothed (Kneser and Ney, 1995) trigram language
model, from which we sample our negative exam-
ples using a straight-forward algorithm (Okanohara
and Tsujii, 2007). We sample 50k negative train-
ing examples, and 3k for both development and test.
The complete train, development and test sizes are
100k, 6k and 6k respectively. Following (Okanohara
and Tsujii, 2007), we constrain all sentences to be
more than 4 words in length.

Our primary evaluation metric is classification ac-
curacy, though we also report 11-point average pre-
cision (AvgPrec), the average of precision measured
at recall levels 0, 10, . . . , 100, which measures the
system’s ability to rank positives above negatives.

We test six systems, three baselines and three la-
tent SVM parsers. The parsers differ in the amount

of Treebank knowledge used in their grammars and
initial parameters:

• MLE: Sentences are scored with the log prob-
ability of the tree found by our MLE Treebank
parser. For classification, we empirically find
the probability threshold with the highest accu-
racy on the development set.

• Trigram-Linear: A linear SVM that uses a bag
of all 1, 2 and 3-grams as features. Feature vec-
tors are L2-normalized.2

• Trigram-Poly: As Trigram-Linear, but trained
with a third-order polynomial kernel. This cor-
responds roughly to the state-of-the-art in this
task (Okanohara and Tsujii, 2007).

• LSVM-MLE: A latent SVM parser, using our
Gt grammar, with initial parameters provided
by MLE production probabilities.

• LSVM-Gt: Like LSVM-MLE, but all parame-
ters are initially set to 0. Tree selection in the
first round of training is left to our tie-breaker,
which favors right-branching trees.

• LSVM-Gx: A latent SVM parser using the Gx
grammar. Parameters are initially set to 0.

The soft-margin trade-off parameter λ is optimized
through grid search on a development set. For the la-
tent SVM, the λ parameter is tuned according to the
accuracy of the SVM during the first iteration. The
same development set is used to select a stopping
point for iterative latent SVM training.

5.2 Classification Accuracy
We report test set performance of all six of our sys-
tems in the discriminative language modeling clas-
sification task. Results are shown in the first two
columns of Table 1. The first thing to note is that
our Trigram-Poly scores are in line with the scores
reported by Okanohara and Tsujii (2007) with a
similar amount of training data, indicating that it
is a reasonable stand-in for their approach. All
three LSVM parsers exceed the Trigram-Poly sys-
tem, with LSVM-MLE producing a relative reduc-
tion in error rate of 37%.

2During development, vector normalization improved re-
sults for the trigram SVM by up to 5 percentage points, and was
crucial to learning a polynomial SVM in a reasonable amount
of time (less than 12 hours).

[8th AMTA conference, Hawaii, 21-25 October 2008]

70

Table 1: Classification accuracy

Sample SMT
Method AvgPrec Acc Pairwise
MLE 50.72 55.75 49.30
Trigram-Linear 56.15 58.72 49.90
Trigram-Poly 81.97 70.50 55.70
LSVM-Gx 76.79 73.47 63.15
LSVM-Gt 87.53 79.78 71.65
LSVM-MLE 87.22 81.42 71.85

The MLE entry indicates that parser probabili-
ties alone are not particularly useful for this task,
with accuracy only slightly above chance. We also
tested scores from the Stanford Parser (Klein and
Manning, 2003), and received similar results. Using
parser probability and sentence length as the only
features of an SVM classifier produced a develop-
ment accuracy of 65%, significantly better than the
parser alone, but still well below the baseline set by
Trigram-Poly. Though MLE parser scores do not
beat the baseline, the Treebank appears to be a use-
ful resource for LSVM training; each addition of
Treebank information to our grammar or initializer
increases accuracy. It also shortens training time:
LSVM-MLE reaches its peak in 4 iterations, while
LSVM-Gt does so in 16 and LSVM-Gx in 25. The
gap between LSVM-MLE and LSVM-Gt demon-
strates that initial parameter choices do matter, as
the LSVM objective is not convex. Yet the gap is
small, indicating that this application is not overly
sensitive to initial conditions.

