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Abstract

Most phrase-based statistical machine
translation decoders rely on a dynamic
programming technique for maximiz-

ing a combination of models, includ-

ing one or several language models
and translation tables. One implica-
tion of this choice is the design of

a scoring function that can be com-
puted incrementally on partial transla-
tions, a restriction a search engine using
a complete-state formulation does not
have. In this paper, we present exper-
iments we conducted with a simple, yet
effective greedy search engine. In par-
ticular, we show that when seeded with
the translations produced by a state-
of-the-art beam search decoder, it pro-
duces an output of significantly higher

quality than the latter taken alone, as
measured by automatic metrics.

Introduction

}@iro.umontreal.ca

(Koehn, 2004) and some open-source alterna-
tives, among whictlRamses (Patry et al., 2006)
andPhramer (Olteanu et al., 2006).

All these decoders share one common property:
they rely on a scoring function that is incremen-
tal, in order to allow an efficient organization of
the computations by dynamic programming (DP).
For the kind of models we typically consider in
SMT (word- or phrase-based), this is just fine, but
one can easily think of models for which such a
property is inappropriate.

One notable exception to the dynamic pro-
gramming approach is th®eWrite decoder
(Germann et al., 2001). It is a greedy decoder
that iteratively tries to improve a current transla-
tion by modifying some of its elements accord-
ing to some predefined operations. At each iter-
ation, the best hypothesis found up to that point
is kept and used for the next iteration, until con-
vergence is obtained, which typically happens af-
ter a few iterations. A time-efficient refinement
of this decoder has been described in (Germann,
2003). However, Foster et al. (2003) did report
that this decoder produces translations of lower
quality than those produced by a DP-decoder.

To our knowledge, there has been no investi-

lation (SMT), efforts were made to design ef-gation on a greedy decoder designed to maximize
ficient machine decoders for word-based modthe log-linear combination of models traditionally
els (Tillmann et al., 1997; Wang and Waibel, embedded in a phrase-based SMT system. This
1997; Niessen et al., 1998; Gaacand Casacu- paper aims at filling this gap.

berta, 2001). As phrase-based models gained in \we show that our implementation, although

popularity (Koehn et al., 2003), specific phrasenot as good as a state-of-the-art beam search
based decoders were released, suéasaoh *

IMoses, available athttp://www.statmt.org/
moses/ gracefully replace®haraoh .

DP-engine, is not far off. More interestingly,
we report experiments on th&uroparl  corpus
where the greedy search algorithm significantly
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improves the best translation produced by a DPRequire: source a sentence to translate
based decoder. Last, we demonstrate the flexibil- current < seed (source)

ity of the approach by adding a reversed language 00P

model to the set of models consulted to score a  S-current < score (current)

translation. s « s-current
The paper is organized as follows. We first de- ~ forall i € neighborhood  (current) do
scribe our greedy search algorithm in Section 2. ¢ «score (h)
The experimental setup as well as the reference if ¢ > s then
beam search DP-engine we used are described s ¢
in Section 3. In Section 4, we report experi- _ best < h
ments comparing our greedy implementationwith ~ if s = s-current then
a state-of-the-art phase-based DP-search engine. ~ féturn current
We conclude our work in Section 5. else

current < best

2 The greedy search engine

. _ _ Figure 1: Core of the greedy search algorithm.
The strategy oReWrite , as described in (Ger-

mann et al., 2001) is one of the simplest form of _ _
local search algorithms: a hill-climbing search. 1t2.1  The scoring function

uses a complete-state formulation, which meang this study, we seek to maximize a log-linear
that it searches over the space of possible trangombination of models typically used in state-of-
lations; while a typical beam search DP-decodethe-art phrase-based DP-engines. In particular,
will typically explore the space of prefixes of all in the first experiments we report, we maximize

possible translations. Usually, a local search opetthe very same function th&haraoh maximizes
ates on a single state, which in our case defines thgnd which is reported in Equation 1:

current translation and allows to move to neigh-
boring states according to some predefined oper-

ations. SCOT€(€, f) = )\lm logplm(f) +
This local search strategy has three interest- > )\gﬁ,)l log p§;1< fle) —

ing characteristics. First, it requires a constant Ao ] —

amount of memory, whereas a DP search requires Aa pale, f)

an amount at the very least linear in the source (1)

sentence length. Second, it has been reporteghere thels are the weighting coefficients;,,

that local search algorithms indeed often proposés a language modepy,,, are different transfer ta-

a reasonable solution in combinatorial problemsbles (that share the same parameters in our exper-

