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Abstra
tOriginally, statisti
al ma
hine trans-lation was based on the use of the"noisy 
hannel" approa
h. However,many of the 
urrent and su

essfulstatisti
al ma
hine translation sys-tems are based on the use of a di-re
t translation model or even onthe use of a log-linear 
ombinationof serveral dire
t and inverse trans-lation models. An attempt to jus-tify the use of these heuristi
 systemswas proposed within the frameworkof maximum entropy.We present a theoreti
al justi�
a-tion under the de
ision theory frame-work. This theoreti
al frame en-tails new methods for in
reasing theperforman
e of the systems 
ombin-ing translation models. We proposenew and more powerful translationrules that also �t within this the-oreti
al framework. The most im-portant theoreti
al properties devel-oped in the paper are experimentallystudied through a simple translationtask.1 Introdu
tionMa
hine Translation (MT) deals with theproblem of automati
ally translating a sen-ten
e (f) from a sour
e language1(F∗) into a1

F
∗ is the set of all possible strings with a �nitelength on the lexi
on F.

senten
e (e) from a target language (E∗). Ob-viously, these two languages are supposed tohave a very 
omplex set of rules involved in thetranslation pro
ess that 
annot be properlyenumerated into a 
omputer system. A

ord-ing to this, many authors have embra
ed a sta-tisti
al approa
h to the MT problem, wherethe only sour
e of information is a parallel 
or-pus of sour
e-to-target translated senten
es.Brown et al. (1993) approa
hed the prob-lem of MT from a purely statisti
al pointof view. In this approa
h, the MT problemis analysed as a 
lassi
al pattern re
ognitionproblem using the well-known Bayes' 
lassi�-
ation rule (Duda et al., 2000). Therefore, sta-tisti
al ma
hine translation (SMT) is a 
lassi-�
ation task where the set of 
lasses is the setof all senten
es of the target language (E∗),i.e. every target string (e ∈ E
∗) is regardedas a possible translation for the sour
e lan-guage string (f). The goal of the translationpro
ess in statisti
al ma
hine translation 
anbe formulated as follows: a sour
e languagestring f is to be translated into a target lan-guage string e

2. Then the system sear
hes thetarget string (ê) with maximum a-posterioriprobability p(e|f):
ê = arg max

e∈E∗
{p(e|f)} (1)where p(e|f) 
an be approa
hed througha dire
t statisti
al translation model.Eq. (1) has proved to be the optimal2We will refer to p(e|f) as a dire
t statisti
al trans-lation model and to p(f |e) as an inverse statisti
altranslation model.
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de
ision/
lassi�
ation rule under some as-sumptions and is 
alled the optimal Bayes'
lassi�
ation rule (obviously assumes thatthe a
tual probability distribution p(e|f) isknown). Applying the Bayes' theorem toEq. (1), the following rule is obtained:
ê = arg max

e∈E∗
{p(e) · p(f |e)} (2)Eq. (2) implies that the system has to sear
hthe target string (ê) that maximises theprodu
t of both, the target language model

p(e) and the inverse string translation model
p(f |e). Thus, the Bayes' 
lassi�
ation ruleprovides the inverse translation rule (ITR),whi
h is also 
alled �the fundamental equa-tion of SMT�. Again, this rule is optimal ifthe a
tual models are known. Nevertheless,using this rule implies, in pra
ti
e, 
hangingthe distribution probabilities as well as themodels through whi
h the probabilities are ap-proa
hed. This is exa
tly the advantage ofthis approa
h, as it allows the modelling ofthe dire
t translation probability (p(e|f)) withtwo models: an inverse translation model thatapproximates p(f |e); and a language modelthat approximates p(e).This approa
h has a strong pra
ti
al draw-ba
k: the sear
h problem3. This sear
h isknown to be an NP-hard problem (Knight,1999; Udupa and Maji, 2006). However, sev-eral sear
h algorithms have been proposed inthe literature to solve this ill-posed probleme�
iently (Brown and others, 1990; Wang andWaibel, 1997; Yaser and others, 1999; Ger-mann and others, 2001; Jelinek, 1969; Gar
ía-Varea and Casa
uberta, 2001; Tillmann andNey, 2003).In order to alleviate this drawba
k, manyof the 
urrent SMT systems (O
h et al., 1999;O
h and Ney, 2004; Koehn et al., 2003; Zens etal., 2002) have proposed the use of the dire
ttranslation rule (DTR):

