
Capturing Translational Divergences with a
Statistical Tree-to-Tree Aligner

Mary Hearne, John Tinsley, Ventsislav Zhechev and Andy Way

National Centre for Language Technology
Dublin City University

Dublin, Ireland
{mhearne,jtinsley,vzhechev,away}@computing.dcu.ie

Abstract

Parallel treebanks, which comprise
paired source-target parse trees aligned
at sub-sentential level, could be use-
ful for many applications, particularly
data-driven machine translation. In
this paper, we focus on how transla-
tional divergences are captured within
a parallel treebank using a fully auto-
matic statistical tree-to-tree aligner. We
observe that while the algorithm per-
forms well at the phrase level, per-
formance on lexical-level alignments
is compromised by an inappropriate
bias towards coverage rather than pre-
cision. This preference for high pre-
cision rather than broad coverage in
terms of expressing translational diver-
gences through tree-alignment stands in
direct opposition to the situation for
SMT word-alignment models. We sug-
gest that this has implications not only
for tree-alignment itself but also for the
broader area of induction of syntax-
aware models for SMT.

1 Introduction

Previous work has argued for the development of
parallel treebanks, defined as bitexts for which the
sentences are annotated with syntactic trees and
are aligned below clause level (Volk and Samuels-
son, 2004). Such resources could be useful for
many applications, e.g. as training or evaluation

corpora for word and phrase alignment, as train-
ing material for data-driven MT systems and for
the automatic induction of transfer rules, and for
translation studies. Their development is partic-
ularly pertinent to the recent efforts towards in-
corporating syntax into data-driven MT systems,
e.g. (Melamed, 2004), (Chiang, 2005), (Galley et
al., 2006), (Hearne and Way, 2006), (Marcu et al.,
2006), (Zollmann and Venugopal, 2006).

In this paper, we focus on how translational
divergences are captured within a parallel tree-
bank using a fully-automatic statistical tree-to-
tree aligner.1 In doing so, we take a somewhat
different perspective on tree-alignment from that
of e.g. (Wu, 2000; Wellington et al., 2006). We
do not incorporate trees for the express purpose of
constraining the word- and phrase-alignment pro-
cesses, although this is certainly a consequence
of using trees. Our purpose in aligning monolin-
gual syntactic representations is to make explicit
the syntactic divergences between sentence pairs
rather than homogenising them. We are not seek-
ing to maximise the number of links between a
given tree pair, but rather to find the set of links
which most precisely expresses the translational
equivalences between that tree pair. How best to
exploit such information through model induction
for syntax-aware statistical MT remains an open
question.

The remainder of this paper is organised as fol-
lows. In Section 2 we describe the tree-to-tree
alignment process from a manual annotation per-

1Although the definition of a parallel treebank leaves
room for a variety of types of tree structure, in this paper
we focus on constituent structure trees only.
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spective, outlining crucial ways in which it dif-
fers from the word-alignment process. We show
how translational divergences are represented in
an aligned parallel treebank in Section 3, giving
insights into why such resources would be use-
ful. In Section 4 we outline an automatic method
for statistically inducing tree alignments between
parsed sentence pairs – full details of the align-
ment algorithm are given in (Tinsley et al., 2007).
In Section 5 we analyse the output to see how well
translational divergences are captured. Finally, in
Sections 6 and 7 we conclude and describe plans
for future work.

2 Manual Tree-to-Tree Alignment

The tree-to-tree alignment process assumes a
parsed, translationally equivalent sentence pair
and involves introducing links between non-
terminal nodes in the source and target phrase-
structure trees. Inserting a link between a node
pair indicates that the substrings dominated by
those nodes are translationally equivalent, i.e. that
all meaning in the source substring is encapsu-
lated in the target substring and vice versa. An
example aligned English–French tree pair is given
in (1). This example illustrates the simplest pos-
sible scenario: the sentence lengths are identical,
the word order is identical and the tree structures
are isomorphic.

