
Proceedings of the 8th SIGdial Workshop on Discourse and Dialogue, pages 194–201,
Antwerp, September 2007.c©2007 Association for Computational Linguistics

Modeling Vocal Interaction for Text-Independent
Classification of Conversation Type

Kornel Laskowski
interACT
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Abstract

We describe a system for conversation type
classification which relies exclusively on
multi-participant vocal activity patterns. Us-
ing a variation on a well-studied model
from stochastic dynamics, we extract fea-
tures which represent the transition proba-
bilities that characterize the evolution of par-
ticipant interaction. We also show how vo-
cal interaction can be modeled between spe-
cific participant pairs. We apply the pro-
posed system to the task of classifying meet-
ing types in a large multi-party meeting cor-
pus, and achieve a three-way classification
accuracy of 84%. This represents a rela-
tive error reduction of more than 50% over a
baseline which uses only individual speaker
times (i.e. no interaction dynamics). Ran-
dom guessing on this data yields an accuracy
of 43%.

1 Introduction

An important and frequently overlooked task in au-
tomatic conversation understanding is the character-
ization of conversation type. In particular, search
and retrieval in multi-participant conversation cor-
pora stands to benefit from indexing by broad con-
versational style, as tending towards one or more
speech-exchange prototypes (Sacks et al, 1974) such
as interactive seminar, debate, formal business meet-
ing, or informal chat. Current state-of-the-art speech
understanding systems are well-poised to tackle
this problem through up-stream fusion of multipar-
ticipant contributions, following automatic speech

recognition and dialog act classification. Unfortu-
nately, such reliance on lexical information limits
the ultimate application of conversational style clas-
sification to only a handful of languages with well-
developed lexical components, notably English.

In the current work, we attempt to address this
limitation by characterizing conversations in terms
of their patterns of on-off vocal activity, referred to
as vocal interaction by the psycholinguistic com-
munity (Dabbs and Ruback, 1987). In doing so,
we rely only on the joint multi-participant vocal ac-
tivity segmentation of a conversation (Renals and
Ellis, 2003), and ignore other features. The text-
independent features we explore here can of course
be combined with text-dependent cues, and prosodic
and/or speaker cues, depending on the reliability of
these components.

To the best of our knowledge, there is currently
little if any work on the continuous modeling of vo-
cal interaction for conversations with arbitrary num-
bers of participants. Some very recent research ex-
ists with goals related to those in this work, most
frequently focusing on the classification of time-
dependent, evolving phenomena. Examples include
the recognition of meeting states and participant
roles (Banerjee and Rudnicky, 2004), the detection
of interaction groups in meetings (Brdiczka et al.,
2005), the recognition of individual and group ac-
tions in meetings (McCowan et al, 2005), and the
recognition of participant states (Zancanaro et al,
2006). Modeling multi-participant vocal interaction
to improve vocal activity detection in meetings was
first explored in (Laskowski and Schultz, 2006) and
elaborated in (Laskowski and Schultz, 2007); it has
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since been explored for privacy-sensitive data col-
lection in more general settings (Wyatt et al, 2007).
The rare examples of time-independent characteri-
zation of conversations in their entirety, as pursued
in the current work, include the detection of conver-
sational pairs (Basu, 2002) and the classification of
dominance in meetings (Rienks and Heylen, 2005).

We begin this paper by proposing a computational
framework which allows for the modeling of interac-
tions among specific participants. We propose sev-
eral time-independent interaction features, together
with a robust means for computing them. Finally,
we apply the proposed text-independent classifica-
tion system to the task of meeting type classification.
Our results show that features extracted from the
multi-participant segmentation of a conversation can
be successfully used for classifying meeting type
through the observed conversational style.