(Russell and Norvig, 1995). Third, the function iments),| f| stands for the length of the translation

we seek to optimize does not have to evaluate pafcounted in words), angl;(e, f) is a so-called dis-

tial translations, a point we develop later on. tortion model (we used the simple one described
On the down side, the greedy search algorithnmin (Koehn et al., 2003)).

is obviously not optimal. In some situations, in-

cluding ours, this is a risk we are willing to take.
The greedy search, which is sketched in FigBy inspecting translations produced by

ure 1, depends on the definition of three funcPharaoh , we defined a set of six opera-

tions: one that seeds the search with a curtions that can transform a current translation.

rent state geed ), a scoring functiongcore ), This is by no means an exhaustive set, and exten-

which takes a candidate translation as an argusions will be considered in future investigations.

ment and that we seek to maximize, and a funcin particular, we do not yet allow words (or

tion (neighborhood ), which returns a set of phrases) to be inserted or deleted, two operations

neighboring hypotheses to consider at each itethat are used by tHeeWrite decoder (Germann

ation. etal., 2001).

2.2 The neighborhood function
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. ‘ayant ‘ ‘ entamé ‘ ‘le processus ‘ ‘ont une‘ ‘bonne chance ‘ ‘de rattraper‘ ‘Cellx qui Ont‘ ‘commencé ‘ ‘ plus tot.‘

eee | have | [begun| [the process ] [to catch up with | [those who have | |begun] . Iﬁﬁ)

oee ‘have‘ ‘begun‘ ‘theprocess‘

[to catch up with | [those who have | [begun| [sooner.] (-36.24)

Figure 2: lllustration of an ill-formed translation producedPlgaraoh (second line) for an excerpt
of a French sentence (first line). The third line shows the translation produde®bgedy after one
iteration.

Move The beam search DP-decoder tends tdranslations considered per source phrase.
eliminate from the search space hypotheses that
cover hard-to-translate segments. Since the dé&i-replace With the same idea in mind, we al-
coder is forced to translate all the source matelow the translation of two adjacent source phrases
rial, it is often the case that the translation of thosd® change simultaneously. We hope that by
hard-to-translate segments is postponed until thehanging more than one unit, the search will
very end of the search, typically producing ill- likely escape a local maximum. The complex-
formed translations (see Figure 2). To overcomdty Of this operation i<O(T% x (N — 1)), that s,
this situation to some extent, we allow some targeguadratic in the number of translations considered
phrases to move within the current translation. Per source phrase.

Our implementation is very conservative: .
whenever two adjacent source phrases are tran plit One task a beam search DP-decoder

lated by phrases that are distdntye consider an(ilig—mf(iit of the time 'tmp“f!tli/_'ﬁ the se%;/
moving one of the translation closer to the other. mentation ot the source marerialinto phrases. We
allow our decoder to split in two parts a given

Swap It happens rather frequently that two ad-source phrase. While doing so, the two new
jacent source segments (words or phrases) do neburce phrases receive a translation found in the
form a phrase that belongs to the transfer tabletransfer table (we consider all of them). The com-
The order in which their respective translationsplexity of this operation i€ (N x S x T?), where

will be output will be strongly influenced by the S is the (average) number of words a source
compromise between the possible inversions thphrase has in the current hypothesis.

language model allows and the strong bias toward

monotonous translations the distortion model hag\€rge  As opposed to thesplit  operation,
For this reason, we defined an operation which altheé merge operation allows two adjacent source
lows to swap two adjacent target segments. Thehrases to be merged, in which case a new transla-
complexity of this operatichis O(N — 1), that tion is also picked from the translation table. This
is, linear in the numbeN of source phrases in OPerationisO(T" x (N —1)).

the current hypothesis. _
2.3 The seed translation

Replace This opgratlo_n simply allgyvs to 231 From scratch

change the translation given for a specific source

segment by another one found in the transfer In ReWrite s the seed translation is formed

table. This operation has a complexity of Py collecting for each word its best translation as