ê = arg max
e∈E∗

{p(e) · p(e|f)} (3)whi
h 
an be seen as an heuristi
 version ofthe ITR (Eq. (2)), where p(f |e) is substituted3The method for solving the maximisation (or thesear
h) of the optimal ê in the set E
∗, i.e. arg max

e∈E∗

by p(e|f). This rule allows an easier sear
halgorithm for some of the translation models.Although the DTR has been widely used, itsstatisti
al theoreti
al foundation has not been
lear for long time, as it seemed to be againstthe Bayes' 
lassi�
ation rule if an asymmetri
model4 is used for modelling the translationprobability. Other authors (Andrés-Ferrer etal., 2007) have provided an explanation ofits use within de
ision theory. In this work,we expand that theory to other translationmodels and other loss fun
tions, providing ageneral framework to 
ombine translation sys-tems.Some of the 
urrent SMT systems (O
h andNey, 2004; Marino et al., 2006) use a log-linear
ombination of statisti
al models to approxi-mate the dire
t translation distribution:
p(e|f)≈

exp
[

∑M
m=1

λmhm(f , e)
]

∑

e′
exp

[

∑M
m=1

λmhm(f , e′)
] (4)where hm is a logarithmi
 statisti
al modelthat approximates a probability distribution(i.e. translation or language probabilities).The paper is organised as follows: se
tion 2summarises the Bayes' de
ision theory. Se
-tion 3 ta
kles SMT under the de
ision theoryframework. Finally, se
tion 4 demonstrates inpra
ti
e the theoreti
al ideas explained in thepaper. Con
lusions are 
ondensed in the se
-tion 5.2 Bayes De
ision TheoryA 
lassi�
ation problem su
h as the SMTproblem 
an be seen as an instan
e of a De
i-sion Problem (DP). From this point of view,a 
lassi�
ation problem is 
omposed of threedi�erent items:1. A set of Obje
ts (X ) the system might ob-serve and has to 
lassify (i.e., translate).2. A set of 
lasses (Ω = {ω1, . . . , ωC}) inwhi
h the system has to 
lassify ea
h ob-served obje
t x ∈ X .4Given two senten
es e and f from the target andsour
e language: a symmetri
 model assigns the sameprobability to p(e|f) and to p(f |e); and an asymmetri
model does not.
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3. A Loss fun
tion (l(ωk|x, ωj)). This fun
-tion evaluates the loss of 
lassifying anobserved obje
t x in a 
lass, ωk ∈ Ω,knowing that the optimal 
lass for the ob-je
t x is ωj ∈ Ω.Therefore, when an obje
t x ∈ X is ob-served in a 
lassi�
ation system, the system
hooses the �
orre
t� 
lass from all possible
lasses (Ω). The term �
orre
t� is used in thesense of the a
tion that minimises the loss inwhi
h the system 
ould in
ur if it makes an er-ror, a

ording to the loss fun
tion. For reasonsof simpli
ity, the 0-1 loss fun
tion is usuallyassumed, i.e.:
l(ωk|x, ωj) =

{

0 ωk = ωj

1 otherwise (5)This loss fun
tion does not penalise the 
or-re
t 
lass, nevertheless it does not distinguishbetween the importan
e of 
lassifying an ob-je
t in a spe
i�
 wrong 
lass or in anotherwrong 
lass. Therefore, the penalty of 
las-sifying the obje
t x in the 
lass ωi or ωj is thesame. This is only sensible in some small andsimple 
ases. For example, if the set of 
lassesis large, or even in�nite (but still enumerable),then it is not very appropiate to penalise allwrong 
lasses the same. Note that in this 
aseit is impossible to de�ne a uniform distribu-tion over the 
lasses. This implies that thereare 
lasses that have a very small probabil-ity, and then it does not make sense to de�nea uniform loss fun
tion for those 
lasses. In-stead, it is better to penalise the zones wherethe probability is high.In order to build a 
lassi�
ation system the
lassi�
ation fun
tion must be de�ned, say
c : X → Ω. The 
lass provided by the 
lassi�-
ation fun
tion may not be the 
orre
t 
lass.Thereby, the 
lassi�
ation fun
tion yields anerror or risk, the so-
alled Global Risk,

