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Abstract

This work extends phrase-based statistical
MT (SMT) with shallow syntax dependencies.
Two string-to-chunks translation models are
proposed: a factored model, which augments
phrase-based SMT with layered dependen-
cies, and a joint model, that extends the phrase
translation table with microtags, i.e. per-
word projections of chunk labels. Both rely
on n-gram models of target sequences with
different granularity: single words, micro-
tags, chunks. In particular, n-grams defined
over syntactic chunks should model syntac-
tic constraints coping with word-group move-
ments. Experimental analysis and evaluation
conducted on two popular Chinese-English
tasks suggest that the shallow-syntax joint-
translation model has potential to outperform
state-of-the-art phrase-based translation, with
a reasonable computational overhead.

1 Introduction

Many promising efforts in MT are nowadays toward
the effective and efficient integration of syntactic
knowledge into the statistical approach. As a mat-
ter of fact, state-of-the-art phrase-based translation
(Koehn et al., 2003) seems to face severe limita-
tions when applied to language pairs, like Chinese-
English, that significantly differ in word order and
syntactic structure. In principle, phrase-based statis-
tical MT (SMT) can permit rather long word move-
ments; in practice, translation hypotheses computed
during search are scored by word-based n-gram lan-
guage models (LMs) which capture only rather local
dependencies.

Syntax-driven models were proposed to overcome
limitations of phrase-based approaches regarding
word-reordering and structural coherence of trans-
lations. While standard phrase-based systems typ-
ically rely on n-gram models defined over linear
structures (sequences), syntax-based SMT exploits
stochastic dependencies defined over tree structures.
Figures 1.a and 1.d graphically show the dependen-
cies in these two models.

Recently, factored translation models were pro-
posed in order to augment phrase-based SMT with
layered dependencies. The original idea was to re-
duce data-sparseness by factoring the surface repre-
sentation of words into base-form, morphology, and
part-of-speech (Koehn and Hoang, 2007).

The present work extends phrase-based SMT
with shallow syntax dependencies at both word and
chunk levels. In particular, syntactic constraints cop-
ing with word-group movements are modeled by an
n-gram model defined over syntactic chunks rather
than single words. Moreover, two alternative string-
to-chunks translation models are discussed: a fac-
tored model, defined along the line of (Koehn and
Hoang, 2007), and a joint model, that extends the
phrase translation table with microtags (as we call
the per-word projections of chunk labels, see Sec-
tion 3.1) on the target language side. Both models
rely on n-gram models of target sequences with dif-
ferent granularity: single words, microtags, chunks.

Figures 1.b and 1.c depict the dependencies in-
volved in the two models. In our factored model,
the chunk layer is built in a deterministic way above
standard factors whose top-most layer is that of mi-
crotags. In the joint model, words and microtags are
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Figure 1: Stochastic dependencies used by different translation models. Source phrases are translated into: (a) target
phrases in phrase-based translation; (b) target phrases and microtag sequences in the factored model; (c) pairs of
phrases and microtag sequences in the joint model; (d) nodes of a full syntactic parse in the syntax based model.

tightly tied to form a single layer, above which the
chunk layer is built as in the factored model.

Our models were implemented under the Moses
(Koehn et al., 2007) platform!, a popular open
source toolkit. In order to compare the two string-
to-chunks translation models, both in terms of com-
putational efficiency and translation accuracy, we
ran experiments on two Chinese-English translation
tasks: traveling domain expressions, as proposed by
the IWSLT workshop, and news translation, as pre-
pared by the NIST MT workshops. Due to its limited
size, the former dataset was used to analyze from
the computational cost point of view the models un-
der investigation. Conversely, evaluations were per-
formed on the NIST task, which consists of syn-
tactically rich sentences whose translation can more
clearly benefit from the introduction of chunk-level
dependencies and constraints.

2 Previous Work

Recent literature reports on several approaches for
integrating syntactic knowledge into SMT. As a sim-
ple classification criterion, we consider the point at
which syntactic information is exploited within the
typical processing chain of SMT: pre-processing,
decoding, and rescoring.