O(N x T), whereT is the maximum number of provided by the transfer table. This is the idea

e r— _ we implemented as well. There is one subtlety
As _deflned by a threshold value counted in words. Wehowever, when we deal with phrases: a segmen-

used 3 in our experiments. . .
3We measure complexity here in terms of the maximumtation of the source sentengeinto phrases must

number of hypotheses that will be considered, givenacur—__
rent one. A typical value ofT" in our experiments is 10.
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be performed. Since many source phrases over- The recursion involved in this computation
lap, there are many a priori segmentations we calends itself to an efficient computation by dy-
choose from. In our case, we select the segmemamic programming. Once the source segmen-
tation which involves the minimum number of tation is found, we simply pick for each source
source phrases belonging to the translation modgihrase the best translation found M. An il-

M that cover maximally the source sentertte  lustration of the segmentation obtained for a short

To do so, it suffices to considekt as a set source sentence is provided in Figure 3.

of spans (i, j) denoting the fact that a source . .
phraze in/<\/l]c>overs thegpositionistoj (counted 232 SeedingeGreedy with Pharaoh

in words) inS. We define an itenr, as a triple It is likely that a DP-search will outper-
(b, ¢, n) which respectively stords the beginning form our greedy implementation, hereafter named

of a spanb, s) ending in positiors; ¢, the number feGreedy . Therefore, itis natural to investigate
of source words covered so far, angthe number Whether any benefit would result from seeding
of source phrases used to coveup to position feGreedy with the best translation produced by
s. Intuitively, an itemr, stores the best cover- Pharaoh S
age found so far from the beginning of the source The idea of cascading two translation en-
sentence to positios, along with the number of 9inés has been pioneered within the word-
source phrases used so far. based Candide translation system (Berger et al.,
We compute the iterm g by the recursion de- 1994). Unfortunately, the authors did not de-

scribed in Equation 2, where we define for an iterrscribe their local search engine, neither did they
7 = (b, ¢, n), the operators(r), ¢(r) andn(r) to provide an evaluation of its benefits to the over-

all system. The cascading strategy received a
more dedicated treatment in Marcu (2001) and
Watanabe and Sumita (2003). In their work, the

be respectively, c andn.

Ts = authors were seeding a word-based greedy search
(0,0,0), algorithm with examples extracted from a trans-
(d, lation memaory hoping to bias the search toward a
max max co(tq) +s—d+1, better solution. Our motivation is slightly differ-
d<s: n(rg) + 1 ) ent however: we simply want to know whether the
(d,s) e M greedy strategy can overcome some search errors

(2)  made by a phrase-based DP-search.
The maximizations involved in Equation 2 are _
carried out over a set of items. We use the follow-3 Experimental setup

ing operator to compare two items: 3.1 Corpora

We concentrated our efforts on the shared task

max{ry, 7o} = of last year's workshop on Statistical Machine
o) celr) <e(m) or Translation (Koehn and Monz, 2006) which con-

2 c(m1) = ¢(r2) andn(r) >n(r2)  sisted in translating Spanish, German and French

7, otherwise texts into English and the reverse direction. The

(3) training material available is coming from the Eu-
The coverage is obtained by simply backtrack+oparl corpus. Four disjoint corpora were released
ing from itemrg), that is, by computing the set during this exercise, namelyain , a portion
BTs): of 688,031, 730,740 and 751,088 pairs of sen-
tences for French, Spanish and German respec-
tively; dev, a development corpus that we used
3. — { ¢ ife=0 for tuning; devtest , a corpus of 2,000 pairs of
{<b(7—e)’ e>} - B(T‘;(e)) otherwise SWe used the-trace  option of Pharaoh to access

with 6(e) = argmax_,. c(7,) # 0 @ the phrasal alignment corresponding to the best translation
4 found.
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F de plus, nos sysimes administratifs doivetre modernigs . nous devonsgalement donner
le bon exemple .
E in addition , our administrative systems must be modernised , and it is our duty to lead by
example .

So [de plus ] [nos sygimes administratifs] [doiventfre modernigs] [. nous devonggalement]
[donner le bon exemple .]

