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Abstract 

In this work I look at two different para-
digms of Example-Based Machine Trans-
lation (EBMT). I combine the strengths of 
these two systems and build a new EBMT 
engine that combines sub-phrasal match-
ing with structural templates. This synthe-
sis results in higher translation quality and 
more graceful degradation, yielding 1.5% 
to 7.5% relative improvement in BLEU 
scores. 

1 Introduction 

Example-Based Machine Translation (EBMT) 
introduced the notion of phrasal translation that has 
subsequently been championed by Phrasal Statisti-
cal Machine Translation (PSMT). Exact phrasal 
translations are usually highly accurate and retain 
the nuances of the text. However, unless one fo-
cuses exclusively on a (very) small domain, it is 
unreasonable to assume that a corpus will provide 
exact phrasal translations of everything one wants 
to translate. Thus, methods of backing off and syn-
thetically generating translations based on “simi-
lar” examples are increasingly important. In this 
work I introduce a new EBMT Engine named Cu-
nei1  (Construction of Unknown Examples by In-
duction) that combines two different paradigms of 
EBMT: sub-phrasal matching and structural tem-
plates. The goal of this work is to provide highly 
accurate translation when possible, but also allow 

                                                           
1 Named after Cuneiform, the oldest writing system to be 
translated. 

for more graceful degradation through a form of 
structural generalization. 

2 Overview 

The EBMT system at CMU, Panlite (Brown, 
1996), is shallow in the sense that it only indexes 
lexical tokens. It performs well primarily because 
it is capable of indexing very large corpora and 
efficiently extracting exact lexical translations. 
When an example covering the full input sentence 
is not present in the corpus, Panlite attempts to 
match any sub-part of the sentence. This is done by 
matching all possible token sequences without any 
respect for phrasal boundaries. The retrieved ex-
amples are placed in a lattice that is subsequently 
decoded by a language modeler. This particular 
EBMT system is actually very similar to PSMT as 
it consists of a phrase extraction phase followed by 
a language modeler that performs phrase selection 
and reordering. The main differences lie in the de-
tails of the calculations and the fact that Panlite 
does not attempt to retain a true probabilistic 
model. 

Not all EBMT implementations take this ap-
proach. In particular, Gaijin (Veale and Way, 
1997) retrieves examples from a corpus based on 
their structural similarity. The marker hypothesis 
stipulates that a closed set of words in every lan-
guage can be used to identify the syntactic struc-
ture of a sentence. These markers are typically 
conjunctions, prepositions, determiners, and quan-
tifiers. Gaijin employs the marker hypothesis to 
segment sentences into constituent phrases as 
shown in Figure 1. Each constituent phrase is 
headed by a marker that represents the type of that 
constituent. The particular sequence of constituent 
phrases describes the structure of the sentence. 
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This structure, rather than a language model, dic-
tates phrasal selection and reordering. An example 
from the corpus that has the same sequence of con-
stituent phrases becomes the master template for 
translation. When this template has lexical mis-
matches with the sentence to be translated, “graft-
ing” is used to replace an entire phrasal constituent 
with another (more similar) phrasal constituent 
found in the corpus. Likewise, if particular words 
within a phrasal constituent do not match the input, 
“keyhole surgery” is performed to substitute indi-
vidual lexical items. For either type of substitution 
to be performed, the structure (part-of-speech tag 
or head-of-phrase marker) must be equivalent. 

Both of these EBMT systems build a final 
translation by synthetically combining together 
smaller units of translation. In the case of Panlite, 
the units are any sequence of lexical tokens, and 
they are combined together using a language mod-
eler. On the other hand, the units in the Gaijin sys-
tem are constituents identified by the marker 
hypothesis, and they are combined together by a 
single structural template from the corpus that 
matches the entire sentence. 

