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Abstract

Originally, statistical machine trans-
lation was based on the use of the
"noisy channel" approach. However,
many of the current and successful
statistical machine translation sys-
tems are based on the use of a di-
rect translation model or even on
the use of a log-linear combination
of serveral direct and inverse trans-
lation models. An attempt to jus-
tify the use of these heuristic systems
was proposed within the framework
of maximum entropy.

We present a theoretical justifica-
tion under the decision theory frame-
work. This theoretical frame en-
tails new methods for increasing the
performance of the systems combin-
ing translation models. We propose
new and more powerful translation
rules that also fit within this the-
oretical framework. The most im-
portant theoretical properties devel-
oped in the paper are experimentally
studied through a simple translation
task.

1 Introduction

Machine Translation (MT) deals with the
problem of automatically translating a sen-
tence (f) from a source language! (F*) into a

LF* is the set of all possible strings with a finite
length on the lexicon F.
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sentence (e) from a target language (E*). Ob-
viously, these two languages are supposed to
have a very complex set of rules involved in the
translation process that cannot be properly
enumerated into a computer system. Accord-
ing to this, many authors have embraced a sta-
tistical approach to the MT problem, where
the only source of information is a parallel cor-
pus of source-to-target translated sentences.

Brown et al. (1993) approached the prob-
lem of MT from a purely statistical point
of view. In this approach, the MT problem
is analysed as a classical pattern recognition
problem using the well-known Bayes’ classifi-
cation rule (Duda et al., 2000). Therefore, sta-
tistical machine translation (SMT) is a classi-
fication task where the set of classes is the set
of all sentences of the target language (E*),
ie. every target string (e € E*) is regarded
as a possible translation for the source lan-
guage string (f). The goal of the translation
process in statistical machine translation can
be formulated as follows: a source language
string f is to be translated into a target lan-
guage string €2. Then the system searches the
target string (&) with maximum a-posteriori
probability p(e|f):

& = arg max{p(elf)} (1)

ecE*
where p(e|f) can be approached through
statistical model.
has proved to be the optimal

a direct translation

Eq. (1)

*We will refer to p(e|f) as a direct statistical trans-
lation model and to p(f|e) as an inverse statistical
translation model.
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decision/classification rule under some as-
sumptions and is called the optimal Bayes’
classification rule (obviously assumes that
the actual probability distribution p(e|f) is
known). Applying the Bayes’ theorem to
Eq. (1), the following rule is obtained:

e = argmax{p(e) - p(fle)} (2)

ecE*

Eq. (2) implies that the system has to search
the target string (&) that maximises the
product of both, the target language model
p(e) and the inverse string translation model
p(fle). Thus, the Bayes’ classification rule
provides the inverse translation rule (ITR),
which is also called “the fundamental equa-
tion of SMT”. Again, this rule is optimal if
the actual models are known. Nevertheless,
using this rule implies, in practice, changing
the distribution probabilities as well as the
models through which the probabilities are ap-
proached. This is exactly the advantage of
this approach, as it allows the modelling of
the direct translation probability (p(e|f)) with
two models: an inverse translation model that
approximates p(fle); and a language model
that approximates p(e).

This approach has a strong practical draw-
back: the search problem?. This search is
known to be an NP-hard problem (Knight,
1999; Udupa and Mayji, 2006). However, sev-
eral search algorithms have been proposed in
the literature to solve this ill-posed problem
efficiently (Brown and others, 1990; Wang and
Waibel, 1997; Yaser and others, 1999; Ger-
mann and others, 2001; Jelinek, 1969; Garcia-
Varea and Casacuberta, 2001; Tillmann and
Ney, 2003).

In order to alleviate this drawback, many
of the current SMT systems (Och et al., 1999;
Och and Ney, 2004; Koehn et al., 2003; Zens et
al., 2002) have proposed the use of the direct
translation rule (DTR):

(3)

€ = argmax{p(e) - p(e[f)}
ecE*

which can be seen as an heuristic version of
the ITR (Eq. (2)), where p(f|e) is substituted

3The method for solving the maximisation (or the
search) of the optimal € in the set E*, i.e. argmax, g«

by p(e|f). This rule allows an easier search
algorithm for some of the translation models.