To [furthermore ,] [our administrative systems] [must] [modernization] [and we also need] [set a
good example .] -19.5068

S1 [de plus ,] [nos systmes administratifs] [doivent]éfre modernigs] [] [nous devons
également][donner le bon exemple .]

Ty [furthermore ,] [our administrative systems] [must] [modernizatiphJwe must also] [set a
good example .] SPLIT -17.4382

Sy [de plus ,] [nos systmes administratifs] [doivent]étre] [modernisés] [.] [nous devons
également] [donner le bon exemple .]

T, [furthermore ,] [our administrative systems] [muliiE] [modernized] [.] [we must also] [set
a good example .] SPLIT -15.8488

S3 [de plus ,] [nos systmes administratifs] [doivent]éfre] [moderniés] [.] [nous devons
également[donner] [le bon exemple .]

T3 [furthermore ,] [our administrative systems] [must] [be] [modernized] [.] [we must #igoé]
[a good example .] SPLIT -15.5885

Sy [de plus ,] [nos sysemes administratifs] [doivent]éfre] [moderniés] [.] [nous devons
également] [donner] [le bon exemple .]

T, [in addition ,] [our administrative systems] [must] [be] [modernized] [.] [we must also] [give]
[a good example .] REPLACE -15.5199

Figure 3: Steps involved by the translation of a French sentence (F); E is its reference translation. A

segmentationyy) is first chosen from the 49 different source phrases that cover partidlly i6.the

associated seed translation. The phrases in bold are those involved in the highest-scored operation at

each iteration. Over 4,100 hypotheses have been evaluated within a time period of 300 milliseconds.

sentences that we used for monitoring our systentke, 2002), and the translation tables (phrases up
andtest , the official test set of the 2006 sharedto 7 words long) were obtained by running the
task, that we used only for final tests. We furtherscripts provided. These tables contain 4 scores
split thetest corpus in two partstest-in ~,  (relative frequencies and lexical scores in both
the in-domain part which consists of 2,000 sen-direction) that each receives a weighting coef-
tences from the European parliament debates, arfitient. A fifth score is intended to serve as a
test-out , which counts 1,034 sentenasl- phrase penalty model. Thharaoh built-in
lected from editorials of the Project Syndicatedistortion model and a word penalty component

website. receive as well a weighting coefficient. Alto-
gether, 8 coefficients were tuned using the script
3.2 Phrase-based engine minimume-error-rate-training.perl

The reference system we used for comparison

purposes is the state-of-the-art phrase-based en-

gine which was made available by the organizers _

of the shared task. The language model (a tri- For most of our experiments, the threshold val-

gram) was trained using the SRILM toolkit (Stol- Y€S thaiPhara(')h uses were left to their built-in
defaults. This is the version of our DP-system that

5We removed 30 sentences with encoding problems.  we callBASE from now on.
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en—L L—en ourselves to translating into English, since this
Systems L | WER BLEU | WER BLEU corresponds to the most studied translation direc-
BASE fr | 55.12 30.16 51.47 29.23 tion in the SMT literature, and we did not notice
G-S fr | 57.38 24.23 53.99 24.52 clear differences in the reverse direction.

G-BASE | fr | 53.62 30.64 50.37 29.62 First of all, we observe that roughly 40% of

BASE es| 55.04 28.17 50.97 29.94 the translations produced IBASE get improved
G-S es|56.86 22.7753.66 24.80  in score (Equationl) byeGreedy . We were
G-BASE | es|53.14 28.72/50.04 30.30  expecting a much lower improvement propor-
BASE de! 62.38 17.32 60.12 24.54 tion. One explanation for that might be the
G-S del 66.13 13.34/59.90 19.23 stack-size limitPharaoh considers as a default

G-BASE | de| 61.85 17.51 58.33 24.97 (100). Keeping the first hundred best hypothe-
ses for each source coverage (i.e. the number
Table 1: Performances of different search algoof source words covered by a given hypothesis)
rithms measured on theevtest corpus, as a Might bias the search toward locally optimal hy-
function of the translation direction. The fig- Potheses. More expectedly, however, we observe
ures in bold are significantly better than the cor-that more than 90% of the seed translations com-
respondinggAsE configuration at the 99% confi- Puted by the technique described in Section 2.3.1
dence level. get improved byfeGreedy .