Cunei attempts to bring together the strengths 
of Panlite and Gaijin. This new system maintains 
the indexing scheme and sub-phrasal matching 
found in Panlite and adds to this a “light” version 
of the structural matching found in the Gaijin sys-
tem. Instead of using constituent phrases identified 
by the marker hypothesis as the structure of each 
sentence (Figure 1), Cunei uses only the sequence 
of part-of-speech tags as shown in Figure 2. Gaijin 
was built for a relatively small corpus and as such 
it was necessary to use a more general structure. 
The sequence of part-of-speech tags is very spe-
cific, but by leveraging a large corpus I expect to 
find many structural examples. This system will 
not, however, require one template to translate the 
entire sentence, but rather, like Panlite, will find 

examples corresponding to any sub-section of the 
input sentence. Cunei passes the resulting lattice to 
the same language modeler used by Panlite for de-
coding. 

Using part-of-speech tags to form structural 
templates is similar to the Transfer (Xfer) approach 
described in (Carbonell et al., 2002) and (Probst et 
al., 2003). The structural templates in Cunei are, in 
some respects, more limited as they do not incor-
porate morphological features. However, the role 
of the structural templates in Cunei is different as 
they are merely a backoff mechanism to be used 
when an exact lexical match is not present, and 
thus, generality is desired. In addition, the struc-
tural templates in Cunei are entirely data-driven. 
Instead of using a lexicon that specifies words 
available for substitution, Cunei fills the structural 
template using phrases present in the lattice that 
have the same part-of-speech sequence. The scores 
associated with each phrase in the lattice are taken 
into account when constructing a new example 
from the structural template. 

Cunei was developed and evaluated translating 
text from Arabic to English. I expected the differ-
ence in word order between these two languages to 
work well with structural templates. However, the 
system is language-neutral and could easily be ap-
plied to any language pair for which part-of-speech 
taggers and parallel text are available. 

3 Building Cunei 

3.1 Preprocessing 

For structural matching, it was important to proc-
ess the English and Arabic in the same format as 
the Penn Treebank because this was expected by 
the part-of-speech taggers I used. A handful of 
regular expressions were applied to re-format the 
text and perform some simple cleanup. Next, I 

In the maximum box specify the maximum amount of trap 

Prep Det Prep  

Figure 1. Sentence Segmented by Marker Hypothesis (Veale and Way, 1997) 

In the of the maximum box specify maximum amount trap 

P Det Adj N Verb Det Adj N P N 

Figure 2. A “Lite” Structure: Sentence with Part-Of-Speech Tags 
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used MXPOST (Ratnaparkhi, 1996) to apply part-
of-speech tags to the English text and ASVMTools 
(Diab et al, 2004) to perform segmentation and 
part-of-speech tagging on the Arabic text. It is 
worthwhile to point out that because of the two 
different part-of-speech taggers, the naming con-
ventions for the tags were not always the same. 
This does not make a difference to Cunei as there 
are no a priori rules that assume a noun should re-
place a noun. Rather, substitutions are determined 
at run-time based on the corpus and the alignment 
links. 

3.2 Indexing  

As mentioned previously, Cunei employs the same 
indexing approach used in Panlite, as this scales 
well with large amounts of data. The technique 
used in Panlite is to build a suffix array with the 
Burrows-Wheeler transform (Brown, 2004). Suffix 
arrays are an increasingly popular way to index 
large amounts of data and have been used as well 
by PSMT in (Zhang and Vogel, 2005) and (Calli-
son-Burch, 2005). The Burrows-Wheeler transform 
brings the added benefit of considerably shrinking 
the size of the index. 

