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Abstract

Especially in noisy environments like in
human-robot interaction, visual information
provides a strong cue facilitating a robust
understanding of speech. In this paper, we
consider the dynamic visual context of ac-
tions perceived by a camera. Based on
an annotated multi-modal corpus of people
who verbally explain tasks while they per-
form them, we present an automatic strategy
for learning action-specific language mod-
els. The approach explicitly deals with the
asynchrony of actions and verbal descrip-
tions and includes an automatic parameter
optimization based on a perplexity measure.
Results show that a significant improvement
of the word accuracy can be achieved using
a dynamic switching of action-specific lan-
guage models.

1 Introduction

While speech recognition is an easy task for hu-
mans even under difficult acoustic conditions, cur-
rent ASR systems still cannot compete with hu-
mans (Potamianos et al., 2003). This is especially
true in human-robot interaction, where one has to
deal with spontaneous speech effects, noisy environ-
ments, communicative gestures, and a frequent ref-
erencing to visual objects and events. In this case,
speech recognition and understanding becomes a
multi-modal issue. This has also been emphasized
by several psychological studies that suggest a very
early interaction between vision and speech pro-
cessing (Spivey et al., 2001). For the practical de-
velopment of speech understanding components for
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robotic interfaces, there are three implications. First,
there is a need for multi-modal corpora in order to
train and evaluate more sophisticated speech recog-
nition models. Secondly, visual and acoustic speech
events need to be synchronized and aligned with re-
gard to semantic content for learning as well as inter-
pretation. Thirdly, new strategies for the early inte-
gration of visual information into the speech recog-
nition process need to be developed. In this paper,
we focus on the first and second issues and show
first results for the third.

The integration of speech and visual context can
be treated on different levels of processing that de-
pend on the kind visual information considered.
Motivated by the McGurk effect (1976) audiovi-
sual speech recognition (AVSR) systems have been
developed. These systems integrate acoustic fea-
tures with those extracted from the speakers face.
This is an approximately synchronous process dur-
ing speech production. In AVSR, typically Hidden
Markov Models (HMMs) are used for modelling the
acoustic and visual features. The approaches mostly
differ in the handling of slight asynchrony between
the two feature streams. The methods range from
simple feature concatenation which does not allow
asynchrony at all up to more flexible HMM archi-
tectures (e.g. Product-HMMs) allowing ca. 100 ms
of asynchrony in practice (Potamianos et al., 2003).

Other systems proposed integrate features from a
static visual scene into speech recognition. Knowl-
edge inferred from a visual scene can be used to gen-
erate grammars for object descriptions (Naeve et al.,
1995). These grammars are used as language model
to improve speech recognition. Deb Roy (2005) re-
ports a system, which fuses knowledge of the visual
semantics of language and the specific contents of
a visual scene during speech processing. Based on
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the current scene layout the system generates pos-
sible word sequences for object descriptions from
a probabilistic grammar. These are weighted by a
likelihood associated with each object in the scene.
The result is a bi-gram model, which is dynami-
cally updated using a visual attention mechanism in-
corporating the partially processed utterance. This
model is used to bias speech recognition. Both ap-
proaches have in common that the scene informa-
tion remains static during speech processing. Thus,
the synchronization problem can be neglected and
the integration is done on the level of utterances.
In this case also late integration schemes are pos-
sible that infer a joint multi-modal meaning after
a word sequence has been recognized (Wachsmuth
and Sagerer, 2002).

The timing and synchronization becomes relevant
when dynamic visual events are considered as vi-
sual context. Two different cases can be distin-
guished. On the one hand, communicative gestures
like pointing provide information that is directly re-
lated to the syntactic structure of the sentence. As a
consequence, these are approximately synchronized
with the corresponding noun phrases and partially
marked in the wording. In this area, different re-
search groups have started to collect multimodal cor-
pora (Green et al., 2006; Wolf and Bugmann, 2005;
Maas and Wrede, 2006). However, in these set-
tings, the scene environment is still static and the
kind of visual information provided is of limited use
in speech recognition.

On the other hand, human actions or action se-
quences that are verbally commented are the most
informative but also most flexible case. Usable cor-
pora for speech recognition training as well as eval-
uation are still rare. Integrating this information into
speech recognition broaches two problems. First,
humans do not execute actions synchronously while
describing a task verbally. The degree of asynchrony
lays in a range of several seconds as reported in
(Wolf and Bugmann, 2006). Hence, it is not possible
to integrate this information using HMM architec-
tures as used in AVSR. Second, the actions change
in the course of an utterance. Thus, the contextual
information is not static as in the previous systems
utilizing visual scene contents.

In this paper, we present a corpus-based method
for training and optimising action-specific language

models. The goal is to improve recognition accu-
racy by using these models during speech process-
ing. Training data for the language models is col-
lected using a scenario described in section 2. Sec-
tion 3 describes our method of associating utterance
parts to actions. The resulting action-specific train-
ing data is used in an automated language model
training and optimisation process. The results of this
process are discussed in section 4.

2 Scenario and data collection

Figure 1: A test subject describes a task while per-
forming it.

Our scenario resembles a situation in which a user
teaches a new task to a robotic system. A test sub-
ject sits in front of a table with several objects (e.g.
a cup and a plant) on it that can be utilized for differ-
ent manipulative actions (Figure 1). Only a subset of
the objects is relevant for the following demonstra-
tion. The subject is instructed to explain some sim-
ple tasks to the system while performing the corre-
sponding action sequence. In order to suppress deic-
tic gestures and too complex descriptions they have
to imagine, that their communication partner is intel-
ligent and knows the setup. The tasks are watering
a plant, preparing tea and preparing coffee. In order
to generate more varying utterances the test subjects
have to perform each task twice with three different
object layouts. The second time they are addition-
ally instructed to name colours and object relation-
ships if possible. The utterances are recorded using
a headset microphone and the scene is recorded by
video. A corpus is collected containing the utter-
ance transcriptions and time intervals, which anno-
tate the actions. The actions performed are anno-
tated in the video based on an abstraction hierarchy
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as depicted in Figure 2). The choice of the compo-
sitional granularity was based on two reasons. First,
the corresponding primitives can be detected using a
pre-trained trajectory based action recogniser (Li et
al., 2006). Secondly, the verbalization happened on
that level due to the instructions given.

The resulting corpus consists of 195 utterances
from 11 test subjects (17.7 utterances per person).
The overall length is about 38 minutes. The aver-
age utterance length is about 12.7 s with about 33
words per utterance. The entire corpus includes
6 429 words with a lexicon size of 288 different
words. The videos are annotated with 11 different
actions. The average length of an action interval is
1.75 s. All in all 999 intervals with an overall length
of about 29 minutes have been annotated. Each ut-
terance contains 5.5 actions in average.

action

take putdown pourin

cuptea sugar milk tea cup milk tea sugar milk water

Figure 2: Hierarchic structure of actions used for an-
notation.

The following section describes how action-spe-
cific language models are created using this corpus.

3 Action-Specific Language Models

Speech recognition models are typically formulated
distinguishing acoustic and language models. The
standard technique for language models are n-grams
that have proven their effectiveness over many years
(Rosenfeld, 2000). For acquiring realistic language
models, n-grams need to be trained using a repre-
sentative sample. In the present approach, we as-
sume that the wording will be biased by the ac-
tion, which the speaker performs and describes in
parallel. Thus, we aim at the estimation of action-
specific language models. In order to gain corre-
sponding action-specific samples two problems need
to be solved. First, a method is required, which is
able to associate speech with action intervals in or-
der to extract action-specific parts from an utterance.
Secondly, our approach requires temporal informa-
tion (word intervals) for both the actions and the
speech. The utterance transcriptions from the above-

described corpus are not annotated with temporal in-
formation in contrast to the video annotation. Man-
ual annotation on that level of detail is expensive.
Thus, we use an automated approach, which is de-
scribed in the next section. Afterwards we elaborate
on our approach to the first problem.

3.1 Gaining Time Information
The temporal information of an utterance with a
known transcription can be gained by using a so-
called forced alignment. Our speech recogniser
(Fink, 1999) uses Hidden Markov Models (HMMs)
as acoustic models. Existing models trained on a
speech corpus are used. Words not in the lexi-
con are defined by new compound models based on
phoneme HMMs. In a forced alignment, the model
topology is restricted in accordance with each utter-
ance transcription. This means the order of word
models is fixed for each transcription ensuring a cor-
rect alignment although the acoustic quality varies
depending on the speaker. Since the transcription
does not contain pauses or spontaneous speech ef-
fects, the model topology needs to be adapted ac-
cordingly. An “<other>” model for these effects is
optionally allowed between words. Figure 3 shows
a schematic diagram of the model topology. For

...

ich

...

nehme

...

die

...

Pflanze

...

...

<other>

...

...

<other>

...

Figure 3: Schematic diagram of a HMM topol-
ogy with fixed word model order and optional
“<other>” models.

each utterance, a sequence of MFCC feature vectors
is extracted following standard speech recognition
techniques. The Viterbi algorithm is used to calcu-
late the state sequence s through the model topology
which produces the feature vector sequence o with
the maximum probability given the HMM λ:

s∗ = argmax
s

P (o, s|λ) (1)

After the Viterbi alignment, the resulting state se-
quence can be used to calculate the time interval for

97



each word since the frame length used during fea-
ture extraction is known. After this step, the tem-
poral information is available for both the utterance
transcription and the action annotation. The follow-
ing section explains the next step where the temporal
information is used to associate utterance parts with
actions.

3.2 Pairing of Speech and Actions
The main problem when speech has to be associ-
ated with action intervals is that the utterance parts
semantically belonging to actions are asynchronous
on the time-line (Wolf and Bugmann, 2006). Thus,
a distance measure d(wi, aj) is calculated between
each word wi and action aj . A set of tolerance pa-
rameters is used to decide if a word is assigned to an
action. By choosing these parameters appropriately,
the asynchrony between speech and actions can be
respected. Since the time shift is not longer than
several seconds this procedure is suitable. Multiple
cases have to be handled when calculating with tem-
poral intervals, which are systematically structured
by Allen’s calculus (Allen, 1983). Our method uses
a subset of these relationships. Each type of action
uses independent tolerance parameters to the left hl

j

and the right hr
j . They are used depending if wi is

before or after aj respectively. Pauses detected dur-
ing the forced alignment give hints about the change
of an action. Thus, silence is weighted additionally
using a penalty parameter gj so that silence between
an action and a word further increases the temporal
difference. Figure 4 illustrates the distance measure
when silence has to be considered.

wi

t1 t2

t4t3

aj
t5 t6

<silence>

Figure 4: The distance function between two word
intervals under the above constellation is defined as
d(wi, aj) = t3 − t2 + gj · (t3 − t5).

A word is associated with an action if the follow-
ing condition is true:

−hr
j < d(wi, aj) < hl

j (2)

Figure 5 gives a simple example about the assign-
ment strategy. The tolerance parameters are deter-

mined automatically and individually for each lan-
guage model using an optimisation method, which
is described in section 3.4.

3.3 Language Model Training
The objective of the language model training is to
create a n-gram-model for each action type, which
predicts the action-specific utterance parts most ac-
curately. These models could directly be trained
with the results of the above assignment strategy but
it is likely that these models become too specific.
Therefore, the training data is structured using the
hierarchy defined in figure 2. The top level refers to
the complete utterance. The second level addresses
utterance parts on a more general action level e.g.
“take” or “put”. The third level reaches the high-
est level of granularity with action-object specific
utterance parts. During training each level can be
weighted using an individual factor (see figure 6).
The set of weighting factors is specific for each lan-

complete utterance

take putdown pourin

cuptea sugar milk tea cup milk tea sugar milk water

m
o
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Figure 6: Structure of the training data using the ac-
tion hierarchy. The highlighted path shows by ex-
ample, which parts are used and weighted to train
one language model.

guage model. Thus, each language model has an in-
dividual degree of specialisation depending on these
factors. The training data required in this process is
generated using the speech and action pairing pro-
cess with an individual parameter set. Both the pair-
ing parameters and the weighting factors are opti-
mised specifically for each language model using a
method described in the following section.

During model estimation, absolute discounting
and backing-off are used to handle unseen events.
The counts c(yz) of a word z with history y are
modified with an absolute value β in order to gain
probability mass for unseen events so that the rela-
tive frequencies are defined as:

f∗(z|y) =
c(yz) − β

c(y·)
∀yz c(yz) > β (3)

Where c(y·) denotes all events with history y.
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<other> ich nehme jetzt die Tasse und gieße damit die Pflanze links <other>

action–take–cup action–pourin–water action–putdown–cup

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

Figure 5: Augmented utterance transcription and action annotation on one time axis (t[s]). Assuming pourin-
water has a tolerance of 0.5 s to the left and 0 s to the right the part “Tasse und gieße damit die Pflanze links”
is assigned to this action.

3.4 Parameter Optimisation

In the above sections, we have introduced several pa-
rameters. The tolerance parameters and the penalty
factors for silence sum up to 33 in total considering
all 11 action types. In addition, the weighting factors
in the training data structure count 33 in total. This
large number of free parameters cannot efficiently
be determined manually. Thus, we use an optimisa-
tion method, which uses the perplexity to measure
the quality of the action-specific models. We firstly
describe the method in general and go into detail in
the next paragraph.

In order to compute the perplexity a test sample
is required. Since our corpus is relatively small, the
choice of the test sample has large influence on the
perplexity. Therefore the perplexity is computed us-
ing a leave-one-out cross validation (Kohavi, 1995).
The utterances of one person are used as testing data
on each run; the others are used for training. Firstly,
a parameter set with the above parameters is gener-
ated. This parameter set is used to train language
models with the method described in the last two
sections. The testing data is gained using the same
parameter set. Secondly, the perplexity is computed
for each excluded test subject. The average perplex-
ity regarding an action-specific language model is
the final measurement of this model and the under-
lying parameter set. Thus, a parameter optimisation