5.3 Machine Translation Recognition

Previous reports of Treebank parser scores prefer-
ring SMT output over human references were a ma-
jor motivation for this work (Och et al., 2004). Thus,
we construct an alternate test-set from MT output to
see if our parser-classifiers reverse this trend. We as-
semble a new test set using 2k German-English sen-
tence pairs extracted from the Europarl corpus, cor-
responding to the devtest set from the 2006 WMT
Translation Shared Task (Koehn and Monz, 2006).
We translate the German sentences using a compet-
itive phrase-based translation system (Koehn et al.,
2003) trained with the shared task resources. Our
test set consists of 2k English reference translations

(positive) and 2k system translations (negative). We
report pairwise accuracy: the classifier is correct
only if, for a given German input, the reference re-
ceives a higher score than the system output.

Results are shown the final column of Table 1.
The MLE parser indeed shows a slight preference
for MT output; we confirmed this trend with the
Stanford parser, which received a more dramatic
42.40. The remaining systems prove more effective,
and their relative performance mirrors our previous
results; in fact, the gap between the LSVM methods
and Trigram-Poly has grown. This indicates that the
syntactically-driven classifiers are adapting better to
the change in domain and task.

5.4 Machine Translation Reranking
We have also conducted preliminary experiments on
using our discriminative language models in SMT
reranking. We use our phrasal decoder to produce
unique 100-best lists for both the WMT 2006 devtest
and test sets. Both sets consist of 2k sentences. Min-
imum error-rate training (Och, 2003) is conducted
on devtest to learn feature weights after augmenting
the 100-best list with a new language model. Re-
sults are reported after applying the learned weights
on the held-out test set.

We have focused this paper on training with nega-
tive examples sampled from n-gram language mod-
els, with the hope that they are generally useful
for language modeling. However, we can also use
application-specific negative examples when they
are available. We create a new 100k-sentence
LSVM training set using 50k reference translations
and 50k corresponding SMT outputs, which are cre-
ated by a version of our SMT engine that has not
seen our 50k references or their German source sen-
tences during training. We train SMT versions of
LSVM-MLE and Trigram-Linear on this data.

Results are shown in Table 2. As expected, the
inclusion of the MLE parse scores has no impact on
performance. Meanwhile, LSVM-MLE does show a
very slight improvement. The task-specific models
show further improvement, with the trigram model
performing surprisingly well. We suspect that this
is for two reasons: first, the language model is not
so influential in phrasal SMT so as to affect the use-
fulness of n-gram features; and second, we suspect
that the nature of phrasal decoding makes the sorts

[8th AMTA conference, Hawaii, 21-25 October 2008]

71

Table 2: SMT Reranking results

Language Model BLEU
Baseline 26.21
+ MLE 26.19
+ LSVM-MLE 26.30
+ SMT Trigram 26.45
+ SMT LSVM-MLE 26.38
+ SMT Trigram + SMT LSVM-MLE 26.52

Table 3: Treebank Unlabeled F-measure

Method ≤ 10 No limit
Right-branching 53.93 32.87
LSVM-Gx 50.71 38.62
LSVM-Gt 80.13 66.19
LSVM-MLE 83.15 71.53
MLE 95.46 83.60

of local improvements that would be detected by a
trigram language model more likely to appear in the
100-best list than those that would be detected by a
syntactic language model.

5.5 Treebank Accuracy

To determine how much latent SVM training alters
our Treebank-informed grammar Gt, and how much
our uninformed LSVM-Gx parser conforms to lin-
guistic intuitions, we parse a small held-out set con-
sisting of the first 393 sentences of Section 22 of
the Treebank, and report unlabeled bracketing F-
measure using the evalb utility under its standard
configuration. We also parse a set derived from all
Treebank sentences with 10 or fewer words (ignor-
ing punctuation), to more closely match the test set
commonly used in unsupervised parsing (Klein and
Manning, 2004; Smith and Eisner, 2005). Note that
all three systems using the Gt grammar have bene-
fited from seeing parts of the annotated≤ 10 test set
during grammar construction and initialization.

