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Abstract
We present a hybrid MT architecture, combin-
ing state-of-the-art linguistic processing with
advanced stochastic techniques. Grounded in
a theoretical reflection on the division of labor
between rule-based and probabilistic elements
in the MT task, we summarize per-component
approaches to ranking, including empirical re-
sults when evaluated in isolation. Combining
component-internal scores and a number of ad-
ditional sources of (probabilistic) information,
we explore discriminative re-ranking ofn-best
lists of candidate translations through an eclectic
combination of knowledge sources, and provide
evaluation results for various configurations.

1 Background—Motivation

Machine Translation is back in fashion, with
data-driven approaches and specifically Statisti-
cal MT (SMT) as the predominant paradigm—
both in terms of scientific interest and evalu-
ation results inMT competitions. But (fully-
automated) machine translation remains a hard—
if not ultimately impossible—challenge. The
task encompasses not only all strata of linguis-
tic description—phonology to discourse—but in
the general case requires potentially unlimited
knowledge about the actual world and situated
language use (Kay, 1980, 1997). Although the
majority of commercialMT systems still have
large sets of hand-crafted rules at their core (of-
ten using techniques first invented in the 1960s
and 1970s),MT research in the once mainstream
linguistic tradition has become the privilege of a
small, faithful minority.

Like a growing number of colleagues, we ques-
tion the long-term value ofpurely statistical (or
data-driven) approaches, both practically and sci-
entifically. Large (parallel) training corpora re-

main scarce for most languages, and word- and
phrase-level alignment continue to be active re-
search topics. Assuming sufficient training mate-
rial, statistical translation quality still leaves much
to be desired; and probabilisticNLP experience in
general suggests that one must expect ‘ceiling’ ef-
fects on system evolution. StatisticalMT research
has yet to find a satisfactory role for linguistic
analysis; on its own, it does not further our un-
derstanding of language.

Progress on combining rule-based and data-
driven approaches toMT will depend on a sus-
tained stream of state-of-the-art,MT-oriented
linguistics research. The NorwegianLO-

GON initiative capitalizes on linguistic pre-
cision for high-quality translation and, ac-
cordingly, puts scalable, general-purpose lin-
guistic resources—complemented with advanced
stochastic components—at its core. Despite fre-
quent cycles of overly high hopes and subsequent
disillusionment,MT in our view is the type of
application that may demand knowledge-heavy,
‘deep’ approaches toNLP for its ultimate, long-
term success. Much like Riezler & Maxwell III
(2006) and Llitjós & Vogel (2007)—being faith-
ful minority members ourselves—we approach a
hybrid MT architecture with a semantic transfer
backbone as our vantage point. Plurality of ap-
proaches to grammatical description, reusability
of component parts, and the interplay of linguis-
tic and stochastic processes are among the strong
points of theLOGON system.

In the following, we provide a brief overview
of theLOGON architecture (§2) and a bit of theo-
retical reflection on the role of probability theory
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Figure 1: Schematic system architecture: the central con-
troller brokers intermediate representations among the three
processing components, accumulating candidate translations
and, ultimately re-ranking then-best list.

in finding optimal translations (§3). Sections§4
through§6 review component-internal ranking in
theLOGON pipeline. Finally,§7 outlines our ap-
proach to end-to-end re-ranking, including empir-
ical results for various setups. We conclude with
reflections on accomplishments so far and ongo-
ing work in §8.

2 LOGON—Hybrid Deep MT

The LOGON consortium—the Norwegian uni-
versities of Oslo (coordinator), Bergen, and
Trondheim—has assembled a ‘deep’MT proto-
type over the past four years, expending around
fifteen person years on its core translation system.
The LOGON pipeline comprises grammar-based
parsing, transfer of underspecified Minimal Re-
cursion Semantics (MRS; Copestake, Flickinger,
Pollard, & Sag, 2005), and full tactical gen-
eration (aka realization). NorGram, the anal-
ysis grammar, is couched in theLFG frame-
work and has been continuously developed at
the University of Bergen since 1999. Con-
versely, the generation grammar,ERG(Flickinger,
2000), builds on theHPSG theory of grammar,
and has been under development atCSLI Stan-
ford since around 1993. While both analysis and
generation deploy general-purpose linguistic re-
sources and processing tools,LOGON had to de-
velop itsMRS transfer formalism and Norwegian –
English (NoEn) transfer grammar from scratch.
The transfer engine—unification-based, resource-
sensitive rewriting ofMRS terms—constitutes a
new generic tool (that is already used for other
language pairs and even non-MT tasks), but most
of the NoEn transfer grammar is specific to the
LOGON language pair and application. Figure 1

set # words coverage strings

JHd 2146 12.6 64.8 266

JHt 182 11.7 63.2 114.6

Table 1: LOGON development and held-out corpora (for
the Jotunheimensegment). Average string length and end-
to-end coverage on the two sets are comparable, but the av-
erage number of candidate translations is higher on the de-
velopment data.

shows a schematic view of theLOGON architec-
ture; Oepen et al. (2004) provide a more detailed
overview of theLOGON approach.