R(c)=Ex[R(c(x)|x)]=

∫

X

R(c(x)|x) p(x)dx(6)where R(ωk|x) (with ωk = c(x)) is the Con-ditional Risk given x, i.e. the expe
ted loss of
lassifying in the 
lass determined by the de-


ision fun
tion. This Conditional Risk is ex-pressed as follows:
R(ωk|x) =

∑

ωj∈Ω

l(ωk|x, ωj) p(ωj|x) (7)The well-known Bayes' 
lassi�
ation ruleis the rule that minimises the Global Risk.Moreover, as minimising the Conditional Riskfor ea
h obje
t (x) is a su�
ient 
ondition tominimise the Global Risk, without loss of gen-erality we 
an say that the optimal Bayes 
las-si�
ation rule is the rule that minimises theConditional Risk, i.e.:
ĉ(x) = arg min

ω∈Ω

R(ω|x) (8)Loss fun
tions that are more appropriate thanthe 0-1 
an be designed. If we only assumethat the loss of 
orre
tly 
lassifying an obje
tis 0, then a very general loss fun
tion is ob-tained:
l(ωk|x, ωj) =

{

0 ωk = ωj

ǫ(x, ωk, ωj) otherwise (9)In the 
ase of Eq.(9), the optimal Bayes' 
las-si�er is given by:
ĉ(x) = arg min

ωk∈Ω

∑

ωj 6=ωk

ǫ(x, ωk, ωj) p(ωj|x)(10)Note that in order to perform the sear
h forthe optimal 
lass ĉ(x) it is ne
essary to �ndthe 
lass ωk, for whi
h the sum over all the re-maining 
lasses ωj is mimimun. This requiresa 
omputation time5of O(|Ω|2). This 
ost 
anbe prohibitive in some problems. For instan
e,in ma
hine translation, the set of 
lasses is ex-ponential with the length of the senten
e. Inthis 
ase, having to 
ompute the sum for ea
h
lass is a pra
ti
al problem that 
an ruin theadvantages obtained by using a more appro-priate loss fun
tion.In this sense, there is a parti
ular set of lossfun
tions of the form of Eq. (9), that preservesthe simpli
ity of the optimal 
lassi�
ation rulefor the 0-1 loss fun
tion. If ωk is the 
lass pro-posed by the system and ωj is the 
orre
t 
lass5Note that we are assuming that the 
ost of evalu-ating ǫ(x, ωk, ωj) and p(ωj |x) is 
ostant in time
13



that the system should 
hoose (ωk is expe
tedto be equal to ωj) the following loss fun
tion
l(ωk|x, ωj) preserves this simpli
ity:

l(ωk|x, ωj) =

{

0 ωk = ωj

ǫ(x, ωj) otherwise (11)where ǫ(·) is a fun
tion depending on the ob-je
t (x) and the 
orre
t 
lass (ωj) but not de-pending on the wrong 
lass proposed by thesystem (ωk). This fun
tion must verify that
∑

ωj∈Ω
p(ωj |x) ǫ(x, ωj) < ∞; and it evaluatesthe loss fun
tion when the system fails.In su
h 
ases, it 
an be easily proved thatthe Conditional Expe
ted Risk is:

R(ωk|x) = S(x) − p(ωk|x) ǫ(x, ωk) (12)where S(x) =
∑

ωj∈Ω
p(ωj|x) ǫ(x, ωj) and

S(x) < ∞, i.e. the weighted sum over allpossible 
lasses 
onverges to a �nite numberwhi
h only depends on x. Therefore, ǫ(·) isrestri
ted to fun
tions that hold the previous�niteness property.As a result, the 
lassi�
ation rule is verysimilar to the optimal Bayes' 
lassi�
ationrule for the 0-1 loss fun
tion and simpli�es tothe following equation (Andrés-Ferrer et al.,2007):̂
c(x) = arg max

ω∈Ω

{p(ω|x) ǫ(x, ω)} (13)It is worth noting that the 
omputationaltime6 needed to sovle the sear
h of the op-timal 
lass in Eq. (13). is O(|Ω|).In 
on
lusion, for ea
h loss fun
tion thereexists a di�erent optimal Bayes' 
lassi�
ationrule, spe
i�
ally using a loss fun
tion like theone in Eq. (11) yields one of the simplest op-timal 
lassi�
ation rules, Eq. (13).3 Statisti
al Ma
hine TranslationSMT is a spe
i�
 instan
e of a 
lassi�
ationproblem where the set of possible 
lasses isthe set of all the possible senten
es that mightbe written in a target language, i.e. Ω = E∗.6Note that we are assuming that the 
ost of evalu-ating ǫ(x, ωj) and p(ωj |x) is 
ostant in time