Regarding the selected operations at each itera-
tion, roughly 40% of them are replacement ones,
that is, the replacement of one translation by an-

4.1 feGreedy with or without Pharaoh other one. Thenove operation also highly bene-

, . ficial. The fact that more than 15% of the winning
We first comparefeGreedy with BASE by run- . . . . .
operations inG-BASE are split operations might

ning both decoders, with the same function to o : _
- . ) appear surprising at first. Recall that this oper-
maximize (see Equation 1). In one version of

o ation comes along with a possible change in the
the greedy searcls-s, the search was initiated g P g

) arget material and is therefore not just a mat-
from scratch (see Section 2.3.1). In a secon . . .
) . er of segmenting differently the source material.
version,G-BASE, the search was seeded with the

. We also observe that some operations are onl
best translation produced Bharaoh (see Sec- marginally useful. This is the callose jerge and y
tion 2.3.2). The results are reported in Table 1. ,

. L swap. The fact that theswap operation is not
Expectedly, for all translation directions, the P b op

d h alaorith | des t | productive just indicates that the phrase table is
greedy search aigorithm alone provides trans aélready doing a good job at capturing local word-
tions of significantly lower quality than the DP-

order differences. We do not have yet a clear ex-

search. This is consistent with the observation?mn(,ﬂion for the low impact of theverge oper-

made by (Foster et al., 2003) in word-based transé‘,[i on

lation experlme_nts. However, we observe that the Last, we can see from Table 2 that the distri-
greedy search Improves upon the best t.ranSIat'OBution of the number of iterations required by
tr;la: BASF T[(.)Uﬂ((jj.. Tht'.s seemz th bg (;(;n&stlen'i_forBASE andcG-s are very different. The former con-
all transiation directions and for both evajua Ionﬁguration requires only a few iterations to con-

metrics considered. For all translation directionsverge_ at most 2 iterations in approximatively

except German-to-English, the improvements A'%09% of the cases. For the latter only more than
. v 0 . 1

significant at the 99% confidence level. half of the translations are completed after 4 itera-

In or_der fo better appremat_e. the S|tuat|_on, W&ions. Both versions require less than 10 iterations
report in Table 2 more specific information on on average to produce a translation

what the greedy search accomplishes. We restrict It is worthwhile to note that, although we did

7In all our experiments, we used the bootstrap resampling10t Yet pay attention to translation speed within
method described in (Zhang and Vogel, 2004) to computeour current implementatioh,feGreedy — defi-
significance levels, evaluating 1,000 samplings of 700 sen-_____
tences each. 8t is a simple matter to improve the speed of

4 Experiments
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fr—en es—en de—en en—L L—en

G-B G-S| G-B G-S| G-B G-S Systems L | WER BLEU| WER BLEU
%up 42,6 93.5 37.1 90.8 42 95.8 BASE fr | 55.12 30.16 51.47 29.23
1 log-s 36 29 27 17 18 29 G-BASE | fr | 53.62 30.64 50.37 29.62
%it. <2 |44.6 13.5 50.7 13.8 43.1 6.5 G-Rev | fr | 53.65 30.85 50.30 29.70
%it. <3 |66.2 29.7 74.4 31.6 65.7 17.2 BASE es| 55.04 28.17/ 50.97 29.94
%it. <5 [90.8 59.7 93.3 65.7 91.7 45.0 G-BASE | es| 53.14 28.72 50.04 30.30
%it. < 10/98.8 95.0100.0 97.8100.0 87.5 G-REV |es|52.37 29.31 50.05 30.33
MOVE 42.2 - 440 —+ 421 - BASE de| 62.38 17.32 60.12 24.54
REPLACE |41.3 45.1 38.3 45.3 37.7 51.7 G-BASE | de| 61.85 17.51 58.33 24.97
SPLIT 149 52.8 16.3 52.4 18.6 46.5 G-REV |de|61.85 17.57/57.99 25.20
MERGE 09 17 08 18 10 11
SWAP 05 02 02 02 03 05 Table 3: Performances of theREV variant for

different translation directions, measured on the
Table 2: Profile of two variants géGreedy on devtest corpus.
thedevtest corpus.G-B is a shorthand foG-
BASE. %up stands for the percentage of sentences