In a nutshell, the role of the rule-based compo-
nents inLOGON is to delineate the space of gram-
matically and semantically coherent translations,
while the ranking of competing hypotheses and
ultimately the selection of the best candidate(s) is
viewed as a probabilistic task. Parsing, transfer,
and realization each produce, on average, a few
hundred candidate outputs for one input. Hence,
exhausting the complete fan-out combinatorics
can be prohibitively expensive, and typically we
limit the number of hypotheses passed down-
stream to a relatively smalln-best list. For all
results reported presently, the fan-out branching
factor was limited to a maximum of five output
candidates from parsing and (within each branch)
transfer; because there is no further downstream
processing after generation, we can afford more
candidate realizations per inputMRS—for a total
of up to5 × 5 × 50 = 1250 distinct fan-out out-
comes. However, it is quite common for distinct
fan-out paths to arrive at equivalent outputs, for
example where the same modifier attachment am-
biguity may be present in the source and target
language.

Both our linguistic resources, search algo-
rithms, and statistical models draw from contem-
porary, state-of-the art techniques and ongoing re-
search in larger, non-MT communities. In this re-
gard, theLOGON demonstrator provides a novel
blending of approaches, where the majority of its
component parts and linguistic resources have in-
dependent value (and often are used in parallel in
other research efforts and applications).

The consortium circumscribed its domain and
ambitions by virtue of a reference corpus of
around 50,000 words of running text, six pub-
lished tourism booklets on back-country activities
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Figure 2: Evolution of end-to-end coverage over time: per-
centage ofJotunheimeninputs with at least one translation.

in Norway. In addition to one original transla-
tion, we contracted up to two additional reference
translations; about ten per cent of the parallel cor-
pus was held out for evaluation. Table 1 sum-
marizes core metrics of the training and test sec-
tions of theJotunheimenbooklets, the largest seg-
ment and the one for which three reference trans-
lations are available. For model training and eval-
uation, about 670 of the Norwegian inputs and all
(∼6,000) English references were manually tree-
banked (see below).

Aiming primarily to gauge the utility of its
‘pure’ setup (rather than for a completeMT solu-
tion) at the current stage, the consortium did not
‘diffuse’ its linguistic backbone with additional
robustness measures. Accordingly, the overall er-
ror rate is the product of per-component errors,
and gradually building up end-to-end coverage—
specifically harmonizing semantics for a wide va-
riety of constructions cross-linguistically—was a
major part of system development. Figure 2 de-
picts the evolution of end-to-end coverage in the
past year and a half. Upon completion of ac-
tive development, system performance on held-
out data was determined retroactively (for ear-
lier versions). In terms of end-to-end coverage
at least, it is reassuring to observe that there are
few differences between system behavior on de-
velopment vs. held-out data: for this domain and
genre, the finalLOGON demonstrator translates
about two thirds of its inputs.

3 Some Theoretical Reflections

Given our transfer system, where each of the three
steps fan out, there are several possibilities for
adding a stochastic component. What should be
maximized, and how?

The first possibility is to rank the different com-
ponents sequentially, one at a time. First rank the
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Figure 3: Abstract fan-out tree: each processing compo-
nent operates non-deterministically, and distinct inputscan,
in principle, give rise to equivalent outputs.

results of parsing and choose the topmost can-
didate, call itF1. Then consider all the results
of invoking transfer onF1, and choose the one
ranked highest,E1. And finally choose the high-
est ranked realizatione1 of E1. We will refer to
this output as thefirst translation, corresponding
to the top branch in Figure 3.

The second possibility is to try to find themost
likely path through the fan-out tree, i.e. try to
maximize:

arg max
i,j,k

P (ek|Ej)P (Ej |Fi)P (Fi|f)

The two approaches do not always yield the
same result. Take as an example a sentencef

with two different analyses,F1 and F2, where
the main difference between the two is that a par-
ticular word is ambiguous between a noun read-
ing in F1, and a verb reading inF2. If the noun
has many alternative realizations in the target lan-
guage while the verb has few, the most likely path
might be one that chooses the verb, i.e. passes
throughF2.

