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{felipe,patryale,gottif }@iro.umontreal.ca

Abstract

Most phrase-based statistical machine
translation decoders rely on a dynamic
programming technique for maximiz-
ing a combination of models, includ-
ing one or several language models
and translation tables. One implica-
tion of this choice is the design of
a scoring function that can be com-
puted incrementally on partial transla-
tions, a restriction a search engine using
a complete-state formulation does not
have. In this paper, we present exper-
iments we conducted with a simple, yet
effective greedy search engine. In par-
ticular, we show that when seeded with
the translations produced by a state-
of-the-art beam search decoder, it pro-
duces an output of significantly higher
quality than the latter taken alone, as
measured by automatic metrics.

1 Introduction

At the beginning of Statistical Machine Trans-
lation (SMT), efforts were made to design ef-
ficient machine decoders for word-based mod-
els (Tillmann et al., 1997; Wang and Waibel,
1997; Niessen et al., 1998; Garcı́a and Casacu-
berta, 2001). As phrase-based models gained in
popularity (Koehn et al., 2003), specific phrase-
based decoders were released, such asPharaoh 1

1Moses, available athttp://www.statmt.org/
moses/ gracefully replacesPharaoh .

(Koehn, 2004) and some open-source alterna-
tives, among whichRamses (Patry et al., 2006)
andPhramer (Olteanu et al., 2006).

All these decoders share one common property:
they rely on a scoring function that is incremen-
tal, in order to allow an efficient organization of
the computations by dynamic programming (DP).
For the kind of models we typically consider in
SMT (word- or phrase-based), this is just fine, but
one can easily think of models for which such a
property is inappropriate.

One notable exception to the dynamic pro-
gramming approach is theReWrite decoder
(Germann et al., 2001). It is a greedy decoder
that iteratively tries to improve a current transla-
tion by modifying some of its elements accord-
ing to some predefined operations. At each iter-
ation, the best hypothesis found up to that point
is kept and used for the next iteration, until con-
vergence is obtained, which typically happens af-
ter a few iterations. A time-efficient refinement
of this decoder has been described in (Germann,
2003). However, Foster et al. (2003) did report
that this decoder produces translations of lower
quality than those produced by a DP-decoder.

To our knowledge, there has been no investi-
gation on a greedy decoder designed to maximize
the log-linear combination of models traditionally
embedded in a phrase-based SMT system. This
paper aims at filling this gap.

We show that our implementation, although
not as good as a state-of-the-art beam search
DP-engine, is not far off. More interestingly,
we report experiments on theEuroparl corpus
where the greedy search algorithm significantly
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improves the best translation produced by a DP-
based decoder. Last, we demonstrate the flexibil-
ity of the approach by adding a reversed language
model to the set of models consulted to score a
translation.

The paper is organized as follows. We first de-
scribe our greedy search algorithm in Section 2.
The experimental setup as well as the reference
beam search DP-engine we used are described
in Section 3. In Section 4, we report experi-
ments comparing our greedy implementation with
a state-of-the-art phase-based DP-search engine.
We conclude our work in Section 5.

2 The greedy search engine

The strategy ofReWrite , as described in (Ger-
mann et al., 2001) is one of the simplest form of
local search algorithms: a hill-climbing search. It
uses a complete-state formulation, which means
that it searches over the space of possible trans-
lations; while a typical beam search DP-decoder
will typically explore the space of prefixes of all
possible translations. Usually, a local search oper-
ates on a single state, which in our case defines the
current translation and allows to move to neigh-
boring states according to some predefined oper-
ations.

This local search strategy has three interest-
ing characteristics. First, it requires a constant
amount of memory, whereas a DP search requires
an amount at the very least linear in the source
sentence length. Second, it has been reported
that local search algorithms indeed often propose
a reasonable solution in combinatorial problems
(Russell and Norvig, 1995). Third, the function
we seek to optimize does not have to evaluate par-
tial translations, a point we develop later on.

On the down side, the greedy search algorithm
is obviously not optimal. In some situations, in-
cluding ours, this is a risk we are willing to take.