Several papers discussed the use of syntactic re-
ordering rules to pre-process the input string so that
it matches better the structure of target language
(English). Examples of considered source languages
are German (Collins et al., 2005), Chinese (Wang

! Available from http://www.statmt.org/moses/

et al., 2007) and Arabic. The approaches discussed
in those papers permit relevant re-ordering phenom-
ena at the syntactic level to address; nevertheless,
to our view they suffer severe limitations: they re-
quire human skills specific to each language pair and
their impact is in general limited to a small num-
ber of rules. Examples of automatic reordering of
source strings are presented in (Zhang et al., 2007)
and (Habash, 2007) for the Chinese and Arabic lan-
guages, respectively.

Concerning the application of syntactic informa-
tion to re-score N -best lists of translations from Chi-
nese to English, a spectrum of techniques was inves-
tigated (Och et al., 2004). These range from shallow
syntactic features, namely a part-of-speech (POS)
LM defined over POS projected from the source lan-
guage to the target language, to parse tree proba-
bilities. An alternative approach was proposed in
(Chen et al., 2006), where re-ordering rules at the
level of single POS or POS-phrases are learned from
the aligned training data. Similarly to (Och et al.,
2004), POS information is computed on the source
language. Both approaches showed some improve-
ment over a standard baseline, but their scope and
consequently impact is clearly limited, given that
N-best lists represent a small fraction of the actual
search space explored by the search algorithm.

To overcome this limitation, the only way is to
directly integrate syntactic knowledge in the search
algorithm. Prominent examples in the literature are:

e Hierarchical model (Chiang, 2005), in which
context free rules are inferred from aligned



string-to-string pairs (notice: no parsing is re-
quired).

e Syntax model (Galley et al., 2006), in which
syntactic translation rules are inferred from
aligned tree-string pairs and parse trees are
computed on the target language.

e Dependency tree-lets (Quirk et al., 2005),
in which a dependency tree-based reordering
model is inferred from aligned string-tree pairs.
Parsing is performed on the source language
and a corresponding dependency grammar is
inferred on the aligned target side.

The above approaches showed in several occa-
sions to outperform phrase-based SMT in terms of
translation quality. Unfortunately, the correspond-
ing search procedures are more complex and diffi-
cult to implement than those for phrase-based SMT.

Recently, (Hassan et al., 2007) introduced syntac-
tic constraints into phrase-based SMT by ‘syntact-
ifing’ target language phrases with supertags. In or-
der to account for the grammaticality of translation
hypotheses, the supertags LM score is weighted with
respect to the number of compositional constraints
violated by the n-gram sequences.

Supertags extracted from parse-trees were also
investigated in (Birch et al., 2007) for embedding
syntactic knowledge into factored models. These
works showed that tree-based structural dependen-
cies can also be embedded into a phrase-based de-
coder. Our work goes along this direction by intro-
ducing three main novelties:

e we assume that word-reordering just requires
proper construction at the chunk and word lev-
els;

e n-gram models are also defined over chunks:
in this way, longer word spans are effectively
covered;

e we propose a joint model that simplifies signif-
icantly the factored model.

3 Shallow Syntax Models

Our models integrate the word level of the target
language with shallow-syntactic data obtained with
an automatic chunker. The goal is to obtain better-
formed translations by aiding phrase selection and

reordering with constraints enforced at the syntac-
tic level. The kind of information that we encode is
described in Section 3.1.

A way to encode non-lexical information in a
SMT model is to use factored translation mod-
els (Koehn and Hoang, 2007): the translation unit is
no more a (string of) word(s) but a vector of factors;
each factor represents a different level of annotation
that can enrich the surface form with grammatical
knowledge, such as lemma, part-of-speech, morpho-
logical features and so on.

An alternative solution, which we refer to as a
Jjoint model, consists in using as target tokens the
concatenations of the symbols from the different
layers.

As the comparison between the joint and the fac-
tored model is central to this work, they will be fur-
ther discussed in Sections 3.2 and 3.3. Section 3.4
compares complexity aspects of the two approaches.

3.1 Using chunks to support SMT

The information that we encode in the syntactic
layer is derived from the shallow parses of the target
sentences. Each word w in a chunk labeled T AG is
assigned a microtag:

e TAG( if w is the first word in X;
e TAG) if w is the last word in X;
e TTAG+ if wis internal to X;

e T'AG if the chunk consists of just one word.

Microtags preserve the information about the
chunk and allow us to reconstruct the sequence of
chunk labels based on the microtag sequence, e.g.
the microtags VP NP( NP) PP( PP) correspond to
the chunk sequence VP NP PP. An example of mi-
cro and chunk labeling of a sentence is shown in Fig-
ure 2.b.