The third possibility for the end-to-end ranking
is to try to find themost likely translation, i.e.

arg max
e

∑

Fi

∑

Ej

P (ek|Ej)P (Ej |Fi)P (Fi|f)

This might result in a different top-ranked can-
didate than the most likely path in cases where
several different paths result in the same output.
Considering PP attachment ambiguities, for ex-
ample, distinct intermediate semantic representa-
tions (pairs ofEis andFjs) can yield the same
target string.

Which concept should we try to model? From
a theoretical point of view, there are good argu-
ments for choosing what we have called the first
translation. It makes sense to try to select the
most likely interpretation of what the producer of
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the source sentence has intended independently
of how it gets translated. If one instead selects
the most likely path, or the most likely transla-
tion, one might select a less likely interpretation
of what the speaker had intended.

Our argument for thefirst translation can be
illustrated within our earlier example of a word-
level noun vs. verb ambiguity in analysis. The
many different realizations of the noun in the tar-
get language may fall into classes of near syn-
onyms, in which case it does not matter for the
quality of the result which synonym is chosen.
Even though each of the individual realizations
has a low probability, it may be a good transla-
tion.

Observe here also that an automatic evaluation
measure—measuring the similarities to a set of
reference translations, like theBLEU metric (Pa-
pineni, Roukos, Ward, & Zhu, 2002)—will favor
the view of most likely translation. We conjec-
ture, however, that a human evaluation will corre-
spond better to the first translation.

From a theoretical point of view, it seems most
correct to go for the first translation. But it pre-
supposes that we choose the correct interpreta-
tion of the source sentence, which we cannot
expect to always do. In cases where we have
chosen an incorrect analysis, this might be re-
vealed by trying to translate it into the target lan-
guage and consider the result. If all the candi-
date translations sound bad—or have a very low
probability—in the target language, that can be
evidence for dispreferring this analysis. Hence
information about probabilities from later com-
ponents in the pipeline may be relevant, not for
overwriting analysis probabilities, but for helping
in selecting them.

We will in the following first review howLO-

GON employs component ranking for choosing
the first translation, and then consider an end-to-
end re-ranking which attempts to find the most
probable translation, by directly estimating the
posterior translation probabilityP (e|f).

4 Parse Selection

In a sister project toLOGON, the TREPIL project,
a toolkit for building parsebanks ofLFG analy-
ses is being developed (Rosén, Smedt, & Meurer,
2006). This toolkit, called theLFG Parsebanker,

ambiguity # exact match five-best

50 − 100 16 34.4 (17.2) 56.2 (55.0)
25 − 49 28 30.4 (21.4) 62.5 (54.3)
10 − 24 43 58.1 (25.3) 89.5 (73.9)
2 − 9 53 70.8 (35.1) 96.2 (91.0)
total 140 53.8 (27.3) 84.3 (74.3)

50 − 100 16 43.7 (17.2) 81.2 (55.0)
25 − 49 28 50.0 (21.4) 78.6 (54.3)
10 − 24 43 67.4 (25.3) 90.7 (73.9)
2 − 9 53 72.6 (35.1) 100. (91.0)
total 140 63.2 (27.3) 90.7 (74.3)

Table 2: Evaluation of parse selection with a model trained
with standard feature function templates of the XLE (upper
part, as used inLOGON,) and with a discriminant model
(lower part, not yet used). Figures are given for the percent-
age of exact matches and matches among the five top-ranked
analyses. Figures in parentheses show a random choice base-
line. Both models were trained on seven of nine treebanked
texts and evaluated on the two remaining texts.

was used to build a treebank for theLOGON de-
velopment corpus. Parse selection inLOGON

uses training data from this treebank; all sen-
tences with full parses with low ambiguity (fewer
than 100 readings) were at least partially disam-
biguated.

The parse selection method employed in the
LOGON demonstrator uses the stochastic disam-
biguation scheme and training software devel-
oped atPARC (Riezler & Vasserman, 2004). The
XLE system provides a set of parameterized fea-
ture function templates that must be expanded in
accordance with the grammar or the training set
at hand. Application of these feature functions
to the training data yields feature forests for both
the labeled data (the partially disambiguated parse
forests) and the unlabeled data (the full parse
forests). These feature forests are the input to the
statistical estimation algorithm, which generates
a property weights file that is used to rank solu-
tions.