S S

NP VP NP VP

John V NP John V NP

sees Mary voit Mary

(1)

However, most real-world examples do not align
so neatly, as we will discuss in Section 3. The
example given in (2) illustrates some important
points. Not every node in each tree needs to be
linked, e.g. click translates not as cliquez, but as
cliquez sur. However, each node is linked at most
once. Also, as we do not link terminal nodes,
the lowest links are at the part-of-speech level.
This means that multi-word units identified dur-
ing parsing are preserved as such during align-

ment, cf. Save As and Enregistrer Sous.2

VP

VP V PP

V NP cliquez P NP

click D ADJ N sur D N ADJ

the Save As button le bouton Enregistrer Sous

(2)

2.1 Tree Alignment vs. Word Alignment
When deciding how to go about linking a given
tree pair, the logical starting point would seem to
be with word alignment. However, some analy-
sis reveals differences between the tasks of tree-
alignment and word-alignment. We illustrate the
differences by referring to the Blinker annotation
guidelines (Melamed, 1998) which were used for
the word alignment shared tasks at the workshops
on Building and Using Parallel Texts at HLT-
NAACL 20033 and ACL 2005.4

If a word is left unaligned in a sentence pair,
it implies that the meaning it carries was not re-
alised anywhere in the target string. On the other
hand, if a node remains unaligned in a tree pair
there is no equivalent implication. Because tree-
alignment is hierarchical, many other nodes can
carry indirect information regarding how an un-
aligned node (or group of unaligned nodes) is rep-
resented in the target string. Some consequences
of this are as follows.

Firstly, the strategy in word-alignment is to
leave as few words unlinked as possible “even
when non-literal translations make it difficult
to find corresponding words” (Melamed, 1998).
Contrast this with the more conservative guide-
line for tree-alignment given in (Samuelsson and
Volk, 2006): nodes are linked only when the sub-
strings they dominate “represent the same mean-
ing and ... could serve as translation units outside
the current sentence context.” This latter strategy
is affordable because alignments at higher lev-
els in the tree pair will account for the transla-
tion equivalence. Secondly, word-alignment al-
lows many-to-many alignments at the word level
but not phrasal alignments unless every word in
the source phrase corresponds to every word in

2Of course, an alternative parsing scheme which gives in-
ternal labelled structure in such phrases might permit further
sub-tree links.

3http://www.cse.unt.edu/˜rada/wpt/
4http://www.cse.unt.edu/˜rada/wpt05/
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the target and vice versa. Tree-alignment, on the
other hand, allows each node to be linked only
once but facilitates phrase alignment by allowing
links higher up in the tree pair.

The contrasting effects of these guidelines are
illustrated by the example given in (3)5 where
the dashed links represent tree-alignments and the
solid links represent word-alignments. We see
that the word-alignment must link ladder to both
la and échelle whereas the tree-alignment speci-
fies a single link between the nodes dominating
the substrings ladder and l’échelle.

NP NP

NP NP NP PP

PN POS N D N P NP

Jacob ’s ladder la échelle de PN

Jacob

(3)

Note also that the word-alignment explicitly links
’s with de whereas the tree-alignment does not; it
is arguable as to whether these strings really rep-
resent precisely the same meaning. However, the
relationship between these words is not ignored
in the tree-alignment; rather it is captured by the
link between the three NP links in combination.

In fact, many different pieces of information
can be inferred from the tree-alignment given in
(3) regarding the relationship between ’s and de,
despite the fact that they are not directly linked;
examples exhibiting varying degrees of contex-
tual granularity are given in (4).

’s −→ de

X ’s Y −→ Y de X

NP1 ’s NP2 −→ NP2 de NP1

NP → NP1 ’s NP2 : NP → NP2 de NP1

NP NP

NP POS NP NP PP

’s P NP

de

(4)

It is noteworthy, we feel, that the similarities
between the ‘rules’ in (4) and templates in EBMT
such as those in (Cicekli and Güvenir, 2003) are
striking.