Likewise, the obje
ts to be 
lassi�ed7are sen-ten
es of a sour
e language, i.e. f ∈ F
∗.In a SMT system, the Bayes' 
lassi�
ationrule is Eq. (2). As stated above, this 
lassi�-
ation rule 
an be obtained by using the 0-1loss fun
tion:

ê = ĉ(f) = arg max
ωk∈Ω

{p(ωk|f)} (14)where ωk = ek. This loss fun
tion is notparti
ularly appropriate when the number of
lasses is huge as o

urs in SMT problems.Spe
i�
ally, if the 
orre
t translation for thesour
e senten
e f is ej , and the hypothesis ofthe translation system is ek; using the 0-1 lossfun
tion (Eq. (5)) has the 
onsequen
e of pe-nalising the system in the same way, indepen-dently of whi
h translation (ek) the systemproposes and whi
h is the 
orre
t translation(ej) for the sour
e senten
e (f).3.1 Quadrati
 loss fun
tionsEquation (9) produ
es sear
h algorithmswhi
h have a quadrati
 
ost depending onthe size of the set of 
lasses. As statedabove, ma
hine translation 
an be understoodas a 
lassi�
ation problem with a huge set of
lasses. Hen
e, these loss fun
tions yield di�-
ult sear
h algorithms. There are some worksthat already have explored this kind of lossfun
tions (Ue�ng and Ney, 2004; R. S
hlüterand Ney, 2005).The more appealing appli
ation of this lossfun
tions is the use of a metri
 loss fun
-tion (R. S
hlüter and Ney, 2005). For in-stan
e, in ma
hine translation one widespreadmetri
 is the WER (see Se
tion 4 for a de�ni-tion), sin
e the loss fun
tion in Equation (9)depends on both, the proposed translationand the referen
e translation, the WER 
anbe used as loss fun
tion (Ue�ng and Ney,2004). Nevertheless, due to the high 
omplex-ity, the use of these quadrati
 and interestingloss fun
tions, is only feasible in 
onstrainedsituations like n-best lists (Kumar and Byrne,2004).7In this 
ontext to 
lassify an obje
t f in the 
lass
ωk is a way of expressing that ek is the translation of
f .
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Another interesting loss fun
tion would bethe one obtained by introdu
ing a kernel asthe loss fun
tion in Equation (9):
l(ek|f , ej) =

{

0 ek = ej

Kn(ek, ej) otherwise (15)with
Kn(ek, ej) =

∑

u∈En

|ej|u|ek|u (16)where |e|u stands for the number of o

ur-ren
es of the sequen
e of n words u inside thesenten
e e (Cortes et al., 2005).3.2 Linear loss fun
tionEquation (11) produ
es sear
h algorithmswhi
h have a linear 
ost depending on the sizeof the set of 
lasses. For instan
e, a more suit-able loss fun
tion than the 0�1 loss, 
an beobtained using Eq. (11) with ǫ(f , ej) = p(ej):
l(ek|f , ej) =

{

0 ek = ej

p(ej) otherwise (17)This loss fun
tion seems to be more appropri-ate than the 0-1. This is due to the fa
t thatif the system makes an error translating a setof sour
e senten
es, this loss fun
tion tries tofor
e the system to fail in the sour
e senten
e(f) whose 
orre
t translation8(ej) is one of theleast probable in the target language. Thus,the system will fail in the least probable trans-lations, whenever it gets 
onfused; and there-fore, the Global Risk will be redu
ed.In addition, it is easy to prove (usingEq. (13)) that this loss fun
tion leads to theDire
t Translation Rule in Eq. (3). Then, theDTR should work better than the ITR, froma theoreti
al point of view.Nevertheless, the statisti
al approximationsemployed for modelling translation probabil-ities might not be symmetri
, as is the 
asewith IBM Models (Brown and other, 1993).Thus, the model error, 
ould be more impor-tant than the advantage obtained from the use8Here lies the importan
e of distinguishing betweenthe translation proposed by the system (ek) and the
orre
t translation (ej) of the sour
e senten
e(f).