In contrast to Panlite, Cunei needs to index the 
structure of the sentence as well as the lexical to-
kens. This was accomplished by using two indexes 
running in parallel as shown in Figure 3. Although 
this is not the most elegant approach, it is certainly 
the most practical approach. The two indexes allow 
for fast lookups of structural or lexical tokens. The 
downside is that the index is not optimized to look 
up combinations of structural and lexical tokens. 
To find the structural matches corresponding to a 
lexical match (or vice-versa), the sentence number 
and position within that sentence are identified and 

looked up in the other index. 
For lookups in the index, the Burrows-Wheeler 

transform does not result in any increase in compu-
tation. However, if one desires to reconstruct the 
text from the index, then looking up each type re-
quires an additional binary search. For this reason, 
Cunei stores the index as a Burrows-Wheeler 
transformed suffix array on disk, but also allows 
for run-time reconstruction of the original suffix 
array. To reconstruct the original suffix array is 
very fast (linear transformation) but does require 
more memory. This is only performed when the 
task at hand requires reconstructing large amounts 
of the text and continuously looking up each type 
creates a performance bottleneck. For translation, it 
is usually necessary to reconstruct the suffix array 
for the target side of the index, but not the source 
side of the index. 

Another optimization made in Cunei is to repre-
sent the index as a memory-mapped bit array. The 
bit array is dynamically adjusted to use the mini-
mum number of bytes that are capable of repre-
senting the total number of types and tokens 
present in the corpus. This allows for a much 
smaller data structure than just representing every-
thing with an integer, and (in theory) has no upper 
bound. Furthermore, the memory-mapped nature 
of the file makes the load time significantly faster. 
In this work I indexed 100,000 sentence pairs 
which only took a few minutes and consumed 
27.5MB in all (including lexical and structural 
types and tokens for source and target). 

3.3 Alignment 

The second major component of the system is 
alignment. GIZA++ (Och and Ney, 2003) was used 
to generate a word alignment over the entire cor-

In the of the maximum box specify maximum amount trap 

P Det Adj N Verb Det Adj N P N 

Sentence 101 

Sentence 101 

Figure 3. Indexing Structural and Lexical Tokens 
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pus. However, GIZA++ does not provide phrasal 
alignments which are necessary for translation. 
Thus, I investigated other alignment approaches 
and implemented a technique very similar to PESA 
(Vogel, 2005). The final alignment probability is 
calculated by taking the log-linear combination of 
the conditional probability of the entire source sen-
tence given the target sentence, the conditional 
probability of the entire target sentence given the 
source sentence, and the length ratio between the 
selected source and target phrases. The conditional 
sentence probabilities are calculated by multiply-
ing all the conditional word probabilities that agree 
with the phrasal alignment. A word alignment 
agrees with the phrasal alignment when it links two 
words that are both outside the phrasal alignment 
or two words that are inside the phrasal alignment.  

3.4 Building Translations 

Lexical translations are built by retrieving exam-
ples from the corpus and finding the aligned target 
text. Given a source text to translate, first Cunei 
looks in the source index for lexical examples of 
each sub-part of the source text. To ensure both 
speed and accuracy, a desired maximum number of 
instances of each distinct source phrase (typically 
500-1000) is specified in a configuration file. If 
more than the desired number of examples are 
found, then the results are sub-sampled to only re-
turn the maximum. Each example is phrase aligned 
and the corresponding target text for each example 
is placed in a lattice. When more than one example 
produces the same target text, the results are 
merged together and their scores are combined. 

This is the same basic approach used in Panlite and 
PSMT systems with online alignment such as those 
described in (Zhang and Vogel, 2005) and (Calli-
son-Burch, 2005).  

Where Cunei differs from other systems is that 
after all lexical look ups have been performed, Cu-
nei looks for structural matches. Recall that the 
preprocessing routine has already tagged the 
source text with part-of-speech tags. Cunei queries 
the structural source index for all part-of-speech 
sequences that match a section of the input text’s 
structure. A structural example is skipped if it is 
less than three tokens long or the maximum num-
ber of lexical examples has already been found for 
that section. In either of these cases, there is reason 
to believe that structural matches will not be use-
ful. Similar to the lexical translations, once an ex-
ample is found, it needs to be aligned to the target 
text. In this case the alignment extracts the target 
part-of-speech sequence rather than the lexical to-
kens. The retrieved part-of-speech sequence is 
used to predict the structure of the lexical target. 
This target part-of-speech sequence is converted to 
lexical example(s) through substitution. By follow-
ing the alignment links, lexical translations present 
in the lattice are substituted into the structural tem-
plate to form a new lexical translation. All ele-
ments in the lattice are searched to build lexical 
translations such that they maintain the same struc-
ture and alignment links as found in the structural 
example. An example of this is demonstrated in 
Figure 4. While single word substitutions are the 
most common, this process also looks for entire 
phrases that form an appropriate substitution. Fur-
thermore, structural matches are analyzed from 