One of the challenges in applying the probabil-
ity model to a given grammar and training set is
the choice of appropriate feature functions. We
have pursued two approaches for choosing fea-
ture functions. In the first approach, we started
with a significant subset of the predefined feature
function templates and expanded each of them
in all possible ways that would result in a non-
zero value on at least one parse in the train-
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{
prpstn m[MARG recommend v]
recommend v[ARG1 pron, ARG2 hike n]
a q[ARG0 hike n]
around p[ARG1 hike n, ARG2 source n]

implicit q[ARG0 source n]
poss[ARG1 waterway n, ARG2 source n]
def q[ARG0 waterway n]

}

Figure 4: Variable-free reduction of the MRS for the utter-
ance ‘We recommend a hike around the waterway’s sources’.

ing set; this could be done automatically. The
second approach is motivated by the hypothe-
sis that discriminants, as used in manual anno-
tation (Carter, 1997), represent promising alter-
native feature functions to the predefined tem-
plates. Initial tests (see table 2) show that the dis-
criminant approach (which is not yet used in the
LOGON system) scores better than the template-
based approach.

5 Ranking Transfer Outputs

While MRS formulae are highly structured graphs,
Oepen & Lønning (2006) suggest a reduction into
a variable-free form that resembles elementary
dependency structures. For the ranking of transfer
outputs,MRSs are broken down into basic depen-
dency triples, whose probabilities are estimated
by adaptation of standardn-gram sequence mod-
eling techniques. The actual training is done us-
ing the freely availableCMU SLM toolkit (Clark-
son & Rosenfeld, 1997).

Based on a training set of some 8,500 in-
domain MRSs, viz. the treebanked version of
the English translations of the (full)LOGON de-
velopment corpus, our target language ‘seman-
tic model’ is defined as a smoothed tri-gram
model over the reduction ofMRSs into depen-
dency triples. Figure 4 shows an example struc-
ture, corresponding to a total of ten triples, includ-
ing 〈 around p, ARG1, hike n〉. The ‘vocabulary’
of the model comprises some 4,400 distinct se-
mantic predicates and role labels, for a total num-
ber of around 51,000 distinct triples. Similarly,
post-transfer EnglishMRSs are broken down into
segments of dependency triples and ranked ac-
cording to the perplexity scores assigned by the
semantic model.

We lack a transfer-level ‘treebank’ to evaluate

MRS ranking in isolation, but in lieu of such data,
we can contrast end-to-end system performance
on the JHt test set. When passing an unranked,
random selection of five transfer outputs down-
stream, the success rate in generation drops to
82.7 per cent (down from 86.5 per cent in ranked,
five-best mode). Restricting the comparison to
the 109 items that translate in both configurations,
our BLEU score over thefirst translation drops
from 37.41 to 30.29.1

6 Realization Ranking

Realization rankingis the term we use for the task
of discriminating between multiple surface forms
generated for a given input semantics. By adapt-
ing methods previously used for parse selection,
we are able to use treebank data for training a dis-
criminative log-linear model for the conditional
probability of a surface realization given an in-
put MRS. Traditionally, however, the standard ap-
proach to tackling this problem of indeterminacy
in generation is to use ann-gram language model
(Langkilde & Knight, 1998; White, 2004; inter
alios). Candidate strings are then ranked accord-
ing to their ‘fluency’, indicated by the probabili-
ties assigned by theLM . As a baseline for our dis-
criminative model, we trained a tri-gram language
model on an unannotated version of the British
National Corpus (BNC), containing roughly 100
million words. As in the case of theMRS ranker,
we used theCMU SLM toolkit for training, result-
ing in a Witten-Bell discounted back-off model.

When evaluated in terms of exact match accu-
racy on the JHd development set,2 the LM ranker
achieves53.2%, which is well above the ran-
dom choice baseline of28.7%. However there
are many well-known limitations inherent to the
n-gram approach, such as its inability to cap-
ture long-range dependencies and dependencies
between non-contiguous words. More generally,
the simplen-gram models are purely surface ori-

1BLEU measures in all our experiments are calculated us-
ing the freely availableNIST toolkit (in its version 11b).

2Note that, when evaluating realization rankers in isola-
tion, we use a different version of the JHd data set. The
MRSs in the generation treebank are here always underspeci-
fied with respect to information structure, such as passiviza-
tion and topicalization. This means that the level of indeter-
minacy is somewhat higher than what is typically the case
within theLOGON MT setting.
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model exact match five-best WA

BNC LM 53.24 78.81 0.882
Log-Linear 72.28 84.59 0.927

Table 3: Performance of the realization rankers.BNC LM
is then-gram ranker trained on the raw text version of the
BNC. Log-Linearshows 10-fold cross-validated results for
the discriminative model trained on a generation treebank,
including the LM scores as a separate feature.

ented and thereby fail to capture dependencies
that show a structural rather than sequential regu-
larity. All in all, there are good reasons to expect
to devise better realization rankers by using mod-
els with access to grammatical structure. Vell-
dal, Oepen, & Flickinger (2004) introduced the
notion of ageneration treebank, which facilities
the training of discriminative log-linear models
for realization ranking in a similar fashion as for
parse disambiguation. For further background on
log-linear models, see§7.