Although the DTR has been widely used, its
statistical theoretical foundation has not been
clear for long time, as it seemed to be against
the Bayes’ classification rule if an asymmetric
model* is used for modelling the translation
probability. Other authors (Andrés-Ferrer et
al., 2007) have provided an explanation of
its use within decision theory. In this work,
we expand that theory to other translation
models and other loss functions, providing a
general framework to combine translation sys-
tems.

Some of the current SMT systems (Och and
Ney, 2004; Marino et al., 2006) use a log-linear
combination of statistical models to approxi-
mate the direct translation distribution:

exp [2%21 Amh (£, e)}
Serexp | Sl Anl(F. )|

where h,, is a logarithmic statistical model
that approximates a probability distribution
(i.e. translation or language probabilities).

The paper is organised as follows: section 2
summarises the Bayes’ decision theory. Sec-
tion 3 tackles SMT under the decision theory
framework. Finally, section 4 demonstrates in
practice the theoretical ideas explained in the
paper. Conclusions are condensed in the sec-
tion 5.

plelf)~

(4)

2 Bayes Decision Theory

A classification problem such as the SMT
problem can be seen as an instance of a Deci-
sion Problem (DP). From this point of view,
a classification problem is composed of three
different items:

1. A set of Objects (X') the system might ob-
serve and has to classify (i.e., translate).

2. A set of classes (Q = {w1,...,wc}) in
which the system has to classify each ob-
served object x € X.

“Given two sentences e and f from the target and
source language: a symmetric model assigns the same
probability to p(e|f) and to p(f|e); and an asymmetric
model does not.
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3. A Loss function (1(wy|x,w;)). This func-
tion evaluates the loss of classifying an
observed object x in a class, wy € €,
knowing that the optimal class for the ob-
ject x is w; € Q.

Therefore, when an object x € X is ob-
served in a classification system, the system
chooses the “correct” class from all possible
classes (€2). The term “correct” is used in the
sense of the action that minimises the loss in
which the system could incur if it makes an er-
ror, according to the loss function. For reasons
of simplicity, the 0-1 loss function is usually
assumed, i.e.:

O W = wj (5)

(el i) {1 otherwise

This loss function does not penalise the cor-
rect class, nevertheless it does not distinguish
between the importance of classifying an ob-
ject in a specific wrong class or in another
wrong class. Therefore, the penalty of clas-
sifying the object x in the class w; or wj is the
same. This is only sensible in some small and
simple cases. For example, if the set of classes
is large, or even infinite (but still enumerable),
then it is not very appropiate to penalise all
wrong classes the same. Note that in this case
it is impossible to define a uniform distribu-
tion over the classes. This implies that there
are classes that have a very small probabil-
ity, and then it does not make sense to define
a uniform loss function for those classes. In-
stead, it is better to penalise the zones where
the probability is high.

In order to build a classification system the
classification function must be defined, say
¢ : X — Q. The class provided by the classifi-
cation function may not be the correct class.
Thereby, the classification function yields an
error or risk, the so-called Global Rusk,

R(c) ZEx[R(C(X)IX)]Z/XR(C(X)IX) p(x)dx
(6)
where R(wg|x) (with wp = ¢(x)) is the Con-
ditional Risk given x, i.e. the expected loss of
classifying in the class determined by the de-

cision function. This Conditional Risk is ex-
pressed as follows:

R(wilx) = Y Hwrlx,w;) p(w;|x)
w; €N

(7)

The well-known Bayes’ classification rule
is the rule that minimises the Global Risk.
Moreover, as minimising the Conditional Risk
for each object (x) is a sufficient condition to
minimise the Global Risk, without loss of gen-
erality we can say that the optimal Bayes clas-
sification rule is the rule that minimises the
Conditional Risk, i.e.:

¢(x) = argmin R(w|x)
we

(8)

Loss functions that are more appropriate than
the 0-1 can be designed. If we only assume
that the loss of correctly classifying an object
is 0, then a very general loss function is ob-
tained:

0 Wi = Wj
Wwr|x,wj) = { !

€(x,wy,wj) otherwise

In the case of Eq.(9), the optimal Bayes’ clas-
sifier is given by:

(10)
Note that in order to perform the search for
the optimal class ¢(x) it is necessary to find
the class wy, for which the sum over all the re-
maining classes w; is mimimun. This requires
a computation time®of O(|Q2|?). This cost can
be prohibitive in some problems. For instance,
in machine translation, the set of classes is ex-
ponential with the length of the sentence. In
this case, having to compute the sum for each
class is a practical problem that can ruin the
advantages obtained by using a more appro-
priate loss function.