of a more appropriate loss fun
tion. There-fore, it seems a good idea to use the dire
trule in the equivalent inverse manner so thatthe translation system will be the same andthen these asymmetries will be redu
ed. Bysimply applying the Bayes' theorem to Eq. (3),we obtain the equivalent rule:
ê = arg max

e∈E∗

{

p(e)2p(f |e)
} (18)The di�eren
e between the Eq (3) and Eq (18)
an be used to measure the asymmetries of thetranslation models.An alternative fun
tion to the proposed inEq (17) is the loss fun
tion in Eq. (11) with

ǫ(f , ej) = p(f , ej):
l(ek|f , ej) =

{

0 ek = ej

p(f , ej) otherwise (19)whi
h leads to:
ê = arg max

e∈E∗

{p(f , e)p(e|f)} (20)Equation (20) is able to provide several op-timal 
lassi�
ation rules depending on whi
happroximation is used to model the jointprobaility (p(f , e)). The most important ruleprodu
ed by this fun
tion is the Inverse andDire
t translation rule (I&DTR), whi
h is ex-pressed by the following equation:
ê = arg max

e∈E∗

{p(e)p(f | e)p(e | f)} (21)The interpretation of this rule is a re�nementof the dire
t translation rule. In this 
ase, ifthe system makes a mistake it is done in theleast probable pairs (f , e) in terms of p(e, f).More interesting loss fun
tions 
an be ob-tained using information theory. For instan
e,we 
an penalise the system by the remaininginformation. That is, if we knew p(e), thenthe information asso
iated with a target sen-ten
e ej would be − log(p(ej)). The remain-ing information, or the information that thesystem has learnt when it fails is given by
− log(1 − p(ej)). Hen
e, the system 
an bepenalised with this s
ore:
l(ek|f , ej) =

{

0 ek = ej

− log(1 − p(f , ej)) otherwise(22)
15
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Figure 1: The information of the 
ontraryevent, or the remaining information.Figure 1, shows the remaining information of aprobability fun
tion. Note that the remaininginformation has a singularity at 1, i.e. if thesystem has not been able to learn a sure event,whi
h has probability of 1, then the loss isin�nity. Note that this loss 
an be de�ned forany probability su
h as p(e) or p(x, e).Some works (O
h and Ney, 2004; Marino etal., 2006), explore the idea of using maximumentropy models to design a translation system,obtaining in this way a translation rule of theform of:
ê = arg max

e∈E∗

M
∑

m=1

λmhm(f , e) (23)where hm is a logarithmi
 statisti
al modelthat approximates a probability distribution(i.e. translation or language probabilities).The Eq (23) 
an be analysed from a Bayes'de
ision theory frame. Into this s
ope, whatthe log-linear systems are doing is to use theloss fun
tion in Eq (11) with:
ǫ(f , e) = p(e | f)−1

M
∏

m=1

fm(f , e)λi (24)where fm(f , e) = exp[hm(f , e)].From the de
ision theory, the log-linearmodels learn the best loss fun
tion among afamily of loss fun
tions. This family is de�nedby a ve
tor of hyperparameters (λM

1
):

{

p(e | f)−1

M
∏

m=1

fm(f , e)λi

∣

∣

∣
∀λi

} (25)

In order to perform the optimisation, �rstlythe fm fun
tions (usually an exponential fun
-tions of probability distributions) are esti-mated using maximum likelihood (or someother estimation te
hnique). Se
ondly, theME algorithm (Berger et al., 1996) is used to�nd the optimal weights or hyperparameters
λi, i.e., the ME algorithm is used to �nd theoptimal loss fun
tion among all the possiblefun
tions in the family.Some works explore the idea of using thesehyperparameters to redu
e the evaluation er-ror metri
, su
h as the Bleu (Papineni etal., 2001). For instan
e, in O
h (2003), someimprovements were reported when estimatingthe hyperparameters λ in a