threats against reporters american 

americans 

in kurdistan iraq 

iraqi journalists 

krdstAn fy AlAmyrkyyn AlSHAfyyn Dd thdydAt AlErAq 

NNS JJ 

NNS JJ 

american reporters in iraqi kurdistan 

american journalists in iraqi kurdistan 

IN NN
P 

NNP 

IN NNP NNP 

Figure 4. Example Constructed from Structural Template and Translation Lattice 
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shortest to longest so that longer matches can make 
use of translations created by shorter structural 
matches. 

A minor exception to the process occurs when a 
structural example contains one or more lexical 
matches. To check for this situation, when a struc-
tural example is found, the lexical tokens of the 
structural example must be compared to the input 
text. When some of the lexical source tokens are 
the same, all target positions that align to a lexical 
source token are marked. These specially marked 
target positions cannot be replaced by other ele-
ments in the lattice. Rather, the lexical target to-
kens for these positions are retrieved from the 
corpus and used in the translation. This allows for 
structural examples where one or more source and 
target words are lexicalized even though the index 
does not directly support searching for this possi-
bility. 

3.5 Scoring Translations 

Once all of the translations have been retrieved 
from the corpus or synthetically created from 
structural examples, it is necessary to score them. 
The language modeler will make the final decision 
as to which translations to use, but the language 
modeler must be provided with a score reflective 
of how likely each translation is to be representa-
tive of the source span it covers. In Cunei, each 
example that is placed in the lattice keeps track of 
three sub-scores: alignment probability, relative 
frequency, and context matches (the number of 
other examples in the lattice from the same sen-
tence)2. When two translations are merged because 
they share the same target translation, their sub-
scores are added together. A final score is pro-
duced by a log-linear combination of the three sub-
scores which are averaged over all found transla-
tions. The weights of the log-linear combination 
are defined in a configuration file and are tuned 
using held-out data. 

The synthetic lexical examples built by combin-
ing long structural examples and shorter lexical 
examples pose a problem for scoring. As this spe-
cific lexical translation never occurs in the corpus, 
it is difficult to determine its relative frequency—a 
critical component of the scoring. Furthermore, the 

                                                           
2 Fully implemented in the system, but due to a significant 
slowdown in speed and very minor improvement in translation 
quality, the context score was disabled for the final results. 

distribution of the structural examples and the lexi-
cal examples is not the same, making the two rela-
tive frequencies hard to combine. Lastly, not all the 
structural examples are relevant to a particular in-
put. Some structural examples can only occur with 
specific lexical elements or under specific condi-
tions. Sometimes structural examples are found 
that cannot produce a lexical translation because 
the lattice lacks the necessary lexical items that 
match its structure and alignment constraints. Cal-
culating relative frequency based on all the re-
trieved structural examples results in very low 
scores for each example, and it did not seem rea-
sonable as many of these examples cannot occur 
for the given input. 