In this sense, there is a particular set of loss
functions of the form of Eq. (9), that preserves
the simplicity of the optimal classification rule
for the 0-1 loss function. If wy is the class pro-
posed by the system and w; is the correct class

®Note that we are assuming that the cost of evalu-
ating e(x,wy,w;) and p(w;|x) is costant in time
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that the system should choose (wy, is expected
to be equal to w;) the following loss function
l(wk|x,w;) preserves this simplicity:

0 = wj
SRS
otherwise

Wwg|x,wj) = {

€(x, wj)

where €(+) is a function depending on the ob-
ject (x) and the correct class (w;) but not de-
pending on the wrong class proposed by the
system (wg). This function must verify that
ijeQ p(wj|x) €(x,w;) < oo; and it evaluates
the loss function when the system fails.

In such cases, it can be easily proved that
the Conditional Expected Risk is:

R(wk(x) = S(x) — p(wglx) e(x,wr)  (12)

where S(x) ijegp(wj\x) e(x,w;) and
S(x) < oo, i.e. the weighted sum over all
possible classes converges to a finite number
which only depends on x. Therefore, €(-) is
restricted to functions that hold the previous
finiteness property.

As a result, the classification rule is very
similar to the optimal Bayes’ classification
rule for the 0-1 loss function and simplifies to

the following equation (Andrés-Ferrer et al.,
2007):

¢(x) = argmax {p(w|x) e(x,w)}
wel

(13)

It is worth noting that the computational
time® needed to sovle the search of the op-
timal class in Eq. (13). is O(|9]).

In conclusion, for each loss function there
exists a different optimal Bayes’ classification
rule, specifically using a loss function like the
one in Eq. (11) yields one of the simplest op-
timal classification rules, Eq. (13).

3 Statistical Machine Translation

SMT is a specific instance of a classification
problem where the set of possible classes is
the set of all the possible sentences that might
be written in a target language, i.e. {2 = E*.

5Note that we are assuming that the cost of evalu-
ating e(x,w;) and p(w;|x) is costant in time

Likewise, the objects to be classified”are sen-
tences of a source language, i.e. f € F*.

In a SMT system, the Bayes’ classification
rule is Eq. (2). As stated above, this classifi-
cation rule can be obtained by using the 0-1
loss function:

&= &(f) = argmax {p(wilf)}  (14)

wr €N

where wp = e,. This loss function is not
particularly appropriate when the number of
classes is huge as occurs in SMT problems.
Specifically, if the correct translation for the
source sentence f is e;, and the hypothesis of
the translation system is eg; using the 0-1 loss
function (Eq. (5)) has the consequence of pe-
nalising the system in the same way, indepen-
dently of which translation (ej) the system
proposes and which is the correct translation
(e;) for the source sentence (f).

3.1 Quadratic loss functions

Equation (9) produces search algorithms
which have a quadratic cost depending on
the size of the set of classes. As stated
above, machine translation can be understood
as a classification problem with a huge set of
classes. Hence, these loss functions yield diffi-
cult search algorithms. There are some works
that already have explored this kind of loss
functions (Ueffing and Ney, 2004; R. Schliiter
and Ney, 2005).

The more appealing application of this loss
functions is the use of a metric loss func-
tion (R. Schliiter and Ney, 2005).
stance, in machine translation one widespread
metric is the WER (see Section 4 for a defini-
tion), since the loss function in Equation (9)
depends on both, the proposed translation
and the reference translation, the WER can
be used as loss function (Ueffing and Ney,
2004). Nevertheless, due to the high complex-
ity, the use of these quadratic and interesting
loss functions, is only feasible in constrained
situations like n-best lists (Kumar and Byrne,
2004).

For in-

"In this context to classify an object f in the class
wy, is a way of expressing that ej is the translation of
f.
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Another interesting loss function would be
the one obtained by introducing a kernel as
the loss function in Equation (9):

0 = e
l(ek|f,ej) = o e]. (15>
Kn(ek,e;) otherwise
with
Kn(ek, ej) = Z ‘ej’u‘ek‘u (16)

ucekn

where |e|, stands for the number of occur-
rences of the sequence of n words u inside the
sentence e (Cortes et al., 2005).