5The sentence pair and word alignments were taken di-
rectly from (Melamed, 1998).

3 Translational Divergences
Work such as that of e.g. (Lindop and Tsujii,
1992; Dorr, 1994; Trujillo, 1999) makes explicit
the types of translational divergences which occur
in real data. These divergences occur frequently
even for language pairs with relatively similar sur-
face word order, and generally prove challenging
for MT models (Hutchins and Somers, 1992).6
An important characteristic of parallel treebanks
is that they provide explicit details, through tree-
alignments, about the occurrence and nature of
such divergences.

In this section, we examine how translational
divergences are represented in the HomeCen-
tre English–French parallel treebank. This cor-
pus comprises a Xerox printer manual which
was translated by professional translators and
sentence-aligned and annotated at Xerox PARC.
It contains 810 parsed, sentence-aligned English-
French translation pairs. It was manually tree-
aligned by one of the authors of this paper ac-
cording to the guidelines outlined in Section 2.7

As observed by (Frank, 1999), the HomeCentre
corpus provides a rich source of both linguistic
and translational complexity.

Instances of nominalisation are very frequent in
the HomeCentre corpus. An example of a simple
nominalisation is given in (5), where the English
verb phrase removing the print head is realised as
the noun phrase retraite de la tête d’impression in
French.

VP NP

V NP N PP

removing the print head retraite P NP

de la tête d’impression

(5)

Instances of more complex nominalisations
which incorporate further translational diver-
gences are also common. Consider, for exam-
ple, the translation pair given in (6). Firstly, we
note the nominalisation: the English passive sen-
tential form the scanner is being calibrated is
realised as the French noun phrase l’étalonnage

6The picture is even more complex than we paint here;
(Dorr et al., 2002) make the further observation that such
‘hard’ cases tend to co-occur much more often than might
be expected.

7As there was just a single annotator, inter-annotator
agreement is obviously not a factor.
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du scanner. However, we also observe the pres-
ence of relation-changing: the subject of this En-
glish sentential form, the scanner, functions as an
oblique object in the French translation. In addi-
tion, this example exhibits stylistic divergence, as
while translates as pendant toute la durée de.

PP

P NP

CONJP pendant DETP NP

CONJ S PRE D N PP

while NP VP toute la durée P NP

the scanner AUX VP de D N PP

is AUX V le étalonnage P NP

being calibrated de le scanner

(6)

Another complex translation case which oc-
curs in the HomeCentre corpus is that of head-
switching, where the head word in the source
language sentence translates as a non-head word
in the target language realisation. An example
of head-switching is given in (7). Here, the En-
glish verbal unit is displayed is realised in French
as reste affichée; in this context, reste means
(roughly) ‘remains’ and display is realised as the
adverbial modifier affichée. Thus, the head of the
English sentence, the verb display, corresponds to
the French non-head word affichée.

S S

NP VP NP VP

AUX VP V AP

is V CONJP reste A PP

displayed affichée

(7)

Of course, lexical divergences also occur fre-
quently. In some instances, these divergences can
be resolved in a straightforward manner. For ex-
ample, we see in (8) that as in English can trans-
late as au fur et à mesure que in French, but as
the idiomatic reading of this French phrase is re-
flected in the parse assigned to the sentence, the
overall shape of the sentence can remain the same
despite the complexity of the translation.

CONJP CONJP

CONJ S CONJ S

as au fur et à mesure que

(8)

However, even for a relatively similar language
pair, lexical divergence can cause source and tar-

get sentences expressing exactly the same con-
cept to have completely different surface real-
isations. Consider, for example, the translation
pair in Figure 1. As there is no French phrase
which is directly equivalent to the English ex-
pression null and void, the given French sentence
toute intervention non autorisée invaliderait la
garantie – which translates roughly as ‘any unau-
thorised action would invalidate the guarantee’
– is entirely structurally dissimilar to its English
counterpart.