To account for these differences, the relative 
frequencies for lexical and structural examples are 
calculated by only totaling over examples that pro-
duced a lexical translation. If the alignment process 
fails or if a structural example cannot find any ap-
propriate lexical entries to create a lexical transla-
tion, then it is not included in the total count. In 
addition, a confidence score is applied to all trans-
lation candidates. If the translation candidate is 
retrieved from the corpus, then its confidence is 
1.0. If the translation candidate is formed by a 
structural example, then its confidence score is the 
geometric mean of the scores of each lexical trans-
lation that was used (through substitution) to create 
the translation. This confidence score is an ap-
proximate measure of how closely a structural ex-
ample matches the original source text. The 
confidence score is applied as a weight to each 
score when two translations are merged. Thus, an 
example with a low confidence score will not af-
fect the overall scores as much as an example with 
a high confidence score. In practice this means that 
if a structural example predicts one target and a 
lexical example predicts a different target, the lexi-
cal example’s target will have a higher score. 

4 Results 

Cunei was trained on approximately 100,000 sen-
tence pairs (4.87 million words) of Arabic-English 
newswire text. This represents all available Arabic-
English newswire text from the Linguistic Data 
Consortium with sentences containing fewer than 
50 words. While more parallel Arabic-English data 
is available, most of it is out of domain and in the 
form of United Nations proceedings. The training 
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data has good lexical coverage and at the same 
time is not prohibitively large for the structural 
matching.   

Parameters for Cunei and the language modeler 
were tuned using part of the 2003 NIST MT 
Evaluation data set (MT03). However, due to time 
restraints, parameters for Cunei (as opposed to the 
language modeler) were not separately tuned for 
the system with structural matching enabled. 
Rather, I used the same parameters that were tuned 
on the system with structural matching disabled. 
Thus, these results do not reflect the full potential 
of the system with structural matching enabled. 

Evaluation was performed by comparing Cunei 
with structural matching disabled to Cunei with 
structural matching enabled. This experiment was 
run twice: first with language model reordering 
enabled, and second with it disabled (monotonic 
decoding). All systems were evaluated on the 2004 
NIST MT Evaluation data set (MT04), which pro-
vides five reference translations. MT04 contains 
editorial, speech, and news genres, but nearly half 
of it is news. I split MT04 by genre but also di-
vided the news genre into two parts—one from 
Xinhua News Agency and the other from Agence 
France Press. Document boundaries were pre-
served in all the splits and the chunks range in size 
from 278 sentences to 387 sentences. Splitting the 

data in this fashion allowed multiple evaluations 
on different types of data while maintaining 
enough sentences to have meaningful results. In 
addition, a final score for all of MT04 is provided. 

The results are shown in Figure 5 and Figure 6. 
It is clear that the structural matching improves 
translation quality as BLEU scores improved under 
all testing conditions. While the relative improve-
ment is smallest for “News A”, this is still a re-
spectable gain in performance considering the high 
baseline. “News B”, “Editorial”, and “Speech”, 
which all have lower baselines, show stronger 
gains from the structural matching. This correlates 
well to the initial hypothesis that structural match-
ing will make the system more robust and allow it 
to degrade more gracefully. 

As expected, when language model reordering 
is disabled, the performance of the system with 
only lexical matching drops. This is not true for the 
system with structural matching enabled—
signifying that the structural matching is capturing 
most (if not all) of the reordering. 

Figure 7 and Figure 8 illustrate visually the dif-
ferences in the types of translations found between 
the lexical only system and the structural system. 

Lexical and Reorder 0.444 0.483 0.455 0.321 0.339 0.397
Structural and Reorder 0.452 1.65% 0.490 1.52% 0.475 4.38% 0.329 2.58% 0.364 7.52% 0.412 3.75%
Lexical no Reorder 0.419 -5.80% 0.461 -4.45% 0.434 -4.64% 0.320 -0.31% 0.333 -1.59% 0.385 -3.01%
Structural no Reorder 0.446 0.44% 0.490 1.51% 0.470 3.18% 0.333 3.83% 0.363 7.03% 0.411 3.57%

Full MT04SpeechMT03 (Tune) News A News B Editorial

Figure 5. Table of Evaluation Results 

Figure 6. Chart of Evaluation Results 
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Lexical and Reorder