Our discriminative realization ranker uses a
range of features defined over the derivation trees
of theHPSGlinguistic sign, recording information
about local sub-tree configurations, vertical dom-
inance relations,n-grams of lexical types, and
more (Velldal & Oepen, 2006). When trained and
tested by ten-fold cross-validation on a genera-
tion treebank created for the JHd data set, this
model achieves70.28% exact match accuracy,
clearly outperforming then-gram-basedLM by a
good margin (again, the random choice baseline is
28.7%). However, by including the scores of the
LM as an additional feature, we are able to further
boost accuracy up to72.28%. Table 3 summarizes
the results of the two different types of realiza-
tion rankers. The evaluation also includes exact
match accuracy within the five top-ranked candi-
dates, as well as average sentence-levelword ac-
curacy(WA), which is a string similarity measure
based on edit distance.

7 End-to-End Re-Ranking

Section §3 already suggests one consideration
in favor of re-ranking the complete list of can-
didate translations once fan-out is complete:
component-internal probabilistic models are falli-
ble. Furthermore, besides analysis-, transfer-, and
realization-internal information, there are addi-
tional properties of each hypothesized pair〈f, e〉

that can be brought to bear in choosing the ‘best’
translation, for example a measure of how much
reordering has occurred among corresponding el-
ements in the source and target language, or the
degree of harmony between the string lengths of
the source and target.

Log-linear models provide a very flexible
framework for discriminative modeling that al-
lows us to combine disparate and overlapping
sources of information in a single model without
running the risk of making unwarranted indepen-
dence assumptions. In this section we describe a
model that directly estimates the posterior trans-
lation probabilityPλ(e|f), for a given source sen-
tencef and translatione. Although the re-ranker
we describe here is built on top of a hybrid base-
line system, the overall approach is similar to that
described by Och & Ney (2002) in the context of
SMT.

Log-Linear Models A log-linear model is
given in terms of (a) a set ofspecified featuresthat
describe properties of the data, and (b) an associ-
ated set oflearned weightsthat determine the con-
tribution of each feature. One advantage of work-
ing with a discriminative re-ranking setup is that
the model can use global features that the baseline
system would not be able to incorporate. The in-
formation that the feature functions record can be
arbitrarily complex, and a given feature can even
itself be a separate statistical model. In the fol-
lowing we first give a brief high-level presenta-
tion of conditional log-linear modeling, and then
we go on to present the actual feature functions in
our setup.

Given a set ofm real-valued features, each pair
of source sentencef and target sentencee are rep-
resented as a feature vectorΦ(f, e) ∈ ℜm. A vec-
tor of weightsλ ∈ ℜm is then fitted to optimize
some objective function of the training data. For
the experiments reported in this paper the weights
are fitted to maximize the conditional (orpseudo)
likelihood (Johnson, Geman, Canon, Chi, & Rie-
zler, 1999).3 In other words, for each input source
sentence in the training data we seek to maximize

3For estimation we use theTADM open-source toolkit
(Malouf, 2002), using itslimited-memory variable metricas
the optimization method. As is standard practice, the model
is regularized by including a zero-mean Gaussian prior on
the feature weights to reduce the risk of overfitting.
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the probability of its annotated reference trans-
lation relative to the other competing candidates.
However, for future work we plan to also experi-
ment with optimizing the scores of a given eval-
uation metric (e.g.BLEU) directly, following the
Minimum Error Rate approach of Och (2003).

The three most fundamental features that are
supplied in our log-linear re-ranker correspond to
the three ranking modules of the baseline system,
as described in Sections§4, §5, and§6 above.
In other words, these features record the scores of
the parse ranker, theMRS ranker, and the realiza-
tion ranker, respectively. But our re-ranker also
includes several other features that are not part of
the baseline model.

Other Features Our experiments so far have
taken into account another eight properties of the
translation process, in some cases observing in-
ternal features of individual components, in oth-
ers aiming to capture global information. The fol-
lowing paragraphs provide an informal overview
of these additional features in our log-linear re-
ranking model.

LEXICAL PROBABILITIES One additional
feature type in the log-linear model corresponds
to lexical translation probabilities. These are
estimated on the basis of a small corpus of
Norwegian – English parallel texts, comprising
22,356 pairs of aligned sentences.4 First, GIZA++

is used for producing word alignments in both
directions, i.e. using both languages as source and
target in turn. On the basis of these alignments we
then estimate a maximum likelihood translation
table, again in both directions.5 Finally, for each
bi-directional sentence pair〈e, f〉 and〈f, e〉, the
corresponding feature in the end-to-end ranker is
computed as the length-normalized product of all
pairwise word-to-word probabilities.