Finally, variation in how certain frequently-
occurring words are translated, depending on the
context in which the word appears, is also com-
mon. Examples (9) – (12) illustrate this phe-
nomenon for the English verb need. you need to
X can be realised as both vous devez X and il faut
X in French, as shown in examples (9) and (10).
The realisation differs, however, where the object
is nominal rather than sentential: if you need X is
shown in (11) to translate as pour X. Finally, we
show in example (12) that the negative you do not
need to X can translate as il ne devrait pas être
necessaire de X, which literally means ‘it should
not be necessary to X’ in English. We note that
this is just a subset of the differing French real-
isations for the verb to need which occur in the
HomeCentre corpus.

S

PRON VPv

you V VPinf

need PART VPv

to

S

PRON VPverb

vous V VPverb

devez

(9)

S

PRON VPv

you V VPinf

need PART VPv

to

S

PRON VPverb

il V VPverb

faut

(10)

CONJPsub

CONJsub S

if PRON VPv

you V NP

need

PP

P NPdet

pour

(11)
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Sadj

CONJPsub COMMA S

CONJsub S , NP VPcop

if NPadj VPaux D NPadj V NP

A N AUX V the N PP is N CONJ N

unauthorised repair is performed remainder P NP null and void

of D NPzero

the N N

warrantyperiod

S

NPdet VPv

D NPpp V NPdet

toute N APvp invaliderait D N

intervention Amod V la garantie

non autorisée

Figure 1: Completely different surface realisations can be seen even for language pairs with similar
word order like English–French.

S

PRON VP

you AUX NEG VPv

do not V VPinf

need PART VPv

to

S

PRON VPverb

il NEG V PostNEG VPcop

ne devrait pas Vcop AP

être A PPinf

necessaire P VPverb

de

(12)

4 Automatic Tree-to-Tree Alignment

The tree-alignment algorithm briefly described
here and detailed in (Tinsley et al., 2007) is de-
signed to discover an optimal set of alignments
between the tree pairs in a bilingual treebank
while adhering to the following principles:

(i) independence with respect to language pair
and constituent labelling schema;

(ii) preservation of the given tree structures;
(iii) minimal external resources required;
(iv) word-level alignments not fixed a priori.

4.1 Alignment Well-Formedness Criteria

Links are induced between tree pairs such that
they meet the following well-formedness criteria:

(i) a node can only be linked once;
(ii) descendants of a source linked node may

only link to descendants of its target linked coun-
terpart;

(iii) ancestors of a source linked node may only
link to ancestors of its target linked counterpart.

In what follows, a hypothesised alignment is ill-
formed with respect to the existing alignments if
it violates any of these criteria.

4.2 Algorithm
In this section we present how our alignment al-
gorithm scores and selects links. We refer to the
alternative methods by which decisions can be
made at various points, and summarise the possi-
ble aligner configurations. (Tinsley et al., 2007)
describes these variations in greater details and
provides the motivation behind each variant.

4.2.1 Selecting Links
For a given tree pair 〈S, T 〉, the alignment pro-

cess is initialised by proposing all links 〈s, t〉 be-
tween nodes in S and T as hypotheses and as-
signing scores γ(〈s, t〉) to them. All zero-scored
hypotheses are blocked before the algorithm pro-
ceeds. The selection procedure then iteratively
fixes on the highest-scoring link, blocking all hy-
potheses that contradict this link and the link
itself, until no non-blocked hypotheses remain.
These initialisation and selection procedures are
given in Algorithm 1 basic.

Algorithm 1 basic
Initialisation

for each source non-terminal s do
for each target non-terminal t do

generate scored hypothesis γ(〈s, t〉)
end for

end for
block all zero-scored hypotheses

Selection underspecified
while non-blocked hypotheses remain do

link and block the highest-scoring hypothesis
block all contradicting hypotheses

end while

Hypotheses with equal scores: The Selection
procedure given in Algorithm 1 basic is incom-
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- -
- - - - -
a - - w - - z

b c x y

sl = b c
tl = x y
sl = a
tl = w z

Figure 2: Values for sl, tl, sl and tl given a tree
pair and a link hypothesis.

plete as it does not specify how to proceed if two
or more hypotheses share the same highest score.
When this case arises we invoke a method called
skip2. Using this configuration, we skip over tied
hypotheses until we find the highest-scoring hy-
pothesis 〈s, t〉 with no competitors of the same
score and where neither s nor t has been skipped.