The greedy search, which is sketched in Fig-
ure 1, depends on the definition of three func-
tions: one that seeds the search with a cur-
rent state (seed ), a scoring function (score ),
which takes a candidate translation as an argu-
ment and that we seek to maximize, and a func-
tion (neighborhood ), which returns a set of
neighboring hypotheses to consider at each iter-
ation.

Require: source a sentence to translate
current← seed (source)
loop

s current← score (current)
s← s current
for all h ∈ neighborhood (current) do

c← score (h)
if c > s then

s← c
best← h

if s = s current then
return current

else
current← best

Figure 1: Core of the greedy search algorithm.

2.1 The scoring function

In this study, we seek to maximize a log-linear
combination of models typically used in state-of-
the-art phrase-based DP-engines. In particular,
in the first experiments we report, we maximize
the very same function thatPharaoh maximizes
and which is reported in Equation 1:

Score(e, f) = λlm log plm(f) +∑
i λ

(i)
tm log p

(i)
tm(f |e) −

λw |f | −
λd pd(e, f)

(1)
where theλs are the weighting coefficients,plm

is a language model,pi
tm are different transfer ta-

bles (that share the same parameters in our exper-
iments),|f | stands for the length of the translation
(counted in words), andpd(e, f) is a so-called dis-
tortion model (we used the simple one described
in (Koehn et al., 2003)).

2.2 The neighborhood function

By inspecting translations produced by
Pharaoh , we defined a set of six opera-
tions that can transform a current translation.
This is by no means an exhaustive set, and exten-
sions will be considered in future investigations.
In particular, we do not yet allow words (or
phrases) to be inserted or deleted, two operations
that are used by theReWrite decoder (Germann
et al., 2001).

105



...

have begun the process luck to catch up with those who have begun later have a sooner .

ayant de rattraper ceux qui ont commencéle processus ont une bonne chanceentamé plus tard plus tot.

have begun the process later have a luck those who haveto catch up with begun sooner .

(−38.47)

(−36.24)

...

...

Figure 2: Illustration of an ill-formed translation produced byPharaoh (second line) for an excerpt
of a French sentence (first line). The third line shows the translation produced byfeGreedy after one
iteration.

Move The beam search DP-decoder tends to
eliminate from the search space hypotheses that
cover hard-to-translate segments. Since the de-
coder is forced to translate all the source mate-
rial, it is often the case that the translation of those
hard-to-translate segments is postponed until the
very end of the search, typically producing ill-
formed translations (see Figure 2). To overcome
this situation to some extent, we allow some target
phrases to move within the current translation.

Our implementation is very conservative:
whenever two adjacent source phrases are trans-
lated by phrases that are distant,2 we consider
moving one of the translation closer to the other.

Swap It happens rather frequently that two ad-
jacent source segments (words or phrases) do not
form a phrase that belongs to the transfer table.
The order in which their respective translations
will be output will be strongly influenced by the
compromise between the possible inversions the
language model allows and the strong bias toward
monotonous translations the distortion model has.
For this reason, we defined an operation which al-
lows to swap two adjacent target segments. The
complexity of this operation3 is O(N − 1), that
is, linear in the numberN of source phrases in
the current hypothesis.

Replace This operation simply allows to
change the translation given for a specific source
segment by another one found in the transfer
table. This operation has a complexity of
O(N × T ), whereT is the maximum number of

2As defined by a threshold value counted in words. We
used 3 in our experiments.

3We measure complexity here in terms of the maximum
number of hypotheses that will be considered, given a cur-
rent one.

translations considered per source phrase.4

Bi-replace With the same idea in mind, we al-
low the translation of two adjacent source phrases
to change simultaneously. We hope that by
changing more than one unit, the search will
likely escape a local maximum. The complex-
ity of this operation isO(T 2 × (N − 1)), that is,
quadratic in the number of translations considered
per source phrase.