STRING PROBABILITY Although a part of the
(conditional) realization ranker already, we in-
clude the string probability (according to the tri-

4Of these, 9,410 sentences are taken from theLOGON
development data, while an additional 12,946 sentences
are from the English-Norwegian Parallel Corpus (Oksefjell,
1999).

5The ML estimation of the lexical probabilities, as well
as the final word alignments produced from the output of
GIZA++, are carried out using the training scripts provided
by Phillip Koehn, and as distributed with the phrase-based
SMT module Pharaoh (Koehn, 2004).

gram language model trained on theBNC) of can-
didate translationsek as an independent indicator
of output fluency.

DISTORTION Elementary predications (EPs)
in ourMRSare linked to corresponding surface el-
ements, i.e. sub-string pointers. Surface links are
preserved in transfer, such that post-generation,
for eachEP—or group ofEPs, as transfer need not
be a one-to-one mapping—there is information
about its original vs. its output sub-string span.
To gauge reordering among constituents, for both
the generator input and output, eachEP is com-
pared pairwise to otherEPs in the sameMRS, and
each pair classified with regard to their relative
surface positions. Comparing the input and out-
put MRS, we consider corresponding pairs ofEP

pairs; the distortion metric for a pair of aligned
EPs measures their class difference, where for ex-
ample a change from overlapping to adjacent is
penalized mildly, while inverting a precedence re-
lation comes at a higher cost. Finally, the distor-
tion metric for a pair ofMRSs is the sum of their
per-EP distortion metrics, normalized by the total
number ofEPpairs.

STRING HARMONY Seeing typological simi-
larity between Norwegian and English, much like
for the distortion metric, we assume that there are
systematic correspondences at the string level be-
tween the source and its translation. To enable
the re-ranker to take into account length effects,
we include the ratio of word counts,|e|/|f |, as a
feature in the model.

TRANSFER METRICS Two additional fea-
tures capture information about the transfer step:
the total number of transfer rules that were in-
voked (as a measure of transfer granularity, e.g.
where idiomatic transfer of a larger cluster of
EPs contrasts with stepwise transfer of component
EPs), as well as the ratio ofEPcounts,|E|/|F |.

SEMANTIC DISTANCE Generation proceeds
in two phases: a chart-based bottom-up search
enumerates candidate realizations, of which a fi-
nal semantic compatiblity test selects the one(s)
whoseMRS is subsumed by the original generator
inputMRS (Carroll & Oepen, 2005). Given an im-
perfect input (or error in the generation grammar),
it is possible for none of the candidate outputs
to fulfill the semantic compatiblity test. In this
case, the generator will gradually relaxMRS com-
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parison, going through seven pre-defined levels
of semantic mismatch, which we encode as one
integer-valued feature in the re-ranking model.

Training the Model While batch translating,
theLOGON controller records all candidate trans-
lations, intermediate semantic representations,
and a large number of processing and resource
consumption properties in a database, which we
call aprofile (in analogy to software engineering;
Oepen et al., 2005). Given the system configura-
tion summarized in Sections§2 through§6, we
use the JHd batch profile to train and optimize a
log-linear re-ranker. The experimentation infras-
tructure, here, is essentially the same as in our
discriminative realization ranker—the combina-
tion of the[incr tsdb()] profiler, theTADM maxi-
mum entropy toolkit, and tools for efficient cross-
valiation experiments with large data and feature
sets (Velldal, 2007).

For training purposes, we mechanically ‘an-
notated’ candidate translations by means of the
sentence-levelNEVA string similarity measure,
applied to actualLOGON outputs compared to JHd
reference translations.NEVA is a reformulation of
BLEU that avoids many of the problems associated
with applying BLEU at the sentence level, and is
computed as the arithmetic mean of the rawn-
gram precision scores (Forsbom, 2003). For each
source sentence, we mark the translation(s) with
maximumNEVA score (among all candidate out-
puts for this input) as preferred, thus construct-
ing an empirical distribution where estimation of
log-linear model parameters amounts to adjust-
ing conditional probabilities towards higherNEVA

scores.
Seeing that the model includes diverse fea-

ture types—probabilities, perplexity values,
un-normalized log-linear scores, and non-
probabilistic quantities—feature values are
normalized into a comparable range, using
min-max scaling. The hyper-parameters of the
model—the TADM convergence threshold and
variance of the Gaussian prior—were optimized
by ten-fold cross-validation on the training
corpus.