2 Bayesian Framework

We introduce the notion of agroup of participants,
which we denote asG and which we define to be a
specific ordering of allK ≡ ‖G‖ participants in a
particular conversationC. Each conversation is of
exactly one typeT , from amongNT possible types.
Participants are drawn without replacement from a
potentially unknown populationP, of size‖P‖. In
general,‖P‖ > ‖G‖.
G [k], for 1≤k≤K, is an attribute of thekth partic-

ipant; k represents a particular cardinal ordering of
participants in groupG, which is immutable for the
duration of a meeting (in this work,k is the channel
number).G may be unique inP, i.e. it may repre-
sent a specific participant; alternately, it may repre-
sent a category of participant, such as age group, so-
cial standing, or vocalizing time rank. When partic-
ipants are unique inP, the number of unique groups
NG = ‖P‖!/ (‖P‖ − ‖G‖)! is simply the number of
permutations of‖P‖ taken‖G‖ at a time.

Our observation space is the complete vocal in-
teraction on-off pattern description for conversation
C, a discretized version of which we denote asqt

for 1≤t≤T , whereT is the duration of the con-
versation. Our goal in the present work is to ex-
tract from q = {q1,q2, . . . ,qT } a feature vector
F ≡ f (q) which will discriminate among theNT

different conversation types under study.

We classify the typeT of conversationC, given
observationsF, using:

T ∗ = arg max
T

P ( T |F )

= arg max
T

∑

G

P (G, T , F )

= arg max
T

∑

G

P ( T )× (1)

P (G | T )
︸ ︷︷ ︸

Membership
Model

× P (F | G, T )
︸ ︷︷ ︸

Behavior
Model

.

The behavior model in Equation 1 is responsible for
the likelihood ofF, describing the behavior of the
participants ofG during a conversation of typeT .
The membership model provides a prior distribution
for participant presence in conversations of typeT .

3 Vocal Interaction Features

We propose to extract interactional aspects of mul-
tiparticipant conversations by studying the presence
of vocal activity for all participants at a fixed anal-
ysis frame rate. After some limited initial experi-
mentation, we have chosen to use a frame shift of
100 ms. We consider two mutually exclusive vo-
cal activity states, vocalizing (V) and not vocalizing
(i.e. silent,N ). Figure 1 graphically depicts the dis-
cretization of a multichannel segmentation, which
allows us to treat a particular conversation as the out-
put of a simple Markov processq over an alphabet
of 2K symbols, with

qt ∈ Ψ×Ψ×Ψ× . . .×Ψ (2)

of K products, whereΨ ≡ {N ,V}, andt is the time
index of the frame.

3.1 Feature Design

In the current work, we assumeq to be a first-order
Markov process which can be described by symbol
transition probabilities

aij = P (qt+1 = Sj |qt = Si ) . (3)

Furthermore, we assume that participants behave in-
dependently of each other, given their immediately
preceding joint vocal activities,

aij =
K∏

k=1

P (qt+1 [k] = Sj [k] |qt = Si ) . (4)
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Figure 1: Discretization of multichannel segmenta-
tion references by assigningV for participantk at
timet if that participant vocalizes for more than 50%
of the duration of the frame centered att, andN oth-
erwise.

We propose to characterize the vocal behavior of
participants over the entire course of conversationC
using a subset of the probabilitiesaij . The features
we explore, shown in Equations 5 to 8, represent the
probability that participantk initiates vocalization
during silence (VI), the probability that participant
k continues non-overlapped vocalization (VC), the
probability that participantk initiates overlap (OI)
while only participantj vocalizes, and the probabil-
ity that participantk continues vocalizing in overlap
(OC) with participantj only, respectively. For this
work, we neglect cases where more than one par-
ticipant (other thanj) is vocalizing at timet before
participantk starts vocalizing, since such instances
are rare.

The probabilities in Equations 5 to 8 can be es-
timated directly using a maximum likelihood (ML)
criterion by accumulating bigram counts matching
the event classes in each equation. For simplicity,
we set the probabilities for which the conditioning
context is never observed to 0.5.

In characterizing an entire conversational group
of K participants, the feature vectorF consists of
K one-participant features of typefV I

k andK one-
participant features of typefV C

k , as well asK2 −K
two-participant features of typefOI

k,j andK2 − K

two-participant features of typefO
k,jC. This results

in a total ofNF = 2K2 features per conversation;
we note that conversations vary in the participant
numberK and therefore in their feature vector size.