3.2 Linear loss function

Equation (11) produces search algorithms
which have a linear cost depending on the size
of the set of classes. For instance, a more suit-
able loss function than the 0-1 loss, can be
obtained using Eq. (11) with €(f,e;) = p(e;):

0 e, =e;

p(ej) )

l(exlf,e;) = { otherwise

This loss function seems to be more appropri-
ate than the 0-1. This is due to the fact that
if the system makes an error translating a set
of source sentences, this loss function tries to
force the system to fail in the source sentence
(f) whose correct translation®(e;) is one of the
least probable in the target language. Thus,
the system will fail in the least probable trans-
lations, whenever it gets confused; and there-
fore, the Global Risk will be reduced.

In addition, it is easy to prove (using
Eq. (13)) that this loss function leads to the
Direct Translation Rule in Eq. (3). Then, the
DTR should work better than the I'TR, from
a theoretical point of view.

Nevertheless, the statistical approximations
employed for modelling translation probabil-
ities might not be symmetric, as is the case
with IBM Models (Brown and other, 1993).
Thus, the model error, could be more impor-
tant than the advantage obtained from the use

8ere lies the importance of distinguishing between

the translation proposed by the system (ex) and the
correct translation (e;) of the source sentence(f).

of a more appropriate loss function. There-
fore, it seems a good idea to use the direct
rule in the equivalent inverse manner so that
the translation system will be the same and
then these asymmetries will be reduced. By
simply applying the Bayes’ theorem to Eq. (3),
we obtain the equivalent rule:

€ = arg max {p(e)2p(f|e)} (18)

ecE*
The difference between the Eq (3) and Eq (18)
can be used to measure the asymmetries of the
translation models.
An alternative function to the proposed in
Eq (17) is the loss function in Eq. (11) with

E(f, ej) == p(f, ej):

0 — ¢,
l(ek\f, ej) = ok ej. (19)
p(f,e;) otherwise
which leads to:
é = argmax {p(f,e)p(e[f)}  (20)

ecE*

Equation (20) is able to provide several op-
timal classification rules depending on which
approximation is used to model the joint
probaility (p(f,e)). The most important rule
produced by this function is the Inverse and
Direct translation rule (IDTR), which is ex-
pressed by the following equation:

¢ = argmax {p(e)p(f[e)p(e[f)}  (21)

ecE

The interpretation of this rule is a refinement
of the direct translation rule. In this case, if
the system makes a mistake it is done in the
least probable pairs (f, e) in terms of p(e,f).

More interesting loss functions can be ob-
tained using information theory. For instance,
we can penalise the system by the remaining
information. That is, if we knew p(e), then
the information associated with a target sen-
tence e; would be —log(p(e;)). The remain-
ing information, or the information that the
system has learnt when it fails is given by
—log(1 — p(e;)). Hence, the system can be
penalised with this score:

(ex|f,e;) = 4 Ok =
R —log(1 —p(f,ej)) otherwise
(22)
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Figure 1: The information of the contrary

event, or the remaining information.

Figure 1, shows the remaining information of a
probability function. Note that the remaining
information has a singularity at 1, i.e. if the
system has not been able to learn a sure event,
which has probability of 1, then the loss is
infinity. Note that this loss can be defined for
any probability such as p(e) or p(x,e).

Some works (Och and Ney, 2004; Marino et
al., 2006), explore the idea of using maximum
entropy models to design a translation system,
obtaining in this way a translation rule of the
form of:

M
€ = arg max Z Amhm (£, €) (23)
ecE* T

where h,, is a logarithmic statistical model
that approximates a probability distribution
(i.e. translation or language probabilities).

The Eq (23) can be analysed from a Bayes’
decision theory frame. Into this scope, what
the log-linear systems are doing is to use the
loss function in Eq (11) with:

M
e(f.e)=ple|f) [ fm(f. )  (24)
m=1

where f,,(f,e) = explh,,(f,e)].

From the decision theory, the log-linear
models learn the best loss function among a
family of loss functions. This family is defined
by a vector of hyperparameters ()\{VI E

M
{p<erf>1 [T fnt.e)™
m=1

\m} (25)

In order to perform the optimisation, firstly
the f,, functions (usually an exponential func-
tions of probability distributions) are esti-
mated using maximum likelihood (or some
other estimation technique). Secondly, the
ME algorithm (Berger et al., 1996) is used to
find the optimal weights or hyperparameters
Ai, i.e., the ME algorithm is used to find the
optimal loss function among all the possible
functions in the family.