The resulting F-measures are shown in Table 3.
In reconfiguring its parameters for classification,
the LSVM-MLE system has diverged a fair amount
from its MLE initializer. On the other hand, without
the benefit of Treebank probabilities, the LSVM-Gt
system begins with an F-measure of 38.14 (54.88

Figure 1: Example LSVM-Gx parse

MD’

VBP’

RB’

NN

Tuesday

RB

next

VBP’

DT’

VBG

hearing

DT

a

VBP

hold

MD’

MD

will

DT’

NN

committee

DT

The

with ≤ 10), and LSVM training increases its F-
measure by more than 25 absolute points on both
sets. Of course, this is not truly unsupervised
parsing, as LSVM-Gt employs productions derived
from the Treebank, but it is still remarkable to see
how well it recovers from beginning with uniform
weights. LSVM-Gx scores substantially lower than
the two Treebank-informed systems, and is unable
to beat the right-branching baseline on the ≤ 10
set. On the unlimited set, it does climb from a right-
branching baseline of 32.87 to a score of 38.62, de-
riving structure that is slightly in line with the Tree-
bank while pursuing its classification objective. Its
precision suffers because it produces only binary
trees, while the Gt systems can produce n-array
trees due to their Markovized grammar.

Examining the trees

Our Treebank-informed systems, LSVM-MLE
and LSVM-Gt, remain somewhat close to the Tree-
bank standard. Although the grammar weights have
been modified substantially, the resulting trees are
not so different, as is demonstrated by their rela-
tively high F-measures. Some preterminals have
been repurposed during classifier training: JJ is
used more often, for tokens that were previously
tagged as nouns or determiners, while FW seems to
have been held in reserve for unseen adjective-like
words. It is difficult to characterize the changes to
internal structure, but it is safe to say that trees for
negative sentences deviate more drastically from the
MLE baseline than those for positive sentences.

With minimal input from the Treebank, LSVM-
Gx is substantially more interesting. As is often
the case in unsupervised parsing, the learned latent
structure may be different from gold-standard hu-

[8th AMTA conference, Hawaii, 21-25 October 2008]

72

man annotations in systematic ways. For example,
Figure 1 demonstrates a noun phrase headed by a
determiner, a phenomenon we observe frequently in
the resulting parse trees. Other adjuncts select un-
usual heads: appositions and other adjunct modifiers
are headed by the initial comma. The grammar has
learned that many adjunct phrases, such as adverbs
and appositions, are delimited by commas, and al-
lows them to attach promiscuously to noun and verb
phrases. Many prepositions are tagged as adverbs,
and the resulting prepositional phrase becomes an
adverbial phrase, a reasonable transformation since
many play adverbial roles in the sentence.

Other systematic differences seem to arise from
the classification objective. In the case of modal
and auxiliary verb constructions, we often find verb
phrases divided in half, as in Figure 1. The early
part of the verb sequence absorbs its pre-modifying
subject, perhaps attempting to capture subject-verb
agreement, important for judging grammaticality.
The later half of the verb sequence absorbs the re-
mainder of the verbal arguments, only at the top
level of the derivation are the two halves combined.

6 Conclusion

We have shown that latent SVMs can train a parser
to classify sentences. By training to discriminate be-
tween human and machine-generated sentences, we
have created a parser-classifier that behaves as a dis-
criminative, syntactic language model. Even when
trained without the benefit of a Treebank gram-
mar, our parser-classifier outperforms the existing
state-of-the-art in distinguishing real sentences from
pseudo-negatives, and human reference translations
from SMT output. We have shown promising initial
results in reranking SMT outputs. In the future, we
hope to incorporate our language model directly into
a syntactic translation system.

References

Glenn Carroll and Eugene Charniak. 1992. Two exper-
iments on learning probabilistic dependency grammar
from corpora. In Working Notes of the Workshop on
Statistically-based NLP Techniques, pages 1–13.

Eugene Charniak, Kevin Knight, and Kenji Yamada.
2003. Syntax-based language models for machine
translation. In MT Summit IX.