The microtag model is a standard n-gram model
which captures the internal structure of chunks and
patterns across chunks. It should be able to enforce
constraints in the search space that would prevent
incompatible phrases to be adjacent in the transla-
tion, e.g. if the last translated symbol is an NC( or
NC+ we would like to restrict the search to micro-
tag phrases beginning with NC+ or NC) (intra-chunk
consistency).
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please give me the ? no  smoking ” seat .
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Figure 2: (a) Example of translation by a standard phrase-
based SMT system. (b) The same sentence translated by
our shallow-syntax aided SMT system. (One of the refer-
ences is “please reserve a non-smoking seat .”)

Also the model of sequences of chunks is a stan-
dard n-gram model. Chunks can consist of more
words: during decoding, the chunk model must be
queried once for each chunk, i.e. in an asynchronous
manner with respect to the other n-gram models.
The chunk model is expected to filter out transla-
tions that exhibit unlikely syntactic structure, e.g.
that do not include verbal chunks or that sport long
sequences of verb chunks that do not interleave with
typical predicate argument chunks, such as nominal
or prepositional ones (inter-chunk consistency).

As an example of intra-chunk consistency, con-
sider the alignment examples shown in Figures 2.a
and 2.b automatically obtained for one of the
Chinese-to-English tasks we worked on. The first
results from a standard phrase-based SMT model
(baseline), whereas the latter makes use of syntactic
information. The word “seat”, which is missing in
the baseline translation, allows to “close” the nom-
inal chunk it belongs to in the chunk-aided transla-
tion. The resulting microtag sequence, correspond-
ing to a locally well-formed syntactic interpretation
of the lexical tokens sequence, is likely to be as-
signed a high probability by the corresponding n-
gram model as it is quite common in the training
data. Conversely, sequences in which NC+ is not
followed by NC+ or NC) have never been observed
and therefore tend to receive lower probability val-
ues.

Regarding inter-chunk consistency, consider
again the example in Figure 2.b and look at the
chunk sequence VC NC NC. This sequence is typ-
ical of double object verb forms, such as the pred-

icate “give” in the example. In this case the nom-
inal chunks are quite simple and a 6-gram model
would be able to capture this dependency, but for
more complex, longer chunks this kind of shallow
predicate-argument relation couldn’t be handled by
a traditional n-gram model. Conversely, our rep-
resentation would be able to account for it as the
chunk-level sequence would be just the same.

In the following sections, we detail the two string-
to-chunks models. For the sake of simplicity, during
the discussion we will refer to the single word as a
translation unit; the generalization to phrase based
MT is straightforward.

3.2 Factored String-to-Chunks Translation

In factored translation models (Koehn and Hoang,
2007) a vector of source factors is translated into a
vector of target factors. For both languages, the first
factor generally encodes the lexical level whereas
the others could capture the most diverse informa-
tion, from morphological features to semantic anno-
tations. For each target factor involved, an appropri-
ate n-gram model should be estimated.
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Figure 3: Illustration of the factored chunk model. The
word and the microtag models are queried on a per-word
basis. The chunk n-gram model is invoked whenever a
chunk is closed. A generation step limits the number of
(word, microtag) pairs.

translation

microtag

Our factored model for chunk-based SMT em-
ploys just one source factor (the Chinese words) and
two factors on the target side: the English words and
their corresponding microtags. Each source word is
translated both into a target word and into a microtag
by two distinct translation steps. A generation step
is performed to limit the (word, microtag) combina-
tions to the pairs that are coherent with events ob-
served in the training data. Figure 3 illustrates this
arrangement.

The word and microtag m-gram models are



queried every time a new word is added to a transla-
tion hypothesis. This is not true for the chunk model,
whose granularity is coarser as generally chunks are
not in one-to-one correspondence with words. In-
stead, for every explored sequence of microtags the
corresponding sequence of chunks is built. The
chunk model is queried only when a chunk is closed,
so that the score is provided once for each chunk.

The microtag sequence in a translation hypothesis
may be inconsistent. For example, a VC( may be fol-
lowed by an NC{( instead of the correct VC+ or VC).
These situations are resolved by forcing the closure
of the incomplete chunk. In this example, we would
assume that the first VC chunk has been closed and
a new NC chunk opened.