3.2 Feature Estimation using the Ising Model

We contrast ML estimation of features with estima-
tion which relies on a particular form of parameter
tying, under an asymmetric infinite-range variant of
the Ising model (Glauber, 1963). Canonically, the
Ising model is used to study an ensembles emer-
gent macroscopic properties, which are due to the
microscopic interactions among its very large num-
ber of binary particles; we apply it here to study
the emergent vocal interaction patterns ofK partic-
ipants. The modified Ising model is easily imple-
mented as a single-layer neural network (Hertz et
al., 1991) ofK input units,K output units, and a
sigmoid transfer function,

yk (x) =
1

1 + e
−β

(
∑K

j=1
wk,jxj+bk

) , (9)

whereβ is a parameter which is inversely propor-
tional to the pseudo-temperature; we set it here to
unity for convenience.xj are the elements of vec-
tor x, wk,j are the elements of a weight matrix
W ∈ ℜK×K , andbk are the elements of a bias vec-
tor b ∈ ℜK . We show this network in Figure 2.
When presented with an input vectorqt, the network
produces at each output unit the quantity

P (qt+1 [k] = V |qt = Si ) = yk (Si) . (10)

In computingyk (Si), V andN are mapped to 1 and
0, respectively.

The network is characterized by the parameters
W andb, which can be learned fromqt, 1≤t≤T ,
using a standard first-order or second-order gradient
descent technique, for example. At each time frame,
the currentqt binary vector can be used as a “pat-
tern”, with the subsequentqt+1 binary vector as the
“target”; there are a total ofT−1 such pattern-target
pairs. The appropriate objective function for out-
puts representing multiple (conditionally) indepen-
dent attributes is the binomial error (Bishop, 1995).
To distinguish from features estimated using ML, as
described in the previous section, we henceforth re-
fer to features estimated using the Ising model as
“NN”.
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fV I
k = P (qt+1 [k] = V |qt [i] = N ∀ 1≤i≤K ) , (5)

fV C
k = P (qt+1 [k] = V |qt [k] = V , qt [i] = N ∀ i6=k , 1≤i≤K ) , (6)

fOI
k,j = P (qt+1 [k] = V |qt [j] = V , qt [i] = N ∀ i6=j , 1≤i≤K ) , j 6=k , (7)

fOC
k,j = P (qt+1 [k] = V |qt [k] = qt [j] = V , qt [i] = N ∀ i6=j , i6=k , 1≤i≤K ) , j 6=k . (8)

qt [1]

qt [2]

qt [3]

qt [4] P (qt+1 [4] = V |qt )

P (qt+1 [3] = V |qt )

P (qt+1 [2] = V |qt )

P (qt+1 [1] = V |qt )

Figure 2: Infinite-range Ising model for predicting
conditionally independent probabilities of activation
at timet + 1 given activations at timet, for a con-
versation with four participants; for clarity, bias con-
nections are elided.

In closing this section, we note that the proposed
interaction features have a particularly prosaic form
under this model, whenN = 0 andV = 1:

fV I
k =

1

1 + e−bk
, (11)

fV C
k =

1

1 + e−bk−wk,k
, (12)

fOI
k,j =

1

1 + e−bk−wk,j
, (13)

fOC
k,j =

1

1 + e−bk−wk,j−wk,k
. (14)

Furthermore, the total number of parameters to be
estimated from segmentation data isK (K + 1),
rather than2K2 for the bigram ML model.

4 Modeling Groups

In this section we describe the structure, parameter
estimation, and probability evaluation for the mem-
bership and the behavior models as introduced in
Equation 1.

4.1 Behavior Model

We assume conditional independence among the el-
ements of the feature vectorF,

F =
K⋃

k=1






fV I

k , fV C
k ,

K⋃

j 6=k

{

fOI
k,j , fOC

k,j

}






, (15)

such that

P (F | G , T ) = (16)
K∏

k=1

P
(

fV I
k | θV I

T ,G[k]

)

P
(

fV C
k | θV C

T ,G[k]

)

×

K∏

j 6=k

P
(

fOI
k,j | θ

OI
T ,G[k],G[j]

)

P
(

fOC
k,j | θOC

T ,G[k],G[j]

)

.