Split One task a beam search DP-decoder
handles—most of the time implicitly—is the seg-
mentation of the source material into phrases. We
allow our decoder to split in two parts a given
source phrase. While doing so, the two new
source phrases receive a translation found in the
transfer table (we consider all of them). The com-
plexity of this operation isO(N×S×T 2), where
S is the (average) number of words a source
phrase has in the current hypothesis.

Merge As opposed to thesplit operation,
the merge operation allows two adjacent source
phrases to be merged, in which case a new transla-
tion is also picked from the translation table. This
operation isO(T × (N − 1)).

2.3 The seed translation

2.3.1 From scratch

In ReWrite , the seed translation is formed
by collecting for each word its best translation as
provided by the transfer table. This is the idea
we implemented as well. There is one subtlety
however, when we deal with phrases: a segmen-
tation of the source sentenceS into phrases must

4A typical value ofT in our experiments is 10.
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be performed. Since many source phrases over-
lap, there are many a priori segmentations we can
choose from. In our case, we select the segmen-
tation which involves the minimum number of
source phrases belonging to the translation model
M that cover maximally the source sentenceS.

To do so, it suffices to considerM as a set
of spans〈i, j〉 denoting the fact that a source
phrase inM covers the positionsi to j (counted
in words) inS. We define an itemτs as a triple
〈b, c, n〉which respectively storesb, the beginning
of a span〈b, s〉 ending in positions; c, the number
of source words covered so far, andn, the number
of source phrases used to coverS up to position
s. Intuitively, an itemτs stores the best cover-
age found so far from the beginning of the source
sentence to positions, along with the number of
source phrases used so far.

We compute the itemτ|S| by the recursion de-
scribed in Equation 2, where we define for an item
τ ≡ 〈b, c, n〉, the operatorsb(τ), c(τ) andn(τ) to
be respectivelyb, c andn.

τs =

max



〈0, 0, 0〉,

max
d ≤ s :
〈d, s〉 ∈ M


〈d,
c(τd) + s− d + 1,
n(τd) + 1 〉



(2)

The maximizations involved in Equation 2 are
carried out over a set of items. We use the follow-
ing operator to compare two items:

max{τ1, τ2} = τ2 if

{
c(τ1) < c(τ2) or
c(τ1) = c(τ2) andn(τ1) > n(τ2)

τ1 otherwise
(3)

The coverage is obtained by simply backtrack-
ing from itemτ|S|, that is, by computing the set
βτ|S|:

βτe =

{
φ if e ≡ 0
{〈b(τe), e〉} ∪ β(τδ(e)) otherwise

with δ(e) = argmaxb<e c(τb) 6= 0
(4)

The recursion involved in this computation
lends itself to an efficient computation by dy-
namic programming. Once the source segmen-
tation is found, we simply pick for each source
phrase the best translation found inM. An il-
lustration of the segmentation obtained for a short
source sentence is provided in Figure 3.

2.3.2 SeedingfeGreedy with Pharaoh

It is likely that a DP-search will outper-
form our greedy implementation, hereafter named
feGreedy . Therefore, it is natural to investigate
whether any benefit would result from seeding
feGreedy with the best translation produced by
Pharaoh .5

The idea of cascading two translation en-
gines has been pioneered within the word-
based Candide translation system (Berger et al.,
1994). Unfortunately, the authors did not de-
scribe their local search engine, neither did they
provide an evaluation of its benefits to the over-
all system. The cascading strategy received a
more dedicated treatment in Marcu (2001) and
Watanabe and Sumita (2003). In their work, the
authors were seeding a word-based greedy search
algorithm with examples extracted from a trans-
lation memory hoping to bias the search toward a
better solution. Our motivation is slightly differ-
ent however: we simply want to know whether the
greedy strategy can overcome some search errors
made by a phrase-based DP-search.