Empirical Results Table 4 summarizes end-
to-end system performance, measured inBLEU

scores, for various strategies of selecting among

set # chance first LL top judge

–JHd 1391 34.18 40.95 44.10 49.89

JHt 115 30.84 35.67 38.92 45.74 46.32

Table 4: BLEU scores for various re-ranking configurations,
computed over only those cases actually translated byLO-
GON (second column). For all configurations, BLEU results
on the training corpus are higher by about four points.

then-best lists obtained from5× 5× 50 fan-out.
In all cases, scoring has been reduced to those
inputs actually translated by theLOGON system,
i.e. 64.8% and63.2% of the development (JHd)
and held-out (JHt) corpora, respectively. As a
baseline measure, we used random choice of one
output in each context (averaged over twenty it-
erations), resulting in (estimable)BLEU scores of
34.18 and30.84, respectively.

As an upper bound on re-ranking efficacy, Ta-
ble 4 provides two ‘oracle’ scores: the first, la-
beledtop, is obtained from selecting translations
with maximal NEVA scores, i.e. using sentence-
level NEVA as a proxy for corpus-levelBLEU. The
second, labeledjudge, reflects the annotations of
a human judge on the JHt held-out data: con-
sidering all available candidates, a native speaker
of (American) English and near-native speaker
of Norwegian, in each case, picked the transla-
tion judged most appropriate (or, in some cases,
least awful). OracleBLEU scores reach49.89 and
46.32, for JHd and JHt, respectively.

Finally, the column labeledfirst in Table 4 cor-
responds to thefirst translation concept intro-
duced in§3 above, and theLL column to our log-
linear re-ranker (maximizing thelog-likelihoodof
the training data). Both clearly improve over the
random choice baseline, but the re-ranker out-
performs the first translation approach by a large
margin—thus returning on the investment of ex-
tra fan-out and end-to-end re-ranking. However,
at BLEU scores of44.10 and38.92, respectively,
our current re-ranking setup also leaves ample
room for further improvements towards the ‘or-
acle’ upper bound. We anticipate that fine-tuning
the log-linear model, inclusion of additional fea-
tures, and experimentation with different estima-
tion techniques (see below) will allow us to nar-
row this differential further.
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8 Conclusions—Outlook

The future of MT has been (mis-)diagnosed as
‘just around the corner’ since the beginning of
time, and there is no basis to expect a break-
through in fully-automatedMT in the foreseeable
future. But yet we see progress along the way,
specifically in the sustained development of large-
scale, general-purpose language technology and
its ever tighter integration with refined stochastic
techniques.

Among the main results of the Norwegian
LOGON initiative is its proof-of-concept demon-
strator for quality-oriented, hybridMT grounded
in independently developed computational gram-
mars. The tight coupling of hand-built linguis-
tic resources results in anMT pipeline where, to a
very high degree, all candidate translations are (a)
related to the source utterance in a systematic—
albeit at times unlikely—way and (b) grammat-
ically well-formed. Combining ann-best beam
search through the space of fan-out combinatorics
with stochastic rankers at each step, as well as
with discriminative end-to-end re-ranking yields
a flexible solution, offering a clear precision vs.
efficiency trade-off. For its bounded domain (and
limited vocabulary of around 5,000 lexemes), the
LOGON system succeeds in translating about two
thirds of unseen running text, whereBLEU scores
and project-internal inspection of results suggest a
high degree of output quality. This configuration
could, in principle, be an interesting value propo-
sition by itself—as a tool to professional trans-
lators, for example. A more systematic, human
judgment study of system outputs (for various se-
lection strategies) is currently underway, and we
expect results to become available in June this
year.

In ongoing work, we aim to further improve
re-ranking performance, for example by assess-
ing the relative contribution of individual fea-
tures, fine-tuning parameter estimation, and in-
cluding additional properties. Our current maxi-
mum likelihood training of the log-linear model is
based on a binarized empirical distribution, where
for each input we consider the candidate trans-
lation(s) with maximumNEVA score(s) as pre-
ferred, and all others as dis-preferred. Obviously,
however, the degradation in quality among alter-

nate candidates is continuous (rather than abso-
lute), and we have started experimentation with
a graded empirical distribution, adapting the ap-
proach of Osborne (2000) to the re-ranking task.
Finally, in a parallel refinement cycle, we aim to
contrast our current (LL) re-ranking model with
Minimum Error Rate (MER) training, a method
that aims to estimate model parameters to directly
optimizeBLEU scores (or another quality metric)
as its objective function.