In the above, eachθ represents a single one-
dimensional Gaussian meanµ and varianceΣ pair.
These parameters are maximum likelihood estimates
from thefk andfk,j values in a training set of con-
versations, smoothed towards their global values.

4.2 Membership Model

Equation 1 allows for the inclusion of a prior prob-
ability on the presence and arrangement of partic-
ipants with respect to channels. Although partici-
pants may have tendencies to sit in close proximity
to certain other participants, we ignore channel pref-
erence in the current work. We employ the simple
membership model

P (G | T ) =
1

ZG

K∏

k=1

P (G [k] | T ) , (17)

where ZG is a normalization constant which en-
sures that

∑

NG
P (G | T ) = 1. We set each fac-

tor P (G [k] | T ) to the ML estimate for participant
G [k] in the training data. For example, ifG [k] rep-
resents an identifier unique inP, i.e. a name, then
P (G [k] | T ) is simply the proportion of meetings
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of typeT attended by the participant with that name.
To allow the model to hypothesize rarely observed
participants in the training material, we set this prob-
ability no lower than 0.1, a factor selected empiri-
cally without extensive validation.

4.3 Search

Equation 1 calls for the exhaustive enumeration
of all possible groupsG. As mentioned in Sec-
tion 2, there areNG = ‖P‖!/ (‖P‖ − ‖G‖)! dif-
ferent groups, which may make such enumeration
intractable. Since we are not interested in automati-
cally classifying participants, clustering participants
in the training material and thereby reducing‖P‖!
offers a simple means of limiting the magnitude of
NG .

In the current work, we choose to cluster partic-
ipants by training models not for specific partici-
pants, but for participant rank in terms of vocaliz-
ing time proportion. This makes the attributeG [k]
unique inG rather than inP. For each training con-
versation, we rank participants in terms of the over-
all proportion of time spent in stateV, in descending
order, such that participant rank 1 refers to that par-
ticipant who vocalizes most often during the conver-
sation in question. This form of clustering also elim-
inates the problem of estimating models for specific
participants which appear in only a handful of con-
versations.

Since a test conversation ofK participants con-
tains participant ranks{1, 2, . . . , K} and no others,
the enumeration ofNG unique participant groups
G in Equation 1 is replaced by an enumaration of
K! = ‖G‖! unique rank groups. However, we
note that under this simplification, the membership
model has only a small impact.

5 Classification Experiments

5.1 Data

In our experiments, we use the ICSI Meeting Cor-
pus (Janin et al., 2003), consisting of 75 unscripted,
naturally occurring multi-party meetings. There are
3 aspects which make this corpus attractive for the
current work. First, it is larger than most multi-
party conversation corpora. This is important be-
cause, in our framework, each meeting represents
one data point. Second, meeting participants are

‖G‖
T # ‖P‖

mod min max

Bed 15 13 6 4 7
Bmr 29 15 7 3 9
Bro 23 10 6 4 8

Table 1: Characteristics of the three ICSI meet-
ing types considered: number of meetings (#); size
of population from which participants are drawn
(‖P‖); mode (mod), minimum (min) and maximum
(max) number of participants (‖G‖) per meeting
typeT .

drawn from a pool of 52 speakers, several of whom
occur in more than one meeting type. Finally, meet-
ings are not fixed in participant number, allowing us
to demonstrate the generalization of our methods to
arbitrary conversational group sizes.

67 of the meetings in the corpus are of one of three
distinct meeting types,Bed, Bmr, andBro, rep-
resenting different projects, with different purposes
for holding meetings. This is reflected in differences
between patterns of vocal interaction; for example,
Bmr meetings consist of more free-form discussion,
presumably among peers, than eitherBed or Bro
meeting types. In contrast, the latter two types ex-
hibit more asymmetry in participant roles than do
Bmr meetings, and therefore the more easily infer-
able social structure. Furthermore, there are three
speakers in the corpus which attend bothBro and
Bmr meeting types, and one speaker which attends
both Bed andBmr meeting types;Bro andBed
types, however, have disjoint attendee subpopula-
tions. A participant which appears in multiple meet-
ing types may affect the overall interaction styles of
the two types to be less distinct. This is especially
true if he or she attends the majority of meetings of
both types, as is the case for two of the participants
which attend bothBmr andBro meetings.