Delaying lexical (span-1) alignments: It is
sometimes the case that we want to delay the in-
duction of lexical links in order to allow links
higher up in the tree structures to be induced first.
For this reason we have an optional configuration,
span1. When this method is activated, it post-
pones links between any hypothesis 〈x, y〉, where
either x or y is a constituent with a span of one,
i.e. a lexical node. Only when all other possi-
ble hypotheses have been exhausted do we allow
links of type 〈x, y〉.

4.2.2 Computing Hypothesis Scores
Inserting a link between two nodes in a tree

pair indicates that (i) the substrings dominated by
those nodes are translationally equivalent and (ii)
all meaning carried by the remainder of the source
sentence is encapsulated in the remainder of the
target sentence. The scoring method we propose
accounts for these indications.

Given tree pair 〈S, T 〉 and hypothesis 〈s, t〉, we
compute the following strings:

sl = si...six sl = S1...si−1six+1...Sm

tl = tj...tjy tl = T1...tj−1tjy+1...Tn

where si...six and tj...tjy denote the terminal
sequences dominated by s and t respectively,
and S1...Sm and T1...Tn denote the terminal
sequences dominated by S and T respectively.
These string computations are illustrated in Fig-
ure 2.

The score for the given hypothesis 〈s, t〉 is

computed according to (13).

γ(〈s, t〉) = α(sl|tl) α(tl|sl) α(sl|tl) α(tl|sl) (13)

Individual string-correspondence scores
α(x|y) are computed using word-alignment
probabilities given by the Moses decoder8 ,9

(Koehn et al., 2007). Two alternative scoring
functions are given by score1 (14) and score2
(15).
Score score1

α(x|y) =

|y|∏

j=1

|x|∑

i=1

P (xi|yj) (14)

Score score2

α(x|y) =

|x|∏

i=1

∑|y|
j=1 P (xi|yj)

|y|
(15)

4.3 Aligner Configurations
When configuring the aligner, we must choose
skip2 and we must choose either score1 or score2.
span1 can be switched either on or off. The four
possible configurations are as follows:

skip2 score1 skip2 score1 span1
skip2 score2 skip2 score2 span1

5 Alignment Evaluation and Analysis
In Section 5.1 we give an overview of aligner
performance through two automatic evaluation
methodologies. In Section 5.2 we then go on to
describe the capture of translational divergences
by manually analysing the aligner output.

5.1 Automatic Evaluation
We use two automatic evaluation methodologies
in order to gain an overview of aligner perfor-
mance: (i) we compare the links induced by the
algorithm to those induced manually and com-
pute precision and recall scores; (ii) we train a
Data-Oriented Translation (DOT) system (Hearne
and Way, 2006) on both the manually aligned
data and the automatically aligned data and assess
translation accuracy using the Bleu (Papineni et
al., 2002), NIST (Doddington, 2002) and Meteor

8http://www.statmt.org/moses/
9Although our method of scoring is similar to IBM model

1, and Moses runs GIZA++ trained on IBM model 4, we
found that using the Moses word-alignment probabilities
yielded better results than those output directly by GIZA++.
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Alignment Evaluation Translation Evaluation
all links lexical links non-lexical links (all links)

Configurations Precision Recall Precision Recall Precision Recall Bleu NIST Meteor Coverage
manual – – – – – – 0.5222 6.8931 71.8531 68.5417
skip2 score1 0.6162 0.7783 0.5057 0.7441 0.8394 0.7486 0.5091 6.9145 71.7764 71.8750
skip2 score2 0.6215 0.7876 0.5131 0.7431 0.8107 0.7756 0.5333 6.8855 72.9614 72.5000
skip2 score1 span1 0.6256 0.8100 0.5163 0.7626 0.8139 0.8002 0.5273 6.9384 72.7157 72.5000
skip2 score2 span1 0.6245 0.7962 0.5184 0.7517 0.8031 0.7871 0.5290 6.8762 72.8765 72.5000

Table 1: Evaluation of aligner performance using automatic metrics.