that get improved by the greedy searchlog-s necessarily incremental. To illustrate this added
indicates the average gain in score (Equation 1)l€ibility, we added a reversed n-gram language

it. < n indicates the percentage of sentences immodel to the set of models of the scoring function

proved for which less than iterations were re- Maximized byPharaoh . We call this variant-
quired. The bottom part of the table indicates theREV:

percentage of operations that ranked best at an it- A réversed n-gram model simply predicts each
eration of the greedy search. word of the translation from right to left, as de-

scribed in Equation 5. At first glance, this might
seem like an odd thing to do, since there is prob-
nitely compares favorably tBASE in that re-  aply not much information a decoder can gain
spect. Currently, translating the 1,000 sentencegom this model. Yet, this is one of the simplest
of devtest on a Pentium computer clocked at models imaginable, which could not be easily in-
3 GHz requires 9 minutes wileGreedy ,com-  tegrated into a DP-decoder such Rsaraoh ,
pared to 78 minutes WitBASE. since the suffix of a hypothesis is unknown dur-
4.2 Further experimenting with feGreedy Ing the search.
In the previous section, we conducted a pair- T
wise comparison ofeGreedy with our refer- p(tlT) ~ Hp(ti|ti+1 coititn—1)
ence system, by providing the greedy decoder the i=1
same functiorPharaoh is maximizing. In this

i ¢ . A ducted | Because we added a new model to the linear
Section, we Teport experiments we conauctediin, , ,yination optimized bfeGreedy , we hadto
order to improvdeGreedy . Our starting point

< th f. " ¢ ih q h q tg}me the coefficients involved once more. To save
'S. € configuration 9 € greedy search seede ome computation time, however, we did not ex-
with the best translation produced bySE.

plore the full range of values for each coefficient,
but concentrated on values close enough to those
One strength of the greedy search is that it op" " htad aIread;; fg‘%”‘f‘r' -tl;lh e3results of this experi-
erates on a full candidate translation. This allowd '€t &€ reporte .|n g € _' ]
us to optimize a scoring function which is not qu all trans_lat_lon directions but Spanish-to-
English, the gain in performance, as measured by
feGreedy , since in our current implementation, any op- wgR, are very small if not negative. However, im-
eration applied to a hypothesis triggers the computation of : .
provements irBLEU, although mostly not signifi-

its score from scratch, while some straightforward book- i ) ) :
keeping would eliminate most of the computations. cant, are consistent for all translation directions.

®)

4.2.1 Adding new features
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4.2.2 A beam-search version dieGreedy cette question est , bienlis, parfaitement

As we already noted, one advantage of the Iégitime , mais il faut y @pondre de fagon cor-
greedy search is that it requires a set amount of€Cte et pecise . (source sentence)
memory, since it does not build a search graph ¢ this question is , of course , perfectly legit-
like DP-search engines do (eRharaoh ). This imate , but it must be answered properly and
is an interesting advantage, but keeping only a carefully. Pharaoh , -16.1])
single-best current translation is somehow too ¢ Subject is of course , perfectly legitimate ,
heavy-handed a response to the memory problem Put we must respond to properly and carefully.
Therefore, in this experiment, we tested a variant (Scratch-1;18.22
of the greedy search, technically known as local © subject is of course fully justified , but it must
beam search (Russell and Norvig, 1995). In this Pe answered properly and carefully. (scratch-3,
greedy search, a beam of at médtest hypothe-  -20.58
ses are kept at each iteration. The search tries to® Subject s of course perfectly quite legitimate ,
improve on each of them, until no improvement Put it must be answered properly and carefully.
can be found. We call this versi@BEAM. (scratch-2;21.57)

We populate the beam withseed hypotheses.

One is the best translation proposeddnsE, as Figure 4: 4 seed translations computed for the
described in section 2.3.2. The— 1 others are source (French) sentence at the top along with
derived from the source coverage we compute, atheir scorescratch-nstands for a seed translation
described in Section 2.3.1. To form thé iseed computed from scratch, picking for each source
translation, we select the/i-best translation of Phrase belonging to the coverage, thik transla-
each source phrase, as found in the transfer tabltion found in the transfer table.