3 Experimental setup

3.1 Corpora

We concentrated our efforts on the shared task
of last year’s workshop on Statistical Machine
Translation (Koehn and Monz, 2006) which con-
sisted in translating Spanish, German and French
texts into English and the reverse direction. The
training material available is coming from the Eu-
roparl corpus. Four disjoint corpora were released
during this exercise, namelytrain , a portion
of 688,031, 730,740 and 751,088 pairs of sen-
tences for French, Spanish and German respec-
tively; dev , a development corpus that we used
for tuning;devtest , a corpus of 2,000 pairs of

5We used the--trace option of Pharaoh to access
the phrasal alignment corresponding to the best translation
found.
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F de plus , nos systèmes administratifs doiventêtre moderniśes . nous devonśegalement donner
le bon exemple .

E in addition , our administrative systems must be modernised , and it is our duty to lead by
example .

S0 [de plus ,] [nos systèmes administratifs] [doivent] [être moderniśes] [. nous devonśegalement]
[donner le bon exemple .]

T0 [furthermore ,] [our administrative systems] [must] [modernization] [and we also need] [set a
good example .] -19.5068

S1 [de plus ,] [nos systèmes administratifs] [doivent] [être moderniśes] [.] [nous devons
également][donner le bon exemple .]

T1 [furthermore ,] [our administrative systems] [must] [modernization][.] [we must also] [set a
good example .] SPLIT -17.4382

S2 [de plus ,] [nos systèmes administratifs] [doivent][être] [modernisés] [.] [nous devons
également] [donner le bon exemple .]

T2 [furthermore ,] [our administrative systems] [must][be] [modernized] [.] [we must also] [set
a good example .] SPLIT -15.8488

S3 [de plus ,] [nos systèmes administratifs] [doivent] [être] [moderniśes] [.] [nous devons
également][donner] [le bon exemple .]

T3 [furthermore ,] [our administrative systems] [must] [be] [modernized] [.] [we must also][give]
[a good example .] SPLIT -15.5885

S4 [de plus ,] [nos syst̀emes administratifs] [doivent] [être] [moderniśes] [.] [nous devons
également] [donner] [le bon exemple .]

T4 [in addition ,] [our administrative systems] [must] [be] [modernized] [.] [we must also] [give]
[a good example .] REPLACE -15.5199

Figure 3: Steps involved by the translation of a French sentence (F); E is its reference translation. A
segmentation (S0) is first chosen from the 49 different source phrases that cover partially F.T0 is the
associated seed translation. The phrases in bold are those involved in the highest-scored operation at
each iteration. Over 4,100 hypotheses have been evaluated within a time period of 300 milliseconds.

sentences that we used for monitoring our system;
andtest , the official test set of the 2006 shared
task, that we used only for final tests. We further
split the test corpus in two parts,test-in ,
the in-domain part which consists of 2,000 sen-
tences from the European parliament debates, and
test-out , which counts 1,034 sentences6 col-
lected from editorials of the Project Syndicate
website.

3.2 Phrase-based engine

The reference system we used for comparison
purposes is the state-of-the-art phrase-based en-
gine which was made available by the organizers
of the shared task. The language model (a tri-
gram) was trained using the SRILM toolkit (Stol-

6We removed 30 sentences with encoding problems.

cke, 2002), and the translation tables (phrases up
to 7 words long) were obtained by running the
scripts provided. These tables contain 4 scores
(relative frequencies and lexical scores in both
direction) that each receives a weighting coef-
ficient. A fifth score is intended to serve as a
phrase penalty model. ThePharaoh built-in
distortion model and a word penalty component
receive as well a weighting coefficient. Alto-
gether, 8 coefficients were tuned using the script
minimum-error-rate-training.perl .

For most of our experiments, the threshold val-
ues thatPharaoh uses were left to their built-in
defaults. This is the version of our DP-system that
we callBASE from now on.
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en→L L→en
Systems L WER BLEU WER BLEU

BASE fr 55.12 30.16 51.47 29.23
G-S fr 57.38 24.23 53.99 24.52
G-BASE fr 53.62 30.64 50.37 29.62
BASE es 55.04 28.17 50.97 29.94
G-S es 56.86 22.77 53.66 24.80
G-BASE es 53.14 28.72 50.04 30.30
BASE de 62.38 17.32 60.12 24.54
G-S de 66.13 13.34 59.90 19.23
G-BASE de 61.85 17.51 58.33 24.97

Table 1: Performances of different search algo-
rithms measured on thedevtest corpus, as a
function of the translation direction. The fig-
ures in bold are significantly better than the cor-
respondingBASE configuration at the 99% confi-
dence level.