We present several additional characteristics of
these three meeting types in Table 1. We ignore
the remaining 8 meetings in the corpus, representing
types of which there are too few exemplars for mod-
eling. As Table 1 shows, the prior distribution over
the 3 considered types is such that random guessing
yields a 43% three-way classification accuracy.

We obtain the vocal interaction recordq =
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{q1,q2, . . . ,qT } for each of the 67 meetings by dis-
cretizing their reference segmentations. The latter
were produced by: (1) generating a talk spurt seg-
mentation through forced alignment of transcribed
words (available as part of the ICSI MRDA Corpus
(Shriberg et al, 2004)), and bridging of inter-word
gaps shorter than 0.3 s; (2) inferring a segmentation
for transcribed laughter from the forced alignment
of surrounding words, and manually segmenting iso-
lated bouts of laughter (as described in (Laskowski
and Burger, 2007)); and (3) merging the talk spurt
and laugh bout segmentations. Fully automatic in-
ference of the vocal interaction record, from audio,
is beyond the scope of the current work.

5.2 Baseline Performance

To assess the difficulty of the problem, we propose
a baseline which relies only on the proportion of vo-
calizing time,fT

k , for each participantk. This is a
frequently studied quantity for describing conversa-
tional style (Burger et al., 2002) and for assessing
the performance of speaker diarization systems (Jin
et al., 2004) (Mirghafori and Wooters, 2006).

The classification accuracy of the baseline, using
the framework described by Equations 1, 16 and 17,
is 65.7%. This performance is achieved with leave-
one-out classification, using 66 meetings for train-
ing and one for testing, 67 times. The accuracy fig-
ures in this and in the subsequent section should be
treated as estimates on a development set; since the
longitudinal nature of the ICSI corpus is relatively
unique, it is has not been possible to construct a
fair evaluation set without significantly depleting the
amount of training material.

We note that, as mentioned in Subsection 4.3, the
membership model has negligible impact when par-
ticipant vocalizing rank is used as the clustering cri-
terion during training. This condition identically af-
fects all of the experiments which follow, allowing
for an unbiased comparison of the proposed vocal
interaction features.

5.3 Feature Comparison

We present several leave-one-out experiments in or-
der to evaluate the utility of each of the VI, VC, OI,
and OC feature types separately, withoutfT

k , esti-
mating them from the multichannel reference seg-
mentation for each meeting using both maximum

ML Estimation NN Estimation
Feature(s)

w/o fT
k w/ fT

k w/o fT
k w/ fT

k

baseline — 65.7 — 65.7
fV I

k 59.7 67.2 56.7 65.7
fV C

k 62.7 77.6 56.7 71.6
〈fOI

k,j 〉j 35.8 52.2 64.2 67.2
〈fOC

k,j 〉j 53.7 67.2 64.2 80.6
fOI

k,j 41.8 46.3 67.2 64.2
fOC

k,j 61.2 68.7 73.1 79.1
all 61.2 64.2 74.6 82.1
opt — — 74.6 83.6

Table 2: Leave-one-out meeting type classification
accuracy using various feature combinations within
the proposed Bayesian framework. “opt” consists of
the featuresfV I

k , fOI
k,j , andfOC

k,j .

likelihood (column 2), and the proposed neural net-
work model (column 4). The results show that
classification using ML-estimated single-participant
featuresfV I

k andfV C
k outperforms classification us-

ing NN-estimated features. However, NN estima-
tion outperform ML estimation when it comes to
the two-participant featuresfOI

k,j andfOC
k,j . This re-

sult is not surprising, since vocalization in overlap
is much more rare than vocalizing alone, rendering
maximum likelihood estimation of overlap behavior
uncompetitive without additional smoothing.