Eugene Charniak. 2001. Immediate-head parsing for
language models. In ACL.

Ciprian Chelba and Frederick Jelinek. 1998. Exploit-
ing syntactic structure for language modeling. In
COLING-ACL, pages 225–231.

Stanley F. Chen. 1995. Bayesian grammar induction for
language modeling. In ACL, pages 228–235.

Michael Collins, Brian Roark, and Murat Saraclar.
2005. Discriminative syntactic language modeling for
speech recognition. In ACL, pages 507–514, Ann Ar-
bor, USA, June.

Pedro Felzenszwalb, David McAllester, and Deva Ra-
manan. 2008. A disrcriminatively trained, multiscale,
deformable part model. In Computer Vision and Pat-
tern Recognition, Anchorage, USA, June.

Michel Galley, Mark Hopkins, Kevin Knight, and Daniel
Marcu. 2004. What’s in a translation rule? In HLT-
NAACL, pages 273–280, Boston, USA, May.

Jianfeng Gao, Hisami Suzuki, and Bin Yu. 2006. Ap-
proximation Lasso methods for language modeling. In
COLING-ACL.

Aria Haghighi, Andrew Y. Ng, and Christopher Manning.
2005. Robust textual inference via graph matching. In
EMNLP.

Thorsten Joachims. 1999. Making large-scale SVM
learning practical. In B. Schölkopf, C. Burges, and
A. Smola, editors, Advances in Kernel Methods - Sup-
port Vector Learning. MIT Press.

Dan Klein and Chris Manning. 2003. Accurate unlexi-
calized parsing. In ACL.

Dan Klein and Chris Manning. 2004. Corpus-based in-
duction of syntactic structure: Models of dependency
and constituency. In ACL.

Reinhard Kneser and Hermann Ney. 1995. Improved
backing-off for m-gram language modeling. In Inter-
national Conference on Acoustics, Speech, and Signal
Processing (ICASSP-95), pages 181–184.

Philipp Koehn and Christof Monz. 2006. Manual and
automatic evaluation of machine translation. In HLT-
NACCL Workshop on Statistical Machine Translation,
pages 102–121.

Philipp Koehn, Franz J. Och, and Daniel Marcu. 2003.
Statistical phrase-based translation. In HLT-NAACL.

Alex Kulesza and Stuart M. Shieber. 2004. A learning
approach to improving sentence-level MT evaluation.
In Proceedings of the 10th International Conference
on Theoretical and Methodological Issues in Machine
Translation, Baltimore, MD, October 4–6.

F. J. Och, D. Gildea, S. Khudanpur, A. Sarkar, K. Ya-
mada, A. Fraser, S. Kumar, L. Shen, D. Smith, K. Eng,
V. Jain, Z. Jin, and D. Radev. 2004. A smorgasbord
of features for statistical machine translation. In HLT-
NAACL, pages 161–168.

[8th AMTA conference, Hawaii, 21-25 October 2008]

73

Franz J. Och. 2003. Minimum error rate training for sta-
tistical machine translation. In ACL, pages 160–167.

Daisuke Okanohara and Jun’ichi Tsujii. 2007. A
discriminative language model with pseudo-negative
samples. In ACL, pages 73–80.

Brian Roark. 2001. Probabilistic top-down parsing
and language modeling. Computational Linguistics,
27(2):249–276.

Noah A. Smith and Jason Eisner. 2005. Guiding unsu-
pervised grammar induction using contrastive estima-
tion. In IJCAI Workshop on Grammatical Inference
Applications, pages 73–82.

Ben Taskar, Dan Klein, Mike Collins, Daphne Koller, and
Christopher Manning. 2004. Max-margin parsing. In
EMNLP, pages 1–8, Barcelona, Spain, July.

Ioannis Tsochantaridis, Thomas Hofman, Thorsten
Joachims, and Yasemin Altun. 2004. Support vec-
tor machine learning for interdependent and structured
output spaces. In ICML, pages 823–830.

[8th AMTA conference, Hawaii, 21-25 October 2008]

74