Trading coverage for increased output quality
may be economic for a range of tasks—say as
a complement to other tools in the workbench
of a professional translator. Our re-ranking ap-
proach, with access to rich intermediate represen-
tations, probabilities, and confidence measures,
provides a fertile environment for experimenta-
tion on confidence-centricMT. Applying thresh-
olding techniques on the probability distribution
of the re-ranking model, for example, we plan
to experimentally determine how much transla-
tion quality can be gained by making the can-
didate selection more restrictive. Alternatively,
one can imagine applying yet another model to
this task, a classifier deciding on which candidate
translations constitute worthy outputs, and which
are best suppressed.

The availability of off-the-shelfSMT tools has
greatly contributed to re-energized interest and
progress inMT in the recent past. We believe
that advances in hybridMT would equally benefit
from a repository of general-purpose, easy-to-use
linguistic resources. Except for the proprietary
XLE, all LOGON results—treebanks, grammars,
and software—are available for public download.

References
Carroll, J., & Oepen, S. (2005). High-efficiency realization

for a wide-coverage unification grammar. In R. Dale &
K. F. Wong (Eds.),Proceedings of the 2nd International
Joint Conference on Natural Language Processing(Vol.
3651, pp. 165 – 176). Jeju, Korea: Springer.

Carter, D. (1997). The TreeBanker. A tool for supervised
training of parsed corpora. InProceedings of the Work-
shop on Computational Environments for Grammar De-
velopment and Linguistic Engineering.Madrid, Spain.

Clarkson, P., & Rosenfeld, R. (1997). Statistical language
modeling using the CMU-Cambridge Toolkit. InPro-
ceedings of EuroSpeech.Rhodes, Greece.

Copestake, A., Flickinger, D., Pollard, C., & Sag, I. A.
(2005). Minimal Recursion Semantics. An introduction.

152



Journal of Research on Language and Computation, 3(4),
281 – 332.

Flickinger, D. (2000). On building a more efficient grammar
by exploiting types. Natural Language Engineering, 6
(1), 15 – 28.

Forsbom, E. (2003). Training a super model look-alike:
Featuring edit distance, n-gram occurrence, and one ref-
erence translation. InProceedings of the workshop on
machine translation evaluation: Towards systemizing MT
evaluation, held in conjunction with MT SUMMIT IX.
New Orleans, USA.

Johnson, M., Geman, S., Canon, S., Chi, Z., & Riezler,
S. (1999). Estimators for stochastic ‘unification-based’
grammars. InProceedings of the 37th Meeting of the As-
sociation for Computational Linguistics(pp. 535 – 541).
College Park, MD.

Kay, M. (1980). The proper place of men and machines in
translation(Technical Report # CSL-80-11). Palo Alto,
CA: Xerox Palo Alto Research Center.

Kay, M. (1997). It’s still the proper place.Machine Trans-
lation, 12(1 - 2), 35 – 38.

Koehn, P. (2004). Pharaoh. A beam search decoder for
phrase-based statistical machine translation models. In
Proceedings of the 6th Conference of the Association
for Machine Translation in the Americas(pp. 115 – 124).
Washington DC.

Langkilde, I., & Knight, K. (1998). The practical value of
n-grams in generation. InProceedings of the 9th Interna-
tional Workshop on Natural Language Generation(pp.
248 – 255). Ontario, Canada.

Llitjós, A. F., & Vogel, S. (2007). A walk on the other side.
Adding statistical components to a transfer-based trans-
lation system. InProceedings of the HLT-NAACL work-
shop on Syntax and Structure in Statistical Translation.
Rochester, NY.

Malouf, R. (2002). A comparison of algorithms for maxi-
mum entropy parameter estimation. InProceedings of the
6th Conference on Natural Language Learning.Taipei,
Taiwan.

Och, F. J. (2003). Minimum error rate training in statistical
machine translation. InProceedings of the 41st Meet-
ing of the Association for Computational Linguistics(pp.
160 – 167). Sapporo, Japan.

Och, F. J., & Ney, H. (2002). Discriminative training and
Maximum Entropy models for statistical machine trans-
lation. In Proceedings of the 40th Meeting of the As-
sociation for Computational Linguistics(pp. 295 – 302).
Philadelphia, PA.

Oepen, S., Dyvik, H., Flickinger, D., Lønning, J. T., Meurer,
P., & Rosén, V. (2005). Holistic regression testing for
high-quality MT. Some methodological and technologi-
cal reflections. InProceedings of the 10th Annual Con-
ference of the European Association for Machine Trans-
lation. Budapest, Hungary.

Oepen, S., Dyvik, H., Lønning, J. T., Velldal, E., Beer-
mann, D., Carroll, J., Flickinger, D., Hellan, L., Johan-
nessen, J. B., Meurer, P., Nordgård, T., & Rosén, V.
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