ordan
e with theevaluation metri
.4 Experimental ResultsThe aim of this se
tion is to demonstrate withpra
ti
al results, how to use the theory statedin the work to improve the performan
e ofa translation system. Obtaining a state-of-art system is out of s
ope of this paper. Inthis way, the previously stated properties willbe analysed in pra
ti
e with a simple trans-lation model. In other works, some of theloss fun
tions presented here has been anal-ysed using state-of-art models, phrase-basedmodels, (Andrés-Ferrer et al., 2007)Before starting the se
tion we need to de-�ne two new 
on
epts (Germann and others,2001). When a SMT system proposes a wrongtranslation, this is due to two reasons: thesuboptimal sear
h algorithm whi
h has notbeen able to 
ompose a good translation; orthe model whi
h is not able to make up agood translation (and so is unable to �nd it).Then we will say that a translation error isa sear
h error (SE) if the probability of theproposed translations is less than the refer-en
e translation; otherwise we will say thatit is a model error, i.e. if the probability ofthe proposed translations is greater than thereferen
e translation.We use the IBM Model 2 (Brown andother, 1993) and the 
orresponding sear
h al-gorithms to design the experiments of thiswork. That 
hoi
e was motivated by several
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reason. Firstly, the simpli
ity of the transla-tion model allows to obtain a good estimationof the model parameters. Se
ondly, there areseveral models that are initialised using thealignments and di
tionaries of the IBM model2. Finally, the sear
h problem 
an be solvedexa
tly using dynami
 programming for theDTR.In order to train the IBM Model 2 weused the standard tool GIZA++ (O
h, 2000).We re-implemented the algorithm presentedin (Gar
ía-Varea and Casa
uberta, 2001) toperform the sear
h pro
ess in translation forthe ITR. Even though this sear
h algorithmis not optimal, we set the parameters to min-imise the sear
h errors, so that all the errorsshould be model errors. In addition we im-plemented the 
orresponding version of thisalgorithm for the DTR and for the I&DTR.All these algorithms were developed by dy-nami
 programming. For the I&DTR, we im-plemented two versions of the sear
h: oneguided by the dire
t model (a non-optimalsear
h algorithm, namely I&DTR-D) and theother guided by the inverse translation model(whi
h is also non-optimal but more a

urate,namely I&DTR-I). Due to the length 
on-straint of the arti
le, the details of the algo-rithms are omitted.We sele
ted the Spanish-English Touristtask (Amengual et al., 1996) to 
arry outthe experiments reported here. The Spanish-English senten
e pairs 
orrespond to human-to-human 
ommuni
ation situations at thefront-desk of a hotel whi
h were semi-automati
ally produ
ed. The parallel 
orpus
onsisted of 171,352 di�erent senten
e pairs,where 1K senten
es were randomly sele
tedfrom testing, and the rest (in sets of exponen-tially in
reasing sizes: 1K, 2K, 4K, 8K, 16K,
32K, 64K, 128K and 170K senten
es pairs) fortraining. The basi
 statisti
s of this 
orpusare shown in Table 1. All the �gures show the
on�den
e interval at 95%.In order to evaluate the translation quality,we used the following well-known automati-
ally 
omputable measures:1. Word Error Rate (WER):Word ErrorRate is the minimum number (in %) of

Test Set Train SetSpa Eng Spa Engsenten
es 1K 170Kavg. length 12.7 12.6 12.9 13.0vo
abulary 518 393 688 514singletons 107 90 12 7perplexity 3.62 2.95 3.50 2.89Table 1: Basi
 statisti
s of the Spanish-English Tourist task.deletions, insertions, and substitutionsthat are ne
essary to transform the trans-lation proposed by the system into thereferen
e translation.2. Senten
e Error Rate (SER): Senten
e Er-ror Rate is the number (in %) of senten
esthat di�ers from the referen
e transla-tions.3. BiLingual Evaluation Understudy(BLEU): it is based on the n-grams ofthe hypothesized translation that o

urin the referen
e translations. In thiswork, only one referen
e translation persenten
e was used. The BLEU metri
ranges from 0.0 (worst s
ore) to 1.0 (bests
ore) (Papineni et al., 2001):Figure 2 shows the di�eren
es in terms ofthe WER among all the mentioned forms ofthe DTR: �IFDTR� (Eq. 18), �DTR� (Eq. 3),and �DTR-N� (Normalised Length version ofDTR). Note the importan
e of the modelasymmetry in the obtained results. The bestresults were the ones obtained using the in-verse form of the DTR. The normalised ver-sion was developed due to the fa
t that theIBM Model 2 (in its dire
t version) tries toprovide very short translations. This be-haviour is not surprising, sin
e the only me
h-anism that the IBM Model 2 has to ensurethat all sour
es words are translated is thelength distribution. The length distributionusually allows the model to ommit the transla-tion of a few words. Nevertheless, the �DTR�and �DTR-N� performed worse than the ITR(Table 2).
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Figure 2: Asymmetry of the IBM Model 2measured with the respe
t to the WER for theTourist test set for di�erent training sizes.
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Figure 3: WER results for the Tourist testset for di�erent training sizes and di�erent
lassi�
ation rules.
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Figure 4: SER results for the Tourist testset for di�erent training sizes and di�erent
lassi�
ation rules.