(Banerjee and Lavie, 2005) automatic evaluation
metrics. The results of these evaluations are given
in Table 1.

Looking firstly at overall alignment accuracy
(the all links column), it is immediately appar-
ent that recall is significantly higher than preci-
sion for all configurations. In fact, we have ob-
served that all aligner variations consistently in-
duce more links than exist in the manual version,
with the average number of links per tree pair
ranging between 10.4 and 11.0 for the automatic
alignments versus 8.3 links per tree pair for the
manual version. A clearer picture emerges when
we differentiate between lexical and non-lexical
links, where a link is non-lexical if both source
and target nodes span more than one terminal.
We see that, actually, precision is higher than re-
call for non-lexical links, and overall accuracy is
higher for non-lexical links than for all links. In
contrast, overall accuracy is much lower for lex-
ical links than for all links, and the disparity be-
tween precision and recall is greater.

Turning our attention to translation accuracy,
we observe that the scores for the automatic align-
ments are very encouraging: for all three evalu-
ation metrics, at least two aligner configurations
outperform the manual scores. Furthermore, all
the automatically-aligned datasets achieve higher
coverage than the manually-aligned run. It is
perhaps somewhat surprising that the translation
scores do not reflect the indication given by the
alignment evaluation that word-level alignment
precision is low compared to phrase-level pre-
cision. The explanation as to why the transla-
tion scores do not deteriorate may lie in how
the MT system works: because DOT displays a
preference for using larger fragments when build-
ing translations wherever possible, the impact of
inconsistencies amongst smaller fragments (i.e.

word-level alignments) is minimised. The reason
for the improvement in scores lies in the increased
coverage of the system trained on the automatic
alignments.

5.2 Capturing translational divergences
Before looking at divergent cases, we first observe
that the alignment algorithm generally produces
accurate output for the simple translation cases.
Examples (16) and (17) illustrate cases where the
aligner correctly identifies equivalent constituents
where length, word order and tree structure all
match perfectly. For short phrases, such examples
are relatively common.

NP

D N

the scanner

NP

D N

le scanner
(16)

PP

P NP

to D N

the HomeCentre

PP

P NP

à D N

la HomeCentre

(17)

Lexical divergences which are of the form 1-to-
many and many-to-1 occur frequently in the data
and the aligner captures them with regularity. For
example, the aligner output exactly matches the
manual alignment for example (8). As mentioned
in Section 4, when calculating the score for a par-
ticular hypothesis, we not only consider the trans-
lational equivalence of the dominated substrings
but also the translational equivalence of the re-
mainder of the source and target sentences. In
this way, links can be inferred even when the con-
stituent substrings are lexically divergent.

Instances of nominalisation are also commonly
presented to the aligner. Consider, for exam-
ple, the aligner output in (18) where the En-
glish verb phrase removing the print head is re-
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alised as the French noun phrase retraite de la tête
d’impression. As the aligner does not take into
consideration the labels on the tree, but rather the
likelihood that the surface strings are translations
of each other, there is no impediment to the link-
ing of the English VP to the French NP. Further-
more, the lower NP alignment is straightforward.
Note, however, the (probably incorrect) link be-
tween the V removing and the N retraite. This link
does not appear in the manual alignment (shown
in (5)) as the annotator considered the meaning
equivalence to be between removing and retraite
de.