Obviously, they are many other ways we could

proceed to produck seed translations, including roughly 20% of the translations produced by
considering thek-first hypotheses produced by geam are different from those produced sy
BASE. An example of seed translations producedsase. Among these modified translations, 87%
for one short sentence is reported in Figure 4. Imave a higher score (Equation 1). The fact that
this example, as is often the case, the seed hypotior some sentences;BEAM missed an optimum
esis proposed bgASE is ranked higher than the found byc-BASE is simply due to the greediness
one computed from scratch. of the search along with a limited beam size. We
No improvement irBLEU andWER have been observed that by increasing the beam size, the
observed over the 1-best greedy search seede@imber of downgraded translations produced by
with Pharaoh (G-BASE). This is disappointing, G-seAM decreases. By simply choosing the best-
but not entirely surprising, sincBASE already scored translation produced by eitt@BASE or
does a good job, and tha-BASE further im-  G-Beam, we did not manage to improve signifi-
proved on it. What is more interesting, however,cantlysLEu andwER figures.
is that the beam version of our greedy search man-
aged to find higher-scored translations (according-2-3 Final tests
to Equation 1) thars-BASE does. On one hand, We conclude our exploration deGreedy
this is satisfactory from a search point of view. Onby running on thdest corpus the most salient
the other hand, it is disturbing to note that searctversions we tested on the development corpus:
errors are at some point beneficial! The adequacpAsE, the Pharaoh DP-decoderG-BASE, the
of the evaluation metrics we considered might begreedy search engine seeded with the best transla-
one reason for this observation. However, we betion BASE found,G-BEAM-5, the local beam vari-
lieve that the problem is more likely due to severeant offeGreedy , with a beam size of 5, ang-
(well-known) shortcomings of the scoring func- REV, the greedy variant using a reversed language
tion we seek to maximize, including its blindnessmodel.
to syntactical quality. Results are reported in Table 4 and 5 for
Averaged across all translation directions,the in- and out-domain test material respectively.
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en—L L—en en—L L—en
Systems |L |WER BLEU|WER BLEU Systems |L | WER BLEU|WER BLEU
BASE fr | 54.85 30.90 51.69 29.96 BASE fr | 60.29 22.31 56.66 20.78

G-BASE fr | 53.38 31.42 50.46 30.27 G-BASE fr | 57.80 23.44 54.70 21.38
G-BEAM-5 | fr | 53.46 31.26| 50.40 30.13 G-BEAM-5 | fr | 57.68 22.91 54.44 21.28

G+B5 fr | 53.43 31.28 50.36 30.17 G+B5 fr | 57.61 23.03 54.43 21.33
G-REV fr | 53.49 31.52 50.48 30.25 G-REV fr | 568.12 23.25 54.66 21.37
BASE es| 54.23 29.64 51.04 30.54 BASE es| 57.07 24.20 51.11 25.17

G-BASE es| 52.77 30.14 50.02 30.87 G-BASE es | 54.83 25.09 49.77 25.59
G-BEAM-5 | es| 52.61 30.24| 50.12 30.89 G-BEAM-5| es | 54.16 24.91| 49.74 25.74

G+B5 es|52.61 30.25 50.11 30.93 G+B5 es|54.11 24.95 49.72 25.69
G-REV es| 52.67 29.79| 50.07 30.84 G-REV es| 53.46 26.33 49.80 25.64
BASE de| 62.32 17.68 60.54 24.45 BASE de| 67.09 11.00 65.62 16.00

G-BASE de| 61.73 17.88| 58.85 24.66 G-BASE de|65.79 11.49 63.51 16.38
G-BEAM-5 | de| 61.98 17.82 57.62 24.59 G-BEAM-5 | de| 66.12 11.24| 61.54 16.72
G+B5 de| 61.95 17.84 57.62 24.58 G+Bb5 de|66.10 11.33|61.53 16.74
G-REV de| 61.77 17.89| 58.48 24.82 G-REV de| 65.93 11.40| 62.96 16.38

Table 4. Performances of different search algoTable 5: Performances of different search algo-
rithms measured on theest-in corpus. Fig- rithms measured on thest-out  corpus. Fig-
ures in bold are significantly better than theirures in bold are significantly better than their
BASE counterpart at the 99% confidence level. BASE counterpart at the 99% confidence level.