In addition to the two-participant interaction fea-
turesfOI

k,j andfOC
k,j described in Section 3, we also

show the performance of summary single participant
features〈fOI

k,j 〉j =
∑K

j=1 fOI
k,j /K and 〈fOC

k,j 〉j =
∑K

j=1 fOI
k,j /K, which average the overlap behavior

of participantk over the possible identities of the
already vocalizing participantj. When these fea-
tures are used alone, they are outperformed by the
two-participant features. This suggests that average
overlap behavior does not distinguish between the
three meeting types as well as does the overlap in-
teraction between participants of specific vocalizing
time rank.

Columns 3 and 5 of Table 2 show the performance
of the same 6 feature types, in combination with the
fT

k features. Due to space constraints, we mention
only that most feature types appear to combine ad-
ditively with fT

k . We also show, in the last two lines
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Actual Type
Estimated

Bed Bmr Bro
Bed 11 1 3
Bmr 2 26 1
Bro 3 1 19

Table 3: Confusion matrix among the three ICSI
meeting types studied, for classification with NN-
estimated “opt” feature set (fV I

k , fOI
k,j , andfOC

k,j ).

of the table, the performance of all feature types to-
gether, as well as of an “oracle” feature set derived
using backward feature selection, by removing the
worst performing feature one at a time from the “all”
feature set. The best number achieved, 83.6%, was
obtained using total vocalizing proportionfT

k , NN-
estimated single-participantfV I

k , and NN-estimated
two-participant featuresfOI

k,j andfO
k,jC, which de-

scribe the overlap behavior of specific participant
ranks with respect to specific other participant ranks.
The accuracy represents a 52% relative reduction
over the baseline (from 34.3% to 16.4%).

We show the confusion matrix of the “opt” NN-
estimated feature set in Table 3. Although the
amount of data is too small to draw statistically
meaningful conclusions, the symmetrical misclassi-
fication of 3Bro meetings as typeBed and 3Bed
meetings as typeBro suggests that in fact theBro
and Bed meeting types are more similar to each
other than either is to theBmr meeting type.

6 Conclusions

We have proposed a framework for the classifica-
tion of conversational style in multi-participant con-
versation. The framework makes use of several
novel elements. First, it relies exclusively on text-
independent features, extracted from the multipar-
ticipant vocal interaction patterns of a conversation;
the technique is directly deployable for languages
for which mature automatic speech recognition or
dialog act classification infrastructure may be lack-
ing. Second, we have made use of a well-studied
model in stochastic dynamics, the Ising model, to
improve estimates of the transition probabilities that
describe the evolution of multiparticipant vocal in-
teraction over the course of conversation. Third, we
have introduced the concept of enumerable groups

of participants, making it possible to include fea-
tures which model the interaction between specific
pairs of participants, for meetings with any number
of participants. Finally, we have applied the frame-
work to the task of classifying meeting types. Our
experiments show that features describing the text-
independent interaction between participants of spe-
cific vocalizing time rank, when used in conjunc-
tion with a feature which performs poorly on its own
fV I

k , lead to a relative error reduction of 52% over
our baseline.

The key findings from the analysis of differ-
ent interaction features are that having detailed 2-
participant features is better than simply using the
average for a given target speaker, and that using
interaction features (conversation dynamics) gives
better results than the static measure of relative
speaking time. Of course, the best results are
achieved with a combination of these types of fea-
tures.

7 Future Work

In the future, we will apply the proposed classifica-
tion system to automatically generated multichannel
segmentation and alternatives to the Gaussian clas-
sifier. It may also be interesting to investigate sep-
arately representing different types of vocalization
(e.g. speech vs. laughter) and features related to
overlaps of more than two speakers.

For resource rich languages, meeting type can be
classified using lexical features from speech recog-
nition. However, if one is interested in detecting
meeting type independent of content, the choice of
word features needs to factor out topic. It would be
interesting to assess the relative importance of words
vs. interactions, and the degree to which they are
complementary, in the topic-independent context.

Finally, another important future direction is the
application of the techniques to the dual of Equa-
tion 5,

G∗ = arg max
G

P (G |F )

= arg max
G

∑

T

P (G , T , F )

= arg max
G

∑

T

P ( T )× (18)

P (G | T )× P (F | G, T )
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namely the problem of jointly characterizing partic-
ipants rather than conversations.
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