Some works explore the idea of using these
hyperparameters to reduce the evaluation er-
ror metric, such as the BLEU (Papineni et
al., 2001). For instance, in Och (2003), some
improvements were reported when estimating
the hyperparameters A in accordance with the
evaluation metric.

4 Experimental Results

The aim of this section is to demonstrate with
practical results, how to use the theory stated
in the work to improve the performance of
a translation system. Obtaining a state-of-
art system is out of scope of this paper. In
this way, the previously stated properties will
be analysed in practice with a simple trans-
lation model. In other works, some of the
loss functions presented here has been anal-
ysed using state-of-art models, phrase-based
models, (Andrés-Ferrer et al., 2007)

Before starting the section we need to de-
fine two new concepts (Germann and others,
2001). When a SMT system proposes a wrong
translation, this is due to two reasons: the
suboptimal search algorithm which has not
been able to compose a good translation; or
the model which is not able to make up a
good translation (and so is unable to find it).
Then we will say that a translation error is
a search error (SE) if the probability of the
proposed translations is less than the refer-
ence translation; otherwise we will say that
it is a model error, i.e. if the probability of
the proposed translations is greater than the
reference translation.

We use the IBM Model 2 (Brown and
other, 1993) and the corresponding search al-
gorithms to design the experiments of this
work. That choice was motivated by several
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reason. Firstly, the simplicity of the transla-
tion model allows to obtain a good estimation
of the model parameters. Secondly, there are
several models that are initialised using the
alignments and dictionaries of the IBM model
2. Finally, the search problem can be solved
exactly using dynamic programming for the
DTR.

In order to train the IBM Model 2 we
used the standard tool GIZA++ (Och, 2000).
We re-implemented the algorithm presented
in (Garcia-Varea and Casacuberta, 2001) to
perform the search process in translation for
the ITR. Even though this search algorithm
is not optimal, we set the parameters to min-
imise the search errors, so that all the errors
should be model errors. In addition we im-
plemented the corresponding version of this
algorithm for the DTR and for the I&DTR.
All these algorithms were developed by dy-
namic programming. For the [&DTR, we im-
plemented two versions of the search: one
guided by the direct model (a non-optimal
search algorithm, namely I&DTR-D) and the
other guided by the inverse translation model
(which is also non-optimal but more accurate,
namely [&DTR-I). Due to the length con-
straint of the article, the details of the algo-
rithms are omitted.

We selected the Spanish-English TOURIST
task (Amengual et al., 1996) to carry out
the experiments reported here. The Spanish-
English sentence pairs correspond to human-
to-human communication situations at the
front-desk of a hotel which were semi-
automatically produced. The parallel corpus
consisted of 171,352 different sentence pairs,
where 1K sentences were randomly selected
from testing, and the rest (in sets of exponen-
tially increasing sizes: 1K, 2K, 4K, 8K, 16K,
32K, 64K, 128K and 170K sentences pairs) for
training. The basic statistics of this corpus
are shown in Table 1. All the figures show the
confidence interval at 95%.

In order to evaluate the translation quality,
we used the following well-known automati-
cally computable measures:

1. Word Error Rate (WER):Word Error

Rate is the minimum number (in %) of

Test Set Train Set
Spa Eng Spa Eng
sentences 1K 170K
avg. length 12,7 12.6 129 13.0
vocabulary 518 393 688 514
singletons 107 90 12 7
perplexity  3.62 2.95 3.50 2.89
Table 1: Basic statistics of the Spanish-

English TOURIST task.

deletions, insertions, and substitutions
that are necessary to transform the trans-
lation proposed by the system into the
reference translation.

2. Sentence Error Rate (SER): Sentence Er-
ror Rate is the number (in %) of sentences
that differs from the reference transla-
tions.