Model WER SER BLEU SE TI&DTR I 10.0 49.2 0.847 1.3 34I&DTR D 10.6 51.6 0.844 9.7 2IFDTR 10.5 60.0 0.837 2.7 35ITR 10.7 58.1 0.843 1.9 43DTR N 17.9 74.1 0.750 0.0 2DTR 30.3 92.4 0.535 0.0 2Table 2: Translation quality results with dif-ferent translation rules for Tourist test setfor a training set of 170K senten
es. Where Tis the time expressed in se
onds.Figure 3 shows the results a
hieved withthe most important rules. All the I&DTRobtain similar results to the ITR. Neverthe-less, the non-optimal sear
h algorithm guidedby the dire
t model (�I&DTR-D�) was an or-der of magnitude faster than the more a

u-rate one (�I&DTR-I�) and the ITR. The in-verse form of the DTR (�IFDTR�) behavedsimilarly to these, however improve the resultsreported by DTR. Therefore, there are nosigni�
ant di�eren
es between the rules anal-ysed in terms of WER. However, the exe
utiontimes were signi�
antly redu
ed by the dire
tguided sear
h in 
omparison with the othersear
hes. Table 2 shows these exe
ution timesand the �gures with the maximum trainingsize. Although the di�erent sear
h algorithms(based on loss fun
tions) do not 
onvey a sig-ni�
ant improvement in WER. Note that theloss fun
tion only evaluates the SER, i.e. theloss fun
tion minimises the SER, and does nottry to minimise the WER. Thus, 
hanging theloss fun
tion, does not ne
essarily de
rease theWER.In order to support this idea, Figure 4 showsthe analogous version of Figure 3 but withSER instead of WER. It should be notedthat as the training size in
reases, there isa di�eren
e in the behaviour between theITR and both I&DTR. Consequently, the useof these rules provides better SER, and thisdi�eren
e be
omes statisti
ally signi�
ant asthe estimation of the parameters be
omesbetter. In the 
ase of the inverse form ofthe DTR (�IFDTR�), as the training size in-
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reases, the error tends to de
rease and ap-proximate the ITR error. However, the dif-feren
es are not statisti
ally signi�
ant andboth methods are equivalent from this pointof view.In 
on
lusion, there are two sets of rules:the �rst set is made up of IFDTR and ITR,and the se
ond is 
omposed by the two ver-sions of the I&DTR. The �rst set reportsworse SER than the the se
ond set. How-ever, the I&DTR guided with the dire
t model(�I&DTR-D�) has many good properties inpra
ti
e.5 Con
lusionsThe analysis of the loss fun
tion is an appeal-ing issue. The results of analysing di�erentloss fun
tions range from allowing to use met-ri
 loss fun
tions su
h as BLEU, or WER;to proving the properties of some outstanding
lassi�
ation rules su
h as the dire
t transla-tion rule, the inverse translation rule or eventhe maximumn entropy rule. For ea
h dif-ferent fun
tion ǫ(f , ej , ek) in the general lossfun
tion of Eq. (9), there is a di�erent optimalBayes' rule. The point of using one spe
i�
rule is an heuristi
 and pra
ti
al issue.An interesting fo
us of study is the use ofmetri
s su
h as BLEU, or WER; as the lossfun
tion. Nevertheless due to the high 
om-plexity, it is only feasible on 
onstrained situ-ations like n-best lists.This work fo
uses on the study of loss fun
-tions that have a linear 
omplexity and thatare outstanding due to histori
al or pra
ti-
al reasons. In this sense, we have provideda theoreti
al approa
h based on de
ision the-ory whi
h explains the di�eren
es and resem-blan
es between the Dire
t and the InverseTranslation rules. This theoreti
al frame pre-di
ts an improvement (in terms of SER), animprovement that has been 
on�rmed in pra
-ti
e.In order to in
rease performan
e, we should�nd the best loss fun
tion with the form inEq (9) or with the form in Eq (11). As futurework, we will develop this idea into detail un-der the s
ope of fun
tional optimisation. Wealso intend to analyse the pra
ti
al behaviour

of other loss fun
tions su
h as the loss fun
-tions in Eq.(15) or the remaining informationloss fun
tion.A
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