4 Experiments

4.1 feGreedy with or without Pharaoh

We first comparedfeGreedy with BASE by run-
ning both decoders, with the same function to
maximize (see Equation 1). In one version of
the greedy search,G-S, the search was initiated
from scratch (see Section 2.3.1). In a second
version,G-BASE, the search was seeded with the
best translation produced byPharaoh (see Sec-
tion 2.3.2). The results are reported in Table 1.

Expectedly, for all translation directions, the
greedy search algorithm alone provides transla-
tions of significantly lower quality than the DP-
search. This is consistent with the observations
made by (Foster et al., 2003) in word-based trans-
lation experiments. However, we observe that the
greedy search improves upon the best translation
that BASE found. This seems to be consistent for
all translation directions and for both evaluation
metrics considered. For all translation directions
except German-to-English, the improvements are
significant at the 99% confidence level.7

In order to better appreciate the situation, we
report in Table 2 more specific information on
what the greedy search accomplishes. We restrict

7In all our experiments, we used the bootstrap resampling
method described in (Zhang and Vogel, 2004) to compute
significance levels, evaluating 1,000 samplings of 700 sen-
tences each.

ourselves to translating into English, since this
corresponds to the most studied translation direc-
tion in the SMT literature, and we did not notice
clear differences in the reverse direction.

First of all, we observe that roughly 40% of
the translations produced byBASE get improved
in score (Equation1) byfeGreedy . We were
expecting a much lower improvement propor-
tion. One explanation for that might be the
stack-size limitPharaoh considers as a default
(100). Keeping the first hundred best hypothe-
ses for each source coverage (i.e. the number
of source words covered by a given hypothesis)
might bias the search toward locally optimal hy-
potheses. More expectedly, however, we observe
that more than 90% of the seed translations com-
puted by the technique described in Section 2.3.1
get improved byfeGreedy .

Regarding the selected operations at each itera-
tion, roughly 40% of them are replacement ones,
that is, the replacement of one translation by an-
other one. Themove operation also highly bene-
ficial. The fact that more than 15% of the winning
operations inG-BASE are split operations might
appear surprising at first. Recall that this oper-
ation comes along with a possible change in the
target material and is therefore not just a mat-
ter of segmenting differently the source material.
We also observe that some operations are only
marginally useful. This is the case ofmerge and
swap. The fact that theswap operation is not
productive just indicates that the phrase table is
already doing a good job at capturing local word-
order differences. We do not have yet a clear ex-
planation for the low impact of themerge oper-
ation.

Last, we can see from Table 2 that the distri-
bution of the number of iterations required byG-
BASE andG-S are very different. The former con-
figuration requires only a few iterations to con-
verge: at most 2 iterations in approximatively
70% of the cases. For the latter, only more than
half of the translations are completed after 4 itera-
tions. Both versions require less than 10 iterations
on average to produce a translation.

It is worthwhile to note that, although we did
not yet pay attention to translation speed within
our current implementation,8 feGreedy defi-

8It is a simple matter to improve the speed of
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fr→en es→en de→en
G-B G-S G-B G-S G-B G-S

%up 42.6 93.5 37.1 90.8 42 95.8
↑ log-s 3.6 2.9 2.7 1.7 1.8 2.9
%it. < 2 44.6 13.5 50.7 13.8 43.1 6.5
%it. < 3 66.2 29.7 74.4 31.6 65.7 17.2
%it. < 5 90.8 59.7 93.3 65.7 91.7 45.0
%it. < 10 98.8 95.0 100.0 97.8100.0 87.5
MOVE 42.2 – 44.0 – 42.1 –
REPLACE 41.3 45.1 38.3 45.3 37.7 51.7
SPLIT 14.9 52.8 16.3 52.4 18.6 46.5
MERGE 0.9 1.7 0.8 1.8 1.0 1.1
SWAP 0.5 0.2 0.2 0.2 0.3 0.5