VP

V NP

removing

NP

N PP

retraite P NP

de

(18)

In Section 3 we noted that frequently-occurring
words vary greatly in terms of how they are trans-
lated, as illustrated for the English verb need in
examples (9) – (12). These examples are han-
dled reasonably well by the aligner, again due to
the strength of the equivalence between the object
constituents. In (19) and (20) (for which the man-
ual alignments were given in (9) and (10)), we
again see lexical alignments in the automatic out-
put which were not included in the manual ver-
sions; the annotator considered the equivalences
to be (need to, devez) and (you need to, il faut).
While the case for linking need with devez is ar-
guable, the link between need and faut is incor-
rect.

S

PRON VPv

you V VPinf

need PART VPv

to

S

PRON VPverb

vous V VPverb

devez

(19)

S

PRON VPv

you V VPinf

need PART VPv

to

S

PRON VPverb

il V VPverb

faut

(20)

The relation-changing and head-switching
cases illustrated by (6) and (7) are not handled
correctly by the aligner. However, in both cases

poor choice of lexical alignments (for being and
reste respectively) ruled out the possibly of cor-
rect higher-level alignments. Whether improved
lexical choice will lead to the identification of the
appropriate alignments in these cases remains to
be seen.

6 Conclusions
We observe that while the algorithm performs
well at the phrase level, performance on lexical-
level alignments is relatively poor when we com-
pare the aligner output to the manual alignments.
This can be seen both in terms of precision and
recall, where scores for phrase-level alignments
are much higher than those for lexical ones, and
through the manual evaluation where complex
translation phenomena are identified correctly at
a high level but then negated by inaccurate align-
ments at lexical level.

The lexical accuracy scores illustrate clearly
that there is an imbalance between precision and
recall: recall is consistently higher than pre-
cision across all variants of the alignment al-
gorithm. The reason for this is based in the
word-alignments used to seed our tree-alignment
algorithm. We have adopted the widely used
alignment tool GIZA++ (Och and Ney, 2003)
(and, more recently, Moses (Koehn et al., 2007)
which is based directly on GIZA++) which pri-
oritises broad coverage rather than high precision
(Tiedemann, 2004) and is appropriate to string-
based SMT (Koehn et al., 2003). However, the
work presented here indicates that the preference
in terms of expressing translational divergences
through tree-alignment is for the opposite – high
precision rather than broad coverage – and this
mismatch appears to impact on the overall quality
of the alignments. We suggest that this has impli-
cations not only for tree-alignment itself but also
for the broader area of induction of syntax-aware
models for SMT.

Despite these observations, training our DOT
system on automatically-aligned data gives
slightly better translation performance than train-
ing on the manually-aligned data. The issue
of coverage is key here. Crucially, the only
model used by the system is the synchronous tree-
substitution grammar induced directly from the
parallel treebank. As the manual alignments con-
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tain fewer links than the automatic alignments,
the induced grammar achieves correspondingly
lower coverage and, consequently, performance
suffers. We conclude that it is appropriate for
tree-alignment to prioritise precision in order to
capture translational divergences as accurately as
possible, and that MT systems making use of
these alignments should employ them in conjunc-
tion with broad-coverage models (such as word-
and phrase-alignments) in order to preserve ro-
bustness.

7 Future Work
In order to improve the accuracy of our tree-
alignment algorithm, we plan to investigate al-
ternative word-alignment techniques (e.g. (Tiede-
mann, 2004; Liang et al., 2006; Ma et al., 2007))
in order to establish which one is most appropri-
ate for our task.

With regard to the broader area of parallel
treebank construction and the use of statistical
parsers such as those of Charniak (2000) and
Bikel (2002), we would like to examine the im-
pact of imperfect parse quality on the capture of
translational divergences. We plan to extend our
aligner so that it works with n-best parse forests
on the source and/or target sides, thereby giving
the aligner some (limited) influence over the con-
figuration of the aligned parse trees.

Finally, we plan to investigate how best to in-
corporate the translation information encoded in
parallel treebanks into existing data-driven MT
systems, both indirectly in terms of complemen-
tary phrase/chunk extraction methods and directly
in terms of inducing syntactic models of transla-
tion.
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