3.3 Joint String-to-Chunks Translation

The second solution relies on translation target units
which are the concatenation of a target word and the
corresponding microtag.

For both the word and the microtag level, a sep-
arate n-gram model is trained. Whenever a new
(word, microtag) pair is to be added to a translation
hypothesis the scores provided by the two models
are combined. The behavior of the chunk model is
just the same as described in the case of the factored
model. Figure 4 illustrates the joint model for multi-
layered SMT.

n—gram model
source

translation -
word#microtag

target

n—gram model

ag

g n—iram model

Figure 4: Illustration of the joint chunk model. Each Chi-
nese word is mapped onto a word#microtag sequence.
The chunk model is invoked asynchronously. There is
no need for a generation step as all the possible pairs are
those observed during training.

This joint approach does not require a generation
step as the only possible (word, microtag) pairs are
those observed at training time and that populate the
translation tables.

3.4 Complexity of Models

For discussing this issue, let us refer to the Moses
decoder, which implements an efficient decoding al-
gorithm for SMT. It starts by generating the list of
translation options, which are the possible transla-
tions of each input span given the models. The
search space is built only on that list. In case of
multiple factors, for a given span each phrase table
(e.g. that of words and that of microtags) is queried
to collect the list of possible translations. In the-
ory, each element of a list should be paired with
each element of other lists; in practice, this can be
limited to events occurring in the generation table
which links target factors according to what was ob-
served in training data. Nevertheless, the number of
translation options is typically much larger for mul-
tiple than for single factor models, like the standard
phrase based SMT and our joint chunk model. Con-
sidering that the number of partial translations gen-
erated during decoding is an exponential function
(limited by the beam search) of the number of trans-
lation options, we expect that multiple factors de-
coding is definitely more expensive than single fac-
tor one. A quantitative comparison between the two
solutions will be carried out in the next section.

4 Evaluation

4.1 Translation Tasks

Experiments were carried out on a traveling domain,
proposed by the 2007 IWSLT Workshop (Cettolo
and Federico, 2007), and on a news domain pro-
posed by the NIST 2006 MT Evaluation Workshop?,
from Chinese to English. Detailed figures about the
employed training, development and test sets are re-
ported in Table 1.

Translation performance are reported in terms of
case-insensitive BLEU% and NIST scores. Statisti-
cal significance tests comparing performance of two
systems were also applied. As proposed in (Koehn
and Monz, 2006), a paired sign test on BLEU and
NIST scores was performed on a 50-fold partition
of the test set.

4.2 Data Annotation

The annotation of training data in terms of micro-
tags is performed by the TreeTagger tool (Schmid,

2www.nist.gov/speech/tests/mt/



Task | Set # of words

Source | Target

IWSLT | train 353K | 377K
dev 07 | 10.8K | 12.3K

test07 | 3.2K | 3.7K
NIST |train | 83.1M | 87.6M
dev 02 | 23.7K | 26.4K

test 03 | 25.6K | 28.5K

test 04 | 51.0K | 58.9K

test 05 | 31.2K | 34.6K

Table 1: Statistics of training, development and test sets.
Development/test sets include multiple references: in ta-
ble, average lenghts are provided.

1994). It is a part-of-speech tagger and chunker that
employs decision trees to estimate transition proba-
bilities. As a side effect of the tagging, contracted
forms (’d, 'm, ’s, etc.) and negations (not, n’t) are
separated from the preceding word, in order to be
properly tagged.

4.3 Tuning

For experiments, we employed the Moses toolkit
which includes tools to train the bilingual phrase ta-
bles and the distortion models given a word-aligned
parallel corpus, and to optimize feature weights on
a development set through a Minimum Error Rate
training.

In particular, phrase-based translation models are
estimated as follows. i) The training parallel cor-
pus is word-aligned by means of the GIZA++ soft-
ware tool (Och and Ney, 2003) in both source-to-
target and target-to-source directions; ii) a list of
phrase-pairs (up to 8 words) is extracted exploiting
both word-alignments; iii) each phrase pair is associ-
ated with direct and inverse phrase-based and word-
based probabilities.

This standard training procedure is straightfor-
wardly applied to the baseline and the factored sys-
tems. Instead, for the joint system step ii) is antic-
ipated by the concatenation of microtags to words;
hence, target phrases in the joint model actually con-
sist of word#microtag tokens rather than words.

Table 2 provides statistics on the phrase tables of
the three models at study on the IWSLT task. In
particular, the number of distinct source and target

# source | # target | Avg #
phrases |phrases | trans

273K | 277K | 1.26
? 307K | 1.42
? 291K | 1.30

system

baseline
factored
joint

Table 2: Phrase table statistics for IWSLT task.

phrases, and the average number of translations per
source phrase are given. Note that for the sake of a
direct comparison of the chunk systems, we had to
expand the two phrase tables and the generation ta-
ble of the factored system into one equivalent phrase
table comparable with that of the joint system. The
expansion procedure simulates the way Moses gen-
erates the translation options. The larger number of
the target phrases for the factored and joint models
with respect to the baseline (+11% and +5%, respec-
tively) suggests that the former models can be more
affected by beam search pruning and, at least the
joint model, by data sparseness.

Concerning word reordering, the ‘“orientation-
bidirectional-fe” distortion model (Koehn et al.,
2005) was estimated. Word-based 5-gram LMs
are trained with modified Kneser-Ney discount-
ing (Goodman and Chen, 1998), while micro and
chunk 6-gram models with Witten-Bell discount-
ing (Witten and Bell, 1991).

In decoding, for each model the parameters defin-
ing the beam have been set to values that limit the
search errors as much as possible.

4.4 Experimental Results

We conducted a set of preliminary experiments and
the analysis of proposed models on the IWSLT task.
Thanks to its features, the IWSLT task offers a
fast prototyping cycle, even for complex translation
models, such as factored models.

Results of this investigation are reported in Ta-
ble 3. Translation accuracy scores do not show clear
nor statistically significant improvements over the
baseline. However, they well compare with the of-
ficial results of the evaluation campaign (Fordyce,
2007), taking into account that our models are
trained on IWSLT training data only and that no re-
scoring stage was added to the standard decoding.
Moreover, it must be noticed that sentences of the



IWSLT tasks are typically very short, with rather
plain syntactic structure and many colloquial expres-
sions. All these features limit very much the poten-
tial impact of syntax driven translation.

For allowing the comparison in terms of com-
putational costs, the table provides the number of
translation options (TrOpt) and the number of par-
tial translations (GenTh) generated during decoding.
These point out that the factored model is signifi-
cantly more demanding than the joint model, both
in terms of memory and time requirements. For this
reason, we have so far been unable to set up an effec-
tive factored system on the NIST task, mostly due to
overlong decoding time (whatever the size of LMs).

A more detailed discussion on computational is-
sues of the considered approaches is provided in
Section 5.

system |BLEU |NIST|TrOpt GenTh
x10%  x10°
baseline| 35.4 | 6.28 | 155 1.08
factored| 35.7 | 6.44 | 408 3.50
joint 35.1 | 6.33| 193 1.61

Table 3: Results on the IWSLT task.

Experimental results on the NIST task are re-
ported in Table 4 for the baseline and joint mod-
els only. The joint model outperforms the baseline
system on all test sets. Statistical significance lev-
els of the BLEU and NIST score differences range
from a=0.06 to a=0.01. This evidence suggests two
things: first, the potential of string-to-chunks mod-
els needs to be assessed on tasks where the syntactic
structure of sentences is sufficiently complex; sec-
ond, the joint model is an effective and very promis-
ing alternative to factored models towards the inte-
gration of shallow syntax dependencies into SMT.

Test baseline/joint
BLEU o NIST o
03 |28.8/30.1 0.01 | 8.66/8.86 0.01
04 |31.4/319 0.04 |931/941 0.01

05 | 27.7/28.6 0.06 | 8.44/8.55 0.06

Table 4: Results on the NIST task with statistical signifi-
cance levels.

Chi ‘ Eng system ‘ microtags

VKFd | ice chest | factored | NC+ NC), NC( NC)
joint NC+ NC)

DLk a factored | NC(, NC)
joint NC(

Table 5: Shallow syntax interpretations (microtags se-
quence) of phrase pairs for the chunk systems.

5 Discussion

First considerations can be drawn by looking at the
statistics about the phrase tables from which the de-
coder extracts the translation options, reported in Ta-
ble 2. On average, the factored model has 13% more
translation options than the baseline model, the joint
model only 3%. This difference is due to the method
for extracting phrase pairs from the aligned training
corpus, which is less constrained for the former than
for the latter. It is worth noting that the set of trans-
lation options generated through the joint model is a
subset of those generated by the factored model.

As expected, the difference is larger for short
source phrases than for longer ones, as shown in Fig-
ure 5 which plots the average number of translations
for any length of the source phrase. For instance,
for source phrases of length 1, the factored model
has 44% more translation alternatives than the joint
model (3.13 vs. 2.18).

On one side, the over-generation provided by the
factored model with respect to the joint model is
positive because it allows to create shallow syntax
interpretations of a target string which are not con-
tained in the training data. As shown in Table 5, the
new microtag sequence NC( NC) for “ice chest” is
correct. On the other hand, it can happen that some
new interpretations are wrong: indeed, it is very un-
likely that the article “a” can close a noun chunk.

As the decoder exploits all translation options of
the source phrase pairs (if no beam search is ap-
plied), it is straightforward that the factored system
potentially has a search space significantly larger
than the joint one. Hence, we expect that the former
system is significantly less efficient than the latter in
terms of decoding time.

This a-priori consideration is confirmed by the
run-time behavior. As reported in Table 3, the fac-
tored and joint decoders compute a larger amount



of translation options than the baseline (+163%
and +25%, respectively) and accordingly generate
a larger amount of partial translation hypotheses
(+224% and +49%, respectively). Furthermore, we
can state that the joint decoder is more efficient than
the factored one at least by a factor of 2.

3.5

baseline
factored
joint ]
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—_—

——

avg. # translations

1 2 3 4 5 6 7 8
source phrase length

Figure 5: Average number of translation options per
source phrase.

\
)

100

90

80

70 -

baseline —»—
60 factored —e—
joint ——

50

relative position of final 1-best (%

10 20 30 40 50 60 70 8 90 100
covered words (%)

Figure 6: Relative position of the final 1-best during
search with the three considered translation models.

Figure 6 provides a graphical hint on how the
decoder explores the search space with the consid-
ered models. The three curves (one for each model)
give the relative position of the final best hypothesis
among the current translation hypotheses ranked by
score. They are functions of the percentage of cov-
ered words and are computed by averaging over all
the test sentences and scores of all partial hypotheses
generated by the search algorithm. Generally speak-
ing, the higher is the curve, the closer is the final 1-
best to the current best, that is the less search errors
are expected. It results that string-to-chunks mod-
els are more prone to search errors than the baseline

model, that is for them the beam search has to be
set with care. Since the joint model is significantly
cheaper than the factored model in terms of com-
plexity, as discussed above, it could be more easily
deployed in large translation tasks involving training
sets of billion of words.

6 Future Work

Our work on the introduction of chunk-level infor-
mation in the SMT process is still in its early stages.
The results on the large NIST dataset are encourag-
ing and suggest that such information can indeed im-
prove the translation accuracy. Unlike the factored
model, the joint model seems to offer a good trade-
off between the potential accuracy improvement and
the computational burden implied. Nevertheless,
there are several research directions that might be
explored in order to improve the benefits and reduce
the drawbacks of string-to-chunks models.

More precise models could be obtained by in-
troducing lexical dependencies in the microtag and
chunk layers. In the case of microtags the lexical-
ization can be simply done on the lemma of the cor-
responding word, possibly taking into account sta-
tistical or linguistic hints. In the case of chunks the
lexicalization involves the selection of a representa-
tive word among those that define the chunk; a pos-
sible choice could be the chunk head, that should be
determined at search time.

A more fine-grained representation of the micro-
tag layer could also be obtained by adding the size
or structure of the chunk they come from. Several
strategies may be compared in order to find an opti-
mal compromise between the sparsity of the result-
ing n-gram model and its impact on the translation
accuracy.

Other important issues involve the decoding algo-
rithm. As stated, the chunk model is queried when-
ever a chunk is closed, that is in an asynchronous
way with respect to the decoding steps, that are
made on a target-word basis. As a consequence,
partial theories covering the same source positions
could be scored by a different number of models
just because they are chunked in a different man-
ner. The use of a chunk penalty should be investi-
gated, similar to word and phrase penalties typically
exploited, just to make translation hypotheses of dif-



ferent chunk length more comparable.

Finally, as suggested by Figure 6, dynamic prun-
ing strategies could be applied during search in or-
der to further reduce the run-time cost of string-to-
chunks models: in fact, it seems that no additional
search errors would occur if the search starts with a
reduced beam which is enlarged step by step.
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