Table 2: Profile of two variants offeGreedy on
thedevtest corpus. G-B is a shorthand forG-
BASE. %up stands for the percentage of sentences
that get improved by the greedy search.↑ log-s
indicates the average gain in score (Equation 1).
it. < n indicates the percentage of sentences im-
proved for which less thann iterations were re-
quired. The bottom part of the table indicates the
percentage of operations that ranked best at an it-
eration of the greedy search.

nitely compares favorably toBASE in that re-
spect. Currently, translating the 1,000 sentences
of devtest on a Pentium computer clocked at
3 GHz requires 9 minutes withfeGreedy , com-
pared to 78 minutes withBASE.

4.2 Further experimenting with feGreedy

In the previous section, we conducted a pair-
wise comparison offeGreedy with our refer-
ence system, by providing the greedy decoder the
same functionPharaoh is maximizing. In this
section, we report experiments we conducted in
order to improvefeGreedy . Our starting point
is the configuration of the greedy search seeded
with the best translation produced byBASE.

4.2.1 Adding new features

One strength of the greedy search is that it op-
erates on a full candidate translation. This allows
us to optimize a scoring function which is not

feGreedy , since in our current implementation, any op-
eration applied to a hypothesis triggers the computation of
its score from scratch, while some straightforward book-
keeping would eliminate most of the computations.

en→L L→en
Systems L WER BLEU WER BLEU

BASE fr 55.12 30.16 51.47 29.23
G-BASE fr 53.62 30.64 50.37 29.62
G-REV fr 53.65 30.85 50.30 29.70
BASE es 55.04 28.17 50.97 29.94
G-BASE es 53.14 28.72 50.04 30.30
G-REV es 52.37 29.31 50.05 30.33
BASE de 62.38 17.32 60.12 24.54
G-BASE de 61.85 17.51 58.33 24.97
G-REV de 61.85 17.57 57.99 25.20

Table 3: Performances of theG-REV variant for
different translation directions, measured on the
devtest corpus.

necessarily incremental. To illustrate this added
flexibility, we added a reversed n-gram language
model to the set of models of the scoring function
maximized byPharaoh . We call this variantG-
REV.

A reversed n-gram model simply predicts each
word of the translation from right to left, as de-
scribed in Equation 5. At first glance, this might
seem like an odd thing to do, since there is prob-
ably not much information a decoder can gain
from this model. Yet, this is one of the simplest
models imaginable, which could not be easily in-
tegrated into a DP-decoder such asPharaoh ,
since the suffix of a hypothesis is unknown dur-
ing the search.

p(tT1 ) ≈
T∏

i=1

p(ti|ti+1 . . . ti+n−1) (5)

Because we added a new model to the linear
combination optimized byfeGreedy , we had to
tune the coefficients involved once more. To save
some computation time, however, we did not ex-
plore the full range of values for each coefficient,
but concentrated on values close enough to those
we had already found. The results of this experi-
ment are reported in Table 3.

For all translation directions but Spanish-to-
English, the gain in performance, as measured by
WER, are very small if not negative. However, im-
provements inBLEU, although mostly not signifi-
cant, are consistent for all translation directions.
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4.2.2 A beam-search version offeGreedy

As we already noted, one advantage of the
greedy search is that it requires a set amount of
memory, since it does not build a search graph
like DP-search engines do (e.g.Pharaoh ). This
is an interesting advantage, but keeping only a
single-best current translation is somehow too
heavy-handed a response to the memory problem.
Therefore, in this experiment, we tested a variant
of the greedy search, technically known as local
beam search (Russell and Norvig, 1995). In this
greedy search, a beam of at mostk best hypothe-
ses are kept at each iteration. The search tries to
improve on each of them, until no improvement
can be found. We call this versionG-BEAM.