3. BiLingual Ewvaluation Understudy
(BLEU): it is based on the n-grams of
the hypothesized translation that occur
in the reference translations. In this
work, only one reference translation per
sentence was used. The BLEU metric
ranges from 0.0 (worst score) to 1.0 (best
score) (Papineni et al., 2001):

Figure 2 shows the differences in terms of
the WER among all the mentioned forms of
the DTR: “IFDTR” (Eq. 18), “DTR” (Eq. 3),
and “DTR-N” (Normalised Length version of
DTR). Note the importance of the model
asymmetry in the obtained results. The best
results were the ones obtained using the in-
verse form of the DTR. The normalised ver-
sion was developed due to the fact that the
IBM Model 2 (in its direct version) tries to
provide very short translations. This be-
haviour is not surprising, since the only mech-
anism that the IBM Model 2 has to ensure
that all sources words are translated is the
length distribution. The length distribution
usually allows the model to ommit the transla-
tion of a few words. Nevertheless, the “DTR”
and “DTR-N” performed worse than the ITR
(Table 2).
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Figure 2: Asymmetry of the IBM Model 2
measured with the respect to the WER for the
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Figure 3: WER results for the TOURIST test
set for different training sizes and different
classification rules.
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Figure 4: SER results for the TOURIST test
set for different training sizes and different
classification rules.

Model WER SER BLEU SE T
I&DTR T 10.0 49.2 0.847 13 34
I&DTRD 106 51.6 0.844 9.7 2
IFDTR 105 60.0 0837 2.7 35
ITR 107 581 0.843 1.9 43
DTR N 179 741 0750 0.0 2
DTR 303 924 0535 0.0 2

Table 2: Translation quality results with dif-
ferent translation rules for TOURIST test set
for a training set of 170K sentences. Where T
is the time expressed in seconds.

Figure 3 shows the results achieved with
the most important rules. All the I&DTR
obtain similar results to the ITR. Neverthe-
less, the non-optimal search algorithm guided
by the direct model (“I&DTR-D”) was an or-
der of magnitude faster than the more accu-
rate one (“I&DTR-I") and the ITR. The in-
verse form of the DTR (“IFDTR”) behaved
similarly to these, however improve the results
reported by DTR. Therefore, there are no
significant differences between the rules anal-
ysed in terms of WER. However, the execution
times were significantly reduced by the direct
guided search in comparison with the other
searches. Table 2 shows these execution times
and the figures with the maximum training
size. Although the different search algorithms
(based on loss functions) do not convey a sig-
nificant improvement in WER. Note that the
loss function only evaluates the SER, i.e. the
loss function minimises the SER, and does not
try to minimise the WER. Thus, changing the
loss function, does not necessarily decrease the
WER.

In order to support this idea, Figure 4 shows
the analogous version of Figure 3 but with
SER instead of WER. It should be noted
that as the training size increases, there is
a difference in the behaviour between the
ITR and both I&DTR. Consequently, the use
of these rules provides better SER, and this
difference becomes statistically significant as
the estimation of the parameters becomes
better. In the case of the inverse form of
the DTR (“IFDTR”), as the training size in-



creases, the error tends to decrease and ap-
proximate the ITR error. However, the dif-
ferences are not statistically significant and
both methods are equivalent from this point
of view.

In conclusion, there are two sets of rules:
the first set is made up of IFDTR and ITR,
and the second is composed by the two ver-
sions of the I&DTR. The first set reports
worse SER than the the second set. How-
ever, the I&DTR guided with the direct model
(“I&DTR-D”) has many good properties in
practice.

5 Conclusions

The analysis of the loss function is an appeal-
ing issue. The results of analysing different
loss functions range from allowing to use met-
ric loss functions such as BLEU, or WER,;
to proving the properties of some outstanding
classification rules such as the direct transla-
tion rule, the inverse translation rule or even
the maximumn entropy rule. For each dif-
ferent function €(f,e;,ey) in the general loss
function of Eq. (9), there is a different optimal
Bayes’ rule. The point of using one specific
rule is an heuristic and practical issue.

An interesting focus of study is the use of
metrics such as BLEU, or WER;; as the loss
function. Nevertheless due to the high com-
plexity, it is only feasible on constrained situ-
ations like n-best lists.

This work focuses on the study of loss func-
tions that have a linear complexity and that
are outstanding due to historical or practi-
cal reasons. In this sense, we have provided
a theoretical approach based on decision the-
ory which explains the differences and resem-
blances between the Direct and the Inverse
Translation rules. This theoretical frame pre-
dicts an improvement (in terms of SER), an
improvement that has been confirmed in prac-
tice.

In order to increase performance, we should
find the best loss function with the form in
Eq (9) or with the form in Eq (11). As future
work, we will develop this idea into detail un-
der the scope of functional optimisation. We
also intend to analyse the practical behaviour

of other loss functions such as the loss func-
tions in Eq.(15) or the remaining information
loss function.
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