First, we observe that the greedy variaasase ~ © Slightly improves upon the-BEAM-5 variant
outperforms theBASE algorithm, for both in- for almost all translation directions, but the gain
and out-domain. The improvements imgr IS not significant. The corresponding figures are
andBLEU are significant (at the 99% confidence reported as the+B5 variant in Tables 4 and 5.
level) for all translation directions, but German-
to-English. This is consistent with our previous

experiments on the development corpus. In this study, we addressed the problem of
Second, the beam version f#Greedy , al- searching the space of possible translations with
though significantly better thaBASE in most a greedy search algorithm designed to maxi-
cases, performs usually marginally worse tharmize the log-linear function many state-of-the-
the corresponding-BASE variant. The obser- art phrase-based systems use. We discussed
vation we made on the development corpus stilsome advantages of search algorithms working
holds: the beam variant of the search manages ton a complete-state representation as our greedy
find translations that are better scored by Equasearch does. We conducted experiments show-
tion 1. On the out-domain (resp. in-domain) cor-ing that it could improve the best translation
pus, 34% (resp. 17%) of the translations profound by the more demanding multi-stack beam-
duced byc-BEAM-5 did improve in score com- search dynamic-programming algorithm embed-
pared with theirG-BASE counterpart. Less than ded in decoders such Bharaoh or Ramses.
4% (resp. 3%) received a lower score. The fact Perhaps the main contribution of this study is to
that, on the out-domain corpus, twice as manyoint out the potential such an easy search algo-
translations receive an higher score with the beavithm has over more demanding decoders. Until
version is encouraging, even if it does not clearlynow, this was an idea that had not received much
pay off in terms of evaluation metrics. attention in the phrase-based SMT community.
Picking the highest-scored translation (Equa- We plan to extend this work in several direc-
tion 1) proposed by eithes-BASE or G-BEAM-  tions. Actually, one initial motivation for this

5 Conclusions
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study was to explore post-processing operationBhilipp Koehn and Christof Monz. 2006. Manual
that could apply to the output of a translation and automatic evaluation of machine translation be-

. . . . tween European languages. Pnoceedings of the
englne., in prder to recover systematlc errors,. N acL Workshop on Statistical Machine Translation
a way inspired by transformation-based learning pages 102-121, New York City, June.

(Brill, 1995). On step toward accomplishing this .
hilipp Koehn, Franz Joseph Och, and Daniel Marcu.

consists in increasing the number of Opera.t'o.ng 2003. Statistical Phrase-Based TranslationPrio-
that our greedy search can perform, associating ceedings of HLTpages 127—133.

with each of them a coefficient that we can ad-

; e ; hilipp Koehn. 2004. Pharaoh: a Beam Search De-
just on a development corpus. This is the idea wé coder for Phrase-Based SMT. Rroc. of the 6th

want to explore further. _ AMTA pages 115-124, Washington, DC.
We also want to cast our greedy decoder within
the open-source framework calldbod, whose Daniel Marcu. 2001. Towards a unified approach to

inciole is to offer d d that t d memory- and statistical-based machine translation.
prinCiple IS to ofier decoders that areé easy to mod- |, proceedings of the 39th Annual Meeting of the

ify and extend. Therefore, our goal will be to re-  ACL, pages 378-385, Toulouse, France.

lease a reengineered versiofeGreedy . .
Sonia Niessen, Stephen Vogel, Hermann Ney, and

Christof Tillmann. 1998. A DP-based search al-
gorithm for statistical machine translation. Mmo-

; ; ceedings of the 36th Annual Meeting of the ACL and
This study has been partially funded by_a NSERC 17th COLING pages 960966, Morétal, Canada.
grant. We are grateful to Pierre Poulin for his

fruitful comments on this work. Marian Olteanu, Chris Davis, lonut Volosen, and Dan

Moldovan. 2006. Phramer — an open source sta-

tistical phrased-based translator. Rroceedings of

the HLT/NAACL Workshop on Statistical Machine

Translation pages 150-153, New York, USA.

Adam L. Berger, Peter F. Brown, Stephen A. Della . _ .
Pietra, Vincent J. Della Pietra, John R. Gillett, Aléxandre Patry, Fabrizio Gotti, and Philippe
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