We populate the beam withk seed hypotheses.
One is the best translation proposed byBASE, as
described in section 2.3.2. Thek − 1 others are
derived from the source coverage we compute, as
described in Section 2.3.1. To form the ith seed
translation, we select the ith-best translation of
each source phrase, as found in the transfer table.
Obviously, they are many other ways we could
proceed to producek seed translations, including
considering thek-first hypotheses produced by
BASE. An example of seed translations produced
for one short sentence is reported in Figure 4. In
this example, as is often the case, the seed hypoth-
esis proposed byBASE is ranked higher than the
one computed from scratch.

No improvement inBLEU andWER have been
observed over the 1-best greedy search seeded
with Pharaoh (G-BASE). This is disappointing,
but not entirely surprising, sinceBASE already
does a good job, and thatG-BASE further im-
proved on it. What is more interesting, however,
is that the beam version of our greedy search man-
aged to find higher-scored translations (according
to Equation 1) thanG-BASE does. On one hand,
this is satisfactory from a search point of view. On
the other hand, it is disturbing to note that search
errors are at some point beneficial! The adequacy
of the evaluation metrics we considered might be
one reason for this observation. However, we be-
lieve that the problem is more likely due to severe
(well-known) shortcomings of the scoring func-
tion we seek to maximize, including its blindness
to syntactical quality.

Averaged across all translation directions,

cette question est , bien sûr , parfaitement
légitime , mais il faut y ŕepondre de façon cor-
recte et pŕecise . (source sentence)
� this question is , of course , perfectly legit-
imate , but it must be answered properly and
carefully. (Pharaoh , -16.11)
� subject is of course , perfectly legitimate ,
but we must respond to properly and carefully.
(scratch-1,-18.22)
� subject is of course fully justified , but it must
be answered properly and carefully. (scratch-3,
-20.58)
� subject is of course perfectly quite legitimate ,
but it must be answered properly and carefully.
(scratch-2,-21.57)

Figure 4: 4 seed translations computed for the
source (French) sentence at the top along with
their score.scratch-nstands for a seed translation
computed from scratch, picking for each source
phrase belonging to the coverage, thenth transla-
tion found in the transfer table.

roughly 20% of the translations produced byG-
BEAM are different from those produced byG-
BASE. Among these modified translations, 87%
have a higher score (Equation 1). The fact that
for some sentences,G-BEAM missed an optimum
found byG-BASE is simply due to the greediness
of the search along with a limited beam size. We
observed that by increasing the beam size, the
number of downgraded translations produced by
G-BEAM decreases. By simply choosing the best-
scored translation produced by eitherG-BASE or
G-BEAM, we did not manage to improve signifi-
cantlyBLEU andWER figures.

4.2.3 Final tests

We conclude our exploration offeGreedy
by running on thetest corpus the most salient
versions we tested on the development corpus:
BASE, the Pharaoh DP-decoder,G-BASE, the
greedy search engine seeded with the best transla-
tion BASE found,G-BEAM-5, the local beam vari-
ant of feGreedy , with a beam size of 5, andG-
REV, the greedy variant using a reversed language
model.

Results are reported in Table 4 and 5 for
the in- and out-domain test material respectively.
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en→L L→en
Systems L WER BLEU WER BLEU

BASE fr 54.85 30.90 51.69 29.96
G-BASE fr 53.38 31.42 50.46 30.27
G-BEAM-5 fr 53.46 31.26 50.40 30.13
G+B5 fr 53.43 31.28 50.36 30.17
G-REV fr 53.49 31.52 50.48 30.25
BASE es 54.23 29.64 51.04 30.54
G-BASE es 52.77 30.14 50.02 30.87
G-BEAM-5 es 52.61 30.24 50.12 30.89
G+B5 es 52.61 30.25 50.11 30.93
G-REV es 52.67 29.79 50.07 30.84
BASE de 62.32 17.68 60.54 24.45
G-BASE de 61.73 17.88 58.85 24.66
G-BEAM-5 de 61.98 17.82 57.62 24.59
G+B5 de 61.95 17.84 57.62 24.58
G-REV de 61.77 17.89 58.48 24.82

Table 4: Performances of different search algo-
rithms measured on thetest-in corpus. Fig-
ures in bold are significantly better than their
BASE counterpart at the 99% confidence level.