Structural and Reorder

Lexical no Reorder

Structural no Reorder
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economic growth for

economic development

economic progress

the economic growth

economic growth

the chinese economic

chinese economic

of china

of chinese

china

the chinese

chinese

of economic

iktissadi

iktisadi

the economic

economic

of growth

growth rate

the growth

development

growth

supported by

supporting

supported

support

supports

sufficient guaranties

sufficient

enough

of loans

the loans

debts

loan

loans

AlSynyAlAqtSAdyAlnmwtdEmAlkAfypAlqrwD

5 Remaining Issues and Future Work 

The problem of combining scores from two dif-
ferent probability distributions is fundamentally 
hard and the solution is not readily apparent. Ap-
plying confidence weights seemed reasonable, but 
I imagine much better solutions exist. Even if the 
confidence weights were retained, it would be 
worthwhile to investigate applying them in a non-
linear fashion. Time limitations prevented experi-
mentation with other methods. 

Figure 7 and Figure 8 illustrate another prob-
lem: phrases inserted into the lattice do not always 
have optimal boundaries. The last three words 
“Alnmw AlAqtSAdy AlSyny” form one noun 
phrase that translates as “chinese economic 
growth”. The lexical system only provides “eco-
nomic growth” and “chinese economic”. The struc-
tural matching does create “chinese economic 
growth”, but it also has partial translations of 
“economic growth”, “chinese economic”, and 
“support economic growth”. The problem is that 
these partial translations sometimes inappropriately 
guide the language modeler. Both the lexical and 
structural systems are affected by this issue, but the 
problem occurs with greater frequency when struc-
tural matches are enabled. This problem brings up 
the question of what makes a suitable translation 
unit. I did experiment with restrictions similar to 
those in the Gaijin system by limiting which part-
of-speech tags a phrase is allowed to begin and end 
with. However, all of these experiments that “fil-

tered” the lattice resulted in lower scores. It would 
be worthwhile to investigate how to select more 
appropriate translation units, but in the meantime it 
appears to do more good than harm to allow all 
possible phrases. 

Perhaps the most apparent “problem” with 
forming lexical translations from structural exam-
ples is speed. Enabling structural matching signifi-
cantly slows down the system. It is for this reason 
that I did not tune all the parameters of the struc-
tural engine. The problem is that there are usually a 
lot of structural examples found in the corpus, and 
there are also a multitude of lexical translations 
that can be substituted into each structural exam-
ple. The issue with speed is not due to poorly writ-
ten code, but to the thousands of combinations that 
need to be analyzed for a match per example. The 
longer the example is, the more prone it is to this 
problem. I have partially alleviated this problem by 
pruning and chunking the input into smaller units. 
However, this merely makes the computation trac-
table, and not fast. More aggressive pruning and/or 
heavy caching techniques truly should be investi-
gated. 

6 Conclusion 

In conclusion, this research describes a system that 
synthesizes two different approaches to EBMT. 
Whereas the origins of this system lie with EBMT, 
the end result is hard to classify as an EBMT sys-
tem. Cunei has borrowed heavily from ideas and 
techniques present in EBMT, PSMT, and Xfer. 

support iktissadi growth

support iktisadi growth

support economic growth

chinese economic progress

chinese economic development

chinese economic growth

economic growth for

economic development

economic progress

the economic growth

economic growth

the chinese economic

chinese economic

of china

of chinese

china

the chinese

chinese

of economic

iktissadi

iktisadi

the economic

economic

of growth

growth rate

the growth

development

growth

supported by

supporting

supported

support

supports

sufficient guaranties

sufficient

enough

of loans

the loans

debts

loan

loans

AlSynyAlAqtSAdyAlnmwtdEmAlkAfypAlqrwD

Figure 7. Translation Lattice with Structural Matching 

 
 
 
 
 

Figure 8. Translation Lattice without Structural Matching 
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What is clear from this work, however, is that a 
data-driven approach that combines exact lexical 
matching with structural templates improves trans-
lation quality. 
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