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Abstract

The continuous emergence of new techni-
cal terms and the difficulty of keeping up
with neologism in parallel corpora deterio-
rate the performance of statistical machine
translation (SMT) systems. This paper ex-
plores the use of morphological information
to improve English-to-Chinese translation for
technical terms. To reduce the morpheme-
level translation ambiguity, we group the mor-
phemes into morpheme phrases and propose
the use of domain information for translation
candidate selection. In order to find corre-
spondences of morpheme phrases between the
source and target languages, we propose an al-
gorithm to mine morpheme phrase translation
pairs from a bilingual lexicon. We also build
a cascaded translation model that dynamically
shifts translation units from phrase level to
word and morpheme phrase levels. The exper-
imental results show the significant improve-
ments over the current phrase-based SMT sys-
tems.

1 Introduction

Statistical machine translation (SMT) provides an
impressive framework in which a machine transla-
tion system can be built, only if a parallel corpus is
available. Koehn (2005) collected a corpus of par-
allel text in 11 languages and trained SMT systems
for 110 language pairs within three weeks. How-
ever, the experimental results also revealed several
language-specific issues: morphologically-rich lan-
guages (e.g., German) were more difficult to trans-
late into than from, and two distant languages (e.g.,

Finnish and English) that have discrepant morpholo-
gies (word structures) were difficult to deal with.
These issues arise because SMT systems usually
employ words as the minimum units of translation,
even when some elements represented by individual
words in one language are included in the morphol-
ogy of another language.

Numerous researchers have proposed a variety of
approaches that make use of morphological infor-
mation in machine translation (Popović and Ney,
2004; Goldwater and McClosky, 2005; Oflazer and
El-Kahlout, 2007; Virpioja et al., 2007; Oflazer,
2008). Most studies assume that the input language
(e.g., Arabic, Catalan, Czech, and Spanish) is mor-
phologically richer than the output language (En-
glish) because translating from an information-rich
language into an information-poor language is easier
than the other way around (Koehn 2005). Some re-
cent studies (Oflazer and El-Kahlout, 2007; Oflazer,
2008) explored the opposite direction (e.g., English
to Turkish), but more case studies are necessary.

Moreover, a number of new technical terms are
emerging daily in English, which is the dominant
international language in communications, science,
business, politics, etc. Due to the difficulty of keep-
ing up with neologism in parallel corpora, SMT sys-
tems suffer from the data sparseness problem and
the out-of-vocabulary (OOV) problem. Thus, trans-
lating English technical terms into other languages
is a crucial challenge in SMT and useful for var-
ious natural language applications including cross-
lingual information retrieval (CLIR).

In this paper, we present an approach that lever-
ages morphological information for translating En-
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Domain 抗 (Kang ) 反 (Fan ) 防 (Fang ) Other

translations

# of 63 translations

in one domain

Immunology 265, antibody(抗体) 0 0 0 265

Army 2, anti-static(抗静电) 90, anti-reconnaissance(反侦察) 19, antiaircraft(防空) 18 129

Pharmaceutics 76, antitoxin(抗毒素) 0 0 29 105

Mathematics 0 81, anti-automorphism(反自同构) 0 22 103

Physics 8, anti-reflection(抗反射) 56, antimicrophonic(反颤噪声的) 11, antiswing(防摆动) 19 94

Auxiliaries 27, antioxidant(抗氧化剂) 0 55, antioxidant(防老剂) 12 94

Other domains 287 266 280 - -

#  of one translation in

109 domains
665 493 365 - -

Table 1: English prefix anti corresponds to 63 Chinese characters in 109 domains in our MPTP set. In which 3
Chinese characters and 6 domains together with example words are listed here. The numbers stand for the frequency
counts.

glish technical terms into Chinese. These terms tend
to contain a large amount of Latin and Greek word
roots, concatenated into words such as supernova
and trichloroethane. Words of this type have a
rich derivational morphology, despite the fact that
English has a poor inflectional morphology. Even
though English has a discrepant morphology com-
pared with Chinese, we report significant improve-
ments in translating English technical terms into
Chinese over the current phrase-based SMT sys-
tems.

2 Issues in technical term translation

We address several key research issues in utilizing
morphological information for translating English
technical terms into Chinese. First, English mor-
phemes and Chinese characters do not always pro-
vide a consistent translation unit. The morpheme
collapse problem on both language sides (i.e., a mor-
pheme in one language may correspond to zero, one,
or multiple morpheme(s) in another language, and
vice versa1) is the motivation for doing morpheme
grouping on both language sides (Virpioja et al.,
2007) instead of on a single side.

Second, translation disambiguation is still essen-
tial on morpheme level translation. Despite the fact
that Chinese can be seen as a morphologically-poor
language, ideographic Chinese characters compli-
cate the translation disambiguation problem. Ta-

1e.g., supernova(ChaoXinXing) : super ∼ Chao (1
English prefix∼1 Chinese character), nova ∼ Xin Xing (1
English stem∼2 Chinese characters); reaction(FanY ing) :
re act ∼ Fan Y ing (2 English morphemes∼2 Chinese char-
acters), -(t)ion ∼ (1 English suffix∼0 Chinese character)

ble 1 illustrates the diversity of translating one En-
glish prefix anti: 63 Chinese characters are possi-
ble translations appearing in 109 technical/scientific
domains. Even if we resort to the n-gram (char-
acter) language model (LM), it further suffers from
the data sparseness problem. The essential observa-
tion is that corresponding to one English morpheme,
one or several Chinese characters are always domi-
nant translations in specific domains. For example,
Kang is the only possible translation of anti in the
Immunology domain.

Third, morpheme-based translation is mainly
aiming at the OOV problem and the data sparseness
problem. Generally, numerous works have shown
that integrating different levels of translation units,
from morpheme to word, and to phrase, is crucial
for achieving high accuracy SMT (Popović and Ney,
2004; Oflazer and El-Kahlout, 2007; Virpioja et al.,
2007; Oflazer, 2008).

In order to handle the first problem, we group the
correspondences between English morphemes and
Chinese characters. We denote these translation-
oriented correspondences as morpheme phrase
translation pairs (MPTPs). We attach domain in-
formation to MPTPs for choosing correct Chinese
characters to deal with the second problem. We also
build a maximum entropy (ME) model that predicts
the possible domains of a given English term. In an-
swer to the third problem, we build a cascaded trans-
lation model that dynamically shifts translation units
from phrase level to word and morpheme phrase lev-
els. A beam search style cascaded decoding algo-
rithm is designed for this translation model.
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The remainder of this paper is organized as fol-
lows. Section 3 describes the cascaded model
for translating English technical terms and the ME
model for estimating possible domains of a given
source term. Section 4 presents an algorithm to mine
domain specific MPTPs from a bilingual lexicon. In
Section 5, we describe the decoding algorithm for
the translation model. Section 6 reports our experi-
mental setup and results. After reviewing the related
work briefly in Section 7, we conclude this paper in
Section 8.

3 Cascaded translation model

Our cascaded translation model is a direct transla-
tion model using a LM for ranking. It can be re-
garded as a reversal of the order of the source and
target languages in the noisy-channel model (Brown
et al., 1993).

Let E and C denote terms in the source and tar-
get languages. The translation model produces the
optimal term C∗ given E,

C∗ = arg max
C

p(C|E)p(C). (1)

In order to choose a target term C by making use
of the domain information of the source term E, we
integrate the domain D in the channel model,

p(C|E) =
∑

D
p(C|E, D)p(D|E). (2)

We estimate D of E using a log-linear ME model:

pΛ(D|E) =
1

ZΛ(E)
exp

{∑

k

λkhk(D, E)

}
, (3)

ZΛ(E) =
∑

D
exp

{∑

k

λkhk(D, E)

}
.

Here, pΛ(D|E) is computed by the feature vector
{hk}, and the feature weight vector Λ = {λk}.
We use the words and the morphemes inside E as
features, where the morphemes are gained by using
Morfessor2, an unsupervised language-independent
morphological analyzer (Creutz and Lagus, 2007).
The feature weights are estimated by using a maxi-
mum a posteriori (MAP) estimator:

L(Λ) =
∑

(E,D)∈D
log pΛ(D|E)−

∑
k

(
λk

σ

)2

. (4)

2http://www.cis.hut.fi/projects/morpho/

L2 regularization is employed here, and the regu-
larization parameter σ is tuned using a development
set. We maximize Equation 4 using L-BFGS (No-
cedal and Wright, 1999).

In Equation 2, when we express the alignment A
explicitly, the translation probability under domain
D is written as

p(C|E, D) =
∑

A
p(C,A|E, D)

' p(C, A∗|E, D). (5)

Here, A∗ = {ai} denotes the Viterbi (the most
probable) alignment between E and C for simplify-
ing the model (maximum approximation). n-gram
phrases of E are first considered during decoding
where n ranges over N down to 1 and N is the
maximum phrase length (see Section 5 for decod-
ing detail). We approximate the translation proba-
bility of E to C under A∗, given D, by the product
of the translation probabilities of E’s individual n-
gram phrase −→e i to C’s individual phrase −→c ai :

p(C, A∗|E, D) '
∏

i
p(−→c ai |−→e i, D). (6)

Only when failing in the phrase/word level, does
the decoding algorithm use the morpheme phrase
level. Suppose that the current word ei (|−→e i| = 1)
is an OOV word, we consider all possible partitions
s of ei:

p(cai |ei, D) =
∑

s
p(cai |ei, s, D)p(s|ei, D). (7)

We assume uniform distribution among partitions;
thus p(s|ei, D) can be omitted during decoding.
Furthermore,

p(cai |ei, s, D) = p(−→ω s
ai
|−→ε s

i , D) (8)

'
∏

k
p(ωs

ai,k
|εs

i,k, D). (9)

In Equation 8, −→ε s
i denotes the English morpheme

phrase (ε) sequence of ei under s, and −→ω s
ai

denotes
the Chinese sequence of characters (ω) of cai un-
der s. Formula 9 assumes that ei and cai should
have the same number of morpheme phrases. Dur-
ing training, we introduce an empty morpheme sym-
bol ? to Chinese, in case some English morphemes
(e.g., morphological suffixes) do not correspond to
any Chinese character. The appearances of the sym-
bol ? are removed from the decoding outputs.
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4 Domain specific MPTP mining

In this section, we describe the domain specific
MPTP mining algorithm to estimate p(ω|ε,D) in
the cascaded translation model. The algorithm con-
sists of a set of word-splitting heuristic rules, which
group the correspondences between English mor-
phemes and Chinese characters.

4.1 Preprocessing
We mine MPTPs from word level translation pairs.
The available dictionary is phrasal in which Chinese
words are not segmented beforehand. For the reason
that more than half a million technical terms (Table
4) are included in the dictionary, Chinese word seg-
mentation programs based on existing dictionaries
may not perform well. Instead, we utilize English
words as a clue for segmenting Chinese phrases into
words. We use the EM-based GIZA++ (Och and
Ney, 2000), and extract a word level dictionary.

We first tokenize English terms by spaces and hy-
phens, and lowercase the words. Chinese phrases are
divided into character sequences. We use GIZA++
for aligning English words to Chinese characters.
Then, Chinese characters aligned to the same En-
glish word are considered as a word. Let W 0 denote
the word level dictionary. Each entry w ∈ W 0 is
represented by a 4-tuple w = 〈e, c, d, n〉, where e,
c, d, and n present an English string (word or mor-
pheme), a Chinese string, the domain of the transla-
tion pair, and the frequency of the occurrences of the
entry in the dictionary. We represent each item in w
with we, wc, wd, and wn, respectively.

4.2 MPTP mining algorithm
The mining algorithm is illustrated in Algorithm

1. We extract the entries in W 0 that consist of only
one Chinese character as the initial MPTP set V 1

(line 1). Then, V i(i ≥ 1) is applied to the current
remaining dictionary W i to split the words and to
generate new MPTPs (lines 2∼13).

Generally, at iteration i ≥ 1, suppose w ∈ W i

and v = 〈ε, ω, d, n〉 ∈ V i, the new generated MPTP
set is written as (lines 4∼9)

V i′ = {v′ | v′ ∈ split(w,v)}
(the split function is described later). We then
unify (t) V i′ with V i by cleaning up the overlap-
ping entries, i.e. adding up their n and removing the

Algorithm 1 MPTP mining
Require: W 0, N ¤ W 0, initial word level dictionary; N , iteration

number

1: V 1 ← {w|w ∈ W 0 ∧ |wc| = 1}, W 1 ← W 0 \ V 1

2: i ← 1
3: while i ≤ N do
4: V i′ ← {}, W i+1 ← {}
5: for w ∈ W i do
6: v ← argmax{v|v∈V i∧vε∈we∧vω∈wc∧vd=wd}vn

7: V i′ ← V i′ t {v′|v′ ∈ split(w, v)}
8: W i+1 ← W i+1 t {w | split(w, v) = φ}
9: end for

10: V i+1 ← V i t V i′

11: W i+1 ← W i+1 t{v | v ∈ V i′ ∧ |vω | ≥ 2∧ |vε| ≥ 2}
12: i ← i + 1
13: end while
14: MPTP ← V i+1 tW i+1 ¤ the last MPTP set
15: return MPTP ¤ the output

duplicated ones (line 10). Simultaneously, consid-
ering that a w may fail to be split by any v ∈ V i,
and the new generated MPTPs may be split again by
other MPTPs (thus |vω| and |vε| should ≥ 2, line 8
and 11), new remaining dictionary is written as

W i+1 = {w | split(w,v) = φ} t
{v | v ∈ V i′ ∧ |vω| ≥ 2 ∧ |vε| ≥ 2}.

The unified MPTP set V i+1 can be used again for
mining new MPTPs from W i+1, or be unified to
generate the last MPTP set (line 14). In order to
avoid overlapped frequency counting in the t oper-
ations, we mark each v ∈ V i′ that returns back to
W i+1 (line 11). Marked entries’ n will not be accu-
mulated during the t operation. We cancel the mark
when v is split again during the iterations (line 7).

We now describe the split function in detail.
We split an entry w ∈ W i when the following con-
dition holds:

∃v ∈ V i, s.t. vε ∈ we ∧ vω ∈ wc ∧ vd = wd.

The domain of each new generated MPTP is set to be
wd, and the frequency count is set to be wn. When
more than one v is available for one w, we choose
the v that has the highest frequency (line 6).

In actuality, we use a slightly stricter condition
than simple inclusion, regarding the position of ε
and ω in e and c. Let L and R denote non-empty
substrings, there are 4 possible positions where ε can
appear in e: exact match (e = ε), left (e = εR), right
(e = Lε), and middle (e = LεR), analogous with ω
in c.
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e\c ω ωR′ L′ω L′ωR′
ε 〈e, c〉 〈e, c〉 〈e, c〉 〈e, c〉

εR 〈e, c〉 〈ε, ω〉
-

〈ε, L′ω〉
〈R, R′〉 〈R, R′〉

Lε 〈e, c〉 -
〈L, L′〉 〈L, L′〉
〈ε, ω〉 〈ε, ωR′〉

〈Lε, ω〉 〈L, L′〉 〈L, L′〉
LεR 〈e, c〉 〈R, R′〉 〈εR, ω〉 〈ε, ω〉

〈R, R′〉

Table 2: The heuristic rules used to split a entry
(〈e, c, d, n〉) by a MPTP (〈ε, ω, d, n〉) to generate new
MPTPs. d and n are omitted for simplicity. In the di-
agonal conditions, the same MPTP is generated again.

Table 2 presents the rules used to split words
and generate new MPTPs. For example, suppose
ε = super, ω = Chao, e = supernova (εnova),
and c = ChaoXinXing (ωXinXing), then the
new MPTPs would be like 〈nova, XinXing, d, n〉
and 〈super, Chao, d, n〉. In addition, we prohibit
cross-aligning morpheme phrases inside words for
decoding convenience. Thus, two position combi-
nations are ignored in Table 2: ε appears in the left
part of e but ω appears in the right part of c, and vice
versa.

The mining algorithm can iterate until V i+1 and
W i+1 converge, ideally. In our experiments, we just
iterate constant (N = 5) times to save computing
time.

One limitation of this algorithm is that it en-
tirely depends on the initial MPTP set V 1. When
V 1 is too small compared to the dictionary W 0,
few new MPTPs will be generated. In order to al-
leviate the dependency on single Chinese charac-
ters (line 1), we used Morfessor to segment English
words in our training data into morphemes. We used
GIZA++ on both directions between English mor-
phemes and Chinese characters, and took the inter-
section of Viterbi alignments to extract another ini-
tial MPTP set. For the English morphemes that do
not align with any Chinese character, we assign them
with the empty morpheme ?. In order to reduce
ambiguity, MPTPs with ? are not used for splitting
words.

In Section 6.2, we compare three strategies for
generating initial MPTP sets: single Chinese char-
acter based, Morfessor based, and their combina-
tion. In the combination process, when one MPTP
appears in both initial sets, only the one with the

Algorithm 2 cascaded decoding
Require: EWords[], D, T, MPTP, N , b ¤EWords[], source lan-

guage term; D, domain label; T, phrase translation (hash)table; N ,
maximum phrase length in T; b, beam size.

1: start ← 1,end ← min{N, |EWords|}
2: while start ≤ |EWords| do
3: isInT ← false
4: for end′ ← end downto start do
5: ephrase ← EWords[start..end′]
6: if ephrase ∈ T.keys then
7: CPhrase p[] ←T.get(ephrase, b)

¤ CPhrase p[],a list storing current target
language phrases and their probabilities.

8: isInT ← true
9: start ← end′ + 1

10: end ← min{start + N, |EWords|}
11: break ¤ jump out for
12: end if
13: end for
14: if isInT = false then
15: CPhrase p[] ← decodeWord (EWords[start],

D, MPTP) ¤morpheme phrase level decoding. D
is dynamically predicted or given beforehand.

16: start ← start + 1
17: end ← min{end + 1, |EWords|}
18: end if
19: Result[] ← append(Result[], CPhrase p[], b) ¤ a list

storing target language phrases and their probabilities
20: end while
21: return Result[] ¤ the output

bigger frequency count is kept. We run our min-
ing algorithm the same constant times on the three
initial MPTP sets. Maximum likelihood estimations
are respectively applied to the last three MPTP sets
to determine p(ω|ε,D) in the translation model.

5 Cascaded decoding algorithm

5.1 Decoding algorithm

Algorithm 2 illustrates the pseudocode of our
beam search style cascaded decoding algorithm.
The algorithm first decodes at the n-gram phrase
level, where the indexes start, end and end′ are
used to segment the source language term into ex-
isting n-gram phrase sequence (lines 3∼13). If this
fails, the algorithm splits current OOV word into
all possible morpheme phrase sequences, and search
translation candidates in the last MPTP set (lines
14∼18). When the domain label D is given before-
hand, we set p(D|E) to 1 in Equation 2. Otherwise,
we use the log-linear model (Equation 3) to estimate
the probabilities of the possible domains (line 15).

We integrate an n-gram character LM in mor-
pheme phrase level decoding and an n-gram word
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LM in phrase level decoding3 (lines 15 and 19).
Let us consider the process in which an English

term superconducting quantum magnetometer
is translated. The reference Chinese term is
ChaoDao LiangZi CiQiangQi. Suppose N = 2
and D = physics, we first segment the source term
into two phrases: superconducting quantum and
magnetometer. We check if both of them appear
in the phrase translation table T (refer to line 6 and
Equation 6). We terminate the decoding algorithm
if translation candidates are found in T under some
segmentation in phrase/word level. Otherwise, the
term would contain at least one OOV word. Assume
that superconducting is an OOV word, we consider
all possible partitions of it (refer to Equation 7), e.g.,
super con duct ing, superconduct ing, etc. When
considering a partition superconduct ing, we ex-
press −→ε = (superconduct, ing) (refer to Equation
8) and morpheme phrase ε ∈ −→ε (refer to Formula 9).
The translation candidates for each ε are searched
among entries associated with physics domain in
the MPTP set. ChaoDao and ? are the possible
translation candidates for superconduct and ing;
thus, one possible translation could be ChaoDao
for superconducting. The remaining words in the
given term are translated in a similar manner.

5.2 Reordering patterns

The alignment distortion problem is easy to settle
since the number of words in an English techni-
cal term is generally small. We extract reorder-
ing patterns by observing the Viterbi alignments
gained from GIZA++, inspired by the synchronous
CFG rule extraction approach presented in (Chiang,
2007). According to our preliminary experimental
results, approximately 10% of entries are reordered
in the training set. Especially of caused about 35%
of the reordering: x of y → y [de] x. The Chi-
nese genitive auxiliary word de is optional here but
we just omit it for simplification. We only keep
the top-5 patterns active. The other 4 patterns are:
type x y → x Xing y, group x y → x Zu
y, class x y → x Lei y, and element x → x
Y uanSu. x is limited to be one word in the mid-
dle three patterns in order to separate x from y.

3Hypothesis combinations are also checked and applied in
these two steps referring to the ideas in Pharaoh (Koehn, 2004).

Domain # of entries %
Computer Science 55,902 .101
Mathematics 28,743 .052
Mechanics 22,914 .042
Electronics 17,764 .032
Electrology 15,210 .028
Anatomy 14,233 .026
Organization 14,003 .025
Mycology 12,896 .023
Science and Technology 11,461 .021
Architectonics 10,222 .019
total (551,570 entries) 203,348 .369

Table 3: The statistical information of the top-10 domains
in the Wanfang dictionary.

testing
training DS MD

# of entries 540,570 1K×10 1K
# of E words 113,958 11,686 1,670
# of OOV E words - 957 107
avg. E phrase length (word) 2.37 2.59 2.30
avg. C phrase length (character) 4.59 4.66 4.49

Table 4: The statistical information of the training and
testing sets. E and C stand for English and Chinese re-
spectively. Duplicate appearances of a word are counted
only once.

For example, type I supernova is reordered into
I type supernova. These reordering patterns are
optional to reorder the English phrases before de-
coding.

6 Experiments

6.1 Setups

The Wanfang Chinese-English technical term dic-
tionary4 with domain information, which contains
204 domains and 525,259 entries in total, was used
for training and testing. In this dictionary, some en-
tries are attached with more than one domain label.
We obtained 551,570 entries by duplicating an en-
try with k domain labels into k different entries with
each domain label. Table 3 illustrates that the top-10
domains cover 36.9% of the entries in the dictionary.

We randomly selected 1K from the 551,570 en-
tries as the mixed domain (MD) test set and then se-
lected 1K×10 entries from the top-10 domains (1K
in each domain) as the domain specific (DS) test
sets. The remaining 540,570 entries were taken as

4http://www.wanfangdata.com.cn/Search/ResourceBrowse
.aspx

[8th AMTA conference, Hawaii, 21-25 October 2008]

207



the training set. Table 4 shows some statistics on
our training and testing sets.

We created a phrase translation table similar to
most phrase-based systems (Och and Ney, 2004).
We built a trigram character LM from the training
data and a bigram word LM trained by SRILM5

on the data where the Chinese phrases have been
segmented into words by GIZA++ (Section 4.1).
Considering that the number of words in a techni-
cal term is far smaller than a typical sentence, we
empirically determined the beam size to be 50 for
fast decoding and used the top-1 output for evalu-
ating. The translation results were evaluated using
4-gram BLEU score (Papineni et al., 2002), WER
(Word Error Rate), PER (Position independent word
Error Rate), and EMatch (exact match)6. To take
synonymic translations into account, we manually
evaluate the translation of English terms that contain
OOV words.

6.2 Effectiveness of domain specific MPTP
mining approach

We compare our approach with a baseline system,
which is similar to the work of (Virpioja et al.,
2007). Their system employed Moses7 (Koehn et
al., 2007) trained on the data in which each word
was segmented into morpheme sequences. In order
to implement their method, we split Chinese phrases
into characters and segmented English words into
morphemes by using Morfessor. We produced three
variants of the baseline system by setting the maxi-
mum phrase length in Moses to 2, 3 and 4, respec-
tively. SRILM was used to train respective gram
character LMs.

While the outputs of baseline variants are charac-
ters, the outputs of our system are words. For direct
comparison, we also segment our word outputs into
sequences of individual characters, and preprocess
the reference sets in the same way.

As mentioned in the end of Section 4.2, we
also compared three strategies for generating ini-
tial MPTP sets: single Chinese character based (sin-
gle), Morfessor based (morf ), and their combination

5http://www.speech.sri.com/projects/srilm/
6To avoid the influence from Chinese word segmentation

problem for exact matching, spaces between Chinese characters
in systems’ outputs and the references are removed beforehand.

7http://www.statmt.org/moses/

BLEU WER PER EMatch OOV ID
.0873 .8430 .7730 .0471 .019 Moses 2
.2638 .6250 .5239 .0978 .022 Moses 3
.2689 .6206 .5228 .1000 .023 Moses 4

DS .3595 .5114 .3981 .1891 .195 morf pD
avg. .3448 .5145 .3951 .1882 .256 morf gD

.3763 .4923 .3695 .2031 .155 single pD

.3131 .5576 .3882 .1654 .266 single gD

.4056 .4783 .3756 .2076 .218 comb pD

.3955 .4763 .3691 .2057 .317 comb gD

.1039 .8256 .7690 .056 .065 Moses 2

.2799 .6283 .5508 .096 .056 Moses 3

.2890 .6158 .5405 .100 .065 Moses 4

.3788 .5050 .4077 .206 .196 morf pD
MD .3643 .5008 .4002 .201 .346 morf gD

.3558 .5004 .3957 .208 .178 single pD

.3033 .5530 .4181 .187 .243 single gD

.4068 .4849 .3937 .214 .262 comb pD

.3981 .4768 .3805 .215 .346 comb gD

Table 5: Comparison of Moses and our translation mod-
els. OOV stands for the translation accuracy of English
terms containing OOV words.

(comb). We mined 485,647 MPTPs using single,
488,117 MPTPs using morf, and 809,847 MPTPs
using comb8. Table 1 is actually an extract from
MPTPs of comb setting. Table 5 shows that in the
DS test sets, the performance of single and morf are
comparable. In the MD test set, morf performs a lit-
tle better than single dealing with OOV translation.
Generally, comb performs the best in all the criteria
owing to its higher coverage.

Table 5 also reports the significant improvements
of our models compared with the baseline variants.
The BLEU score was improved from Moses 4’s
0.2689 to comb pD (predicted D)’s 0.4056 on aver-
age in the DS test sets, and from 0.2890 to 0.4068
in the MD test set. The improvements were also
confirmed in the reductions of WER and PER. The
numbers of the EMatch were approximately doubled
in all test sets. We found that, in the DS test sets,
comb pD could successfully translate 21.8% of the
terms with OOV words while Moses 4 could achieve
only 2.3%.

Independently, we verified the log-linear model
for domain prediction (Equation 3) using the MD
and SD test sets: top-1 accuracy of 62.9% and top-
10 accuracy of 90.6%. The practicability of our ap-
proach and the predictability of the log-linear model
were also verified by looking at the comparable re-

8We use single, morf, and comb to delegate our model vari-
ants hereafter.
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sults of comb gD (given D), comb pD and other
pairs. In addition, comb gD achieved about 30%
better accuracies for OOV term translation com-
pared with comb pD.

6.3 Effectiveness of cascaded translation model

We compared with Pharaoh (Koehn, 2004) to verify
the effectiveness of our cascaded translation model.
Table 6 shows the comparison results on conditions
of domain information used or not, given or not.
noD denotes domain information is totally not em-
ployed during decoding. We implemented this by
setting all the domain labels to be the same in the last
MPTP set and executing the unify operation on it.
+p/-p denotes with/without using the phrase transla-
tion table, +r/-r denotes with/without using the re-
ordering patterns. BLEU, WER and PER were eval-
uated at word level. In addition, +p and -r are taken
as the experiment configuration in Table 5.

Our comb model outperformed Pharaoh signifi-
cantly both in DS and MD test sets, regardless of
the availability of domain information. Under noD,
our model was better than Pharaoh when +p while
worse when -p by comparing the BLEU score and
EMatch. In the MD test set, under noD, pD, and
gD, we achieved the best BLEU score of 0.2299,
0.2425, and 0.2621 respectively, 33.0%, 40.3%, and
51.6% relatively better than Pharaoh’s 0.1729. In
addition, the effectiveness of domain information
was proved again by comparing all the evaluation
criteria of noD, pD and gD.

Furthermore, the improvement by using the
phrase translation table was verified in the BLEU
score and EMatch criteria, while it was difficult to
conclude that in the WER or PER. The influence of
reordering patterns on the four criteria are summa-
rized as follows: negative influence in EMatch and
WER, positive influence in PER, and the influence is
not monotonic in the BLEU score (+p, +r is better.
-p, -r is better under gD and pD while +r is better
under noD).

6.4 Error analysis

Even though our translation system outperformed
the baseline systems obviously, it still have room for
improving. We selected the test output of our system
(comb) on the MD testing set for error analysis (refer
to the last rows in Table 5 and Table 6). For compar-

BLEU WER PER EMatch ID
.1385 .6989 .6656 .1411 Pharaoh
.0813 .6708 .6421 .1247 -p-r, noD
.0895 .6839 .6421 .1247 -p+r, noD
.1503 .6576 .6181 .1540 +p+r, noD
.1425 .6449 .6202 .1577 +p-r, noD

DS .1731 .5785 .5507 .1988 -p-r, pD
avg. .1560 .6025 .5502 .1872 -p+r, pD

.1936 .5977 .5462 .2010 +p+r, pD

.1898 .5830 .5508 .2076 +p-r, pD

.1772 .5736 .5451 .1968 -p-r, gD

.1619 .5971 .5447 .1865 -p+r, gD

.1905 .5957 .5440 .1996 +p+r, gD

.1867 .5813 .5488 .2057 +p-r, gD

.1729 .6884 .6709 .157 Pharaoh

.1325 .6794 .6630 .128 -p-r, noD

.1418 .6856 .6630 .128 -p+r, noD

.2299 .6394 .6160 .172 +p+r, noD

.2128 .6315 .6166 .174 +p-r, noD

.1837 .5923 .5778 .201 -p-r, pD
MD .1710 .6073 .5775 .196 -p+r, pD

.2425 .6048 .5753 .210 +p+r, pD

.2293 .5953 .5780 .214 +p-r, pD

.2161 .5727 .5598 .207 -p-r, gD

.2032 .5904 .5598 .201 -p+r, gD

.2621 .5928 .5630 .211 +p+r, gD

.2464 .5834 .5680 .215 +p-r, gD

Table 6: Comparison of Pharaoh and our comb model.

ison, we also manually evaluated the test outputs of
Moses 4 and Pharaoh. The results are listed in Table
7.

We found, actually, 80% of our system’s out-
put were correct translations while Moses 4 and
Pharaoh achieved only 43.6% and 43% respectively.
Synonymous words or phrases share nearly half of
comb’s correct translations, while most of them are
not represented by the evaluation criteria like BLEU.
Missing or redundant (m/r) characters were also crit-
ical. If this only happens on some subset of function
words, which are sometimes dispensable, we took
the candidate as correct.

Nearly half of the wrongly translated entries in
comb were caused by the problem of m/r charac-
ters. Wrong meaning selection of a polysemous
word caused the wrong translation of the term, re-
ferring to the example in the polysemous problem in
Table 7: cell in specific gravity cell was translated
into XiBao(biologic cell) while the correct trans-
lation is DianChi(battery). In addition, abbrevia-
tion and transliteration in the test sets also possibly
led to wrong translations.

The m/r character problem and the polysemy
problem could be alleviated by using larger or do-
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(# of comb | M | P) type # of comb | M | P examples (test source/reference/system output) selected from  comb

exact match 215 | 100 | 157 1 - hydroxy - 2 - propanone/１ － 羟基 － ２ － 丙酮/１ － 羟基 － ２ － 丙酮
synonymy 384 | 121 | 88 decompression chamber/减压 舱/减压 室; rose/玫瑰/蔷薇
m/r characters 201 | 215 | 185 current - mode logic/电流 型 逻辑/电流 － 型 逻辑
m/r characters 89   | 284 | 394 light antiaircraft artillery/小高 炮/轻 高射 炮兵
polysemous 28   | 47   | 49 specific gravity cell /比 重 电池/比 重 细胞
OOV 42   | 194 | 97 autohemorrhage/自出血/autohemorrhage

abbreviation 24   | 20   | 14 grc/盖尔研究公司/grc

transliteration 17   | 19   | 16 kallman syndrome/卡尔曼 综合征/kallman 综合征
correct

(800 | 436 | 430)

wrong

(200 | 564 | 570)

Table 7: Error analysis on translating the MD test set. M and P denote Moses 4 and Pharaoh respectively.

main specific n-gram character/word LMs. In addi-
tion, integrating abbreviation lexicons and transliter-
ation models are also needed.

7 Related work

Koehn and Knight (2003a) investigated several em-
pirical methods for splitting German compounds.
Even though they did not apply morphology anal-
ysis to German compounds, their work integrated
the idea of word-splitting into a phrase-based trans-
lation system. They reported significant results in
translating German base noun phrases into English.
We built our cascaded translation model inspired
by their work. The differences are that we fur-
ther employed morphological analysis to technical
terms, grouped the morpheme correspondences, and
proposed using domain information for morpheme-
level translation disambiguation.

Virpioja et al. (2007) suggested grouping mor-
phemes on both morphologically-rich language
sides. They used Morfessor to segment words into
morphemes and employed Moses to automatically
find morpheme phrases on three Nordic languages
(Danish, Finnish, and Swedish). Unfortunately, they
reported a worse BLEU score compared to the stan-
dard word-based approach. We implemented their
method as baseline to confirm the effectiveness of
our MPTP mining approach (Section 6.2). In con-
trast, our domain specific MPTP-based translation
system outperforms the baseline and a word/phrase-
based translation system (Section 6.3).

Other works like (Popović and Ney, 2004; Gold-
water and McClosky, 2005) all focused on trans-
lating morphologically-rich languages (e.g., Span-
ish, Catalan, Serbian, Czech) into English. A num-

ber of language specific characteristics are employed
in their methods which prohibit the direct com-
parison with our work. Oflazer and El-Kahlout
(2007) and Oflazer (2008) proposed the morpheme-
based English to Turkish translation with selective
morpheme-grouping on the Turkish side. They also
used Moses to automatically group morphemes sim-
ilar to (Virpioja et al. 2007).

8 Conclusion and future work

We investigated the feasibility of using morpheme
phrases on the task of English-to-Chinese technical
term translation that suffers from the data sparseness
problem and the OOV problem. We verified the ef-
fectiveness of our domain specific MPTP mining al-
gorithm through our translation models under three
MPTP sets compared with Moses, which takes mor-
pheme level training and testing sets. Ultimately,
our mining approach shows a novel way of bridg-
ing monolingual morphology analysis to morpheme-
based SMT. In general, external morphological an-
alyzers are needed for transferring our mining ap-
proach to other language pairs.

We testified the effectiveness of our cascaded
translation model under four configurations, i.e.
+p/-p or +r/-r, compared with Pharaoh. As proved
by Koehn and Knight (2003b), who integrated a
base noun phrase translation subsystem into a SMT
system, we argue that it is straightforward to inte-
grate our cascaded translation model into English-
to-Chinese SMT systems for technical text transla-
tion.

Considering the limited coverage on most do-
mains of the dictionary used in our experiments,
mining domain specific MPTPs from Web pages is
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taken as one of our future works. It has been shown
to be feasible for building large-scale bilingual dic-
tionaries from Web pages by several papers such as
(Lin et al., 2008; Cao et al., 2007). Another fu-
ture work is to build a log-linear translation model
in order to integrate richer feature sets for technical
term translation, such as domain specific abbrevia-
tion lexicons, spelling variance features, and even
transliteration models.
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Zens, Chris Dyer, Ondřej Bojar, Alexandra Constantin
and Evan Herbst. 2007. Moses: Open Source Toolkit
for Statistical Machine Translation. In Proceedings of
the ACL 2007 Demo and Poster Sessions, pages 177–
180, Prague, Czech.

Dekang Lin, Shaojun Zhao, Benjamin Van Durme and
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