First, we observe that the greedy variantG-BASE

outperforms theBASE algorithm, for both in-
and out-domain. The improvements inWER

andBLEU are significant (at the 99% confidence
level) for all translation directions, but German-
to-English. This is consistent with our previous
experiments on the development corpus.

Second, the beam version offeGreedy , al-
though significantly better thanBASE in most
cases, performs usually marginally worse than
the correspondingG-BASE variant. The obser-
vation we made on the development corpus still
holds: the beam variant of the search manages to
find translations that are better scored by Equa-
tion 1. On the out-domain (resp. in-domain) cor-
pus, 34% (resp. 17%) of the translations pro-
duced byG-BEAM-5 did improve in score com-
pared with theirG-BASE counterpart. Less than
4% (resp. 3%) received a lower score. The fact
that, on the out-domain corpus, twice as many
translations receive an higher score with the beam
version is encouraging, even if it does not clearly
pay off in terms of evaluation metrics.

Picking the highest-scored translation (Equa-
tion 1) proposed by eitherG-BASE or G-BEAM-

en→L L→en
Systems L WER BLEU WER BLEU

BASE fr 60.29 22.31 56.66 20.78
G-BASE fr 57.80 23.44 54.70 21.38
G-BEAM-5 fr 57.68 22.91 54.44 21.28
G+B5 fr 57.61 23.03 54.43 21.33
G-REV fr 58.12 23.25 54.66 21.37
BASE es 57.07 24.20 51.11 25.17
G-BASE es 54.83 25.09 49.77 25.59
G-BEAM-5 es 54.16 24.91 49.74 25.74
G+B5 es 54.11 24.95 49.72 25.69
G-REV es 53.46 26.33 49.80 25.64
BASE de 67.09 11.00 65.62 16.00
G-BASE de 65.79 11.49 63.51 16.38
G-BEAM-5 de 66.12 11.24 61.54 16.72
G+B5 de 66.10 11.33 61.53 16.74
G-REV de 65.93 11.40 62.96 16.38

Table 5: Performances of different search algo-
rithms measured on thetest-out corpus. Fig-
ures in bold are significantly better than their
BASE counterpart at the 99% confidence level.

5 slightly improves upon theG-BEAM-5 variant
for almost all translation directions, but the gain
is not significant. The corresponding figures are
reported as theG+B5 variant in Tables 4 and 5.

5 Conclusions

In this study, we addressed the problem of
searching the space of possible translations with
a greedy search algorithm designed to maxi-
mize the log-linear function many state-of-the-
art phrase-based systems use. We discussed
some advantages of search algorithms working
on a complete-state representation as our greedy
search does. We conducted experiments show-
ing that it could improve the best translation
found by the more demanding multi-stack beam-
search dynamic-programming algorithm embed-
ded in decoders such asPharaoh or Ramses.

Perhaps the main contribution of this study is to
point out the potential such an easy search algo-
rithm has over more demanding decoders. Until
now, this was an idea that had not received much
attention in the phrase-based SMT community.

We plan to extend this work in several direc-
tions. Actually, one initial motivation for this

112



study was to explore post-processing operations
that could apply to the output of a translation
engine, in order to recover systematic errors, in
a way inspired by transformation-based learning
(Brill, 1995). On step toward accomplishing this
consists in increasing the number of operations
that our greedy search can perform, associating
with each of them a coefficient that we can ad-
just on a development corpus. This is the idea we
want to explore further.

We also want to cast our greedy decoder within
the open-source framework calledMood, whose
principle is to offer decoders that are easy to mod-
ify and extend. Therefore, our goal will be to re-
lease a reengineered version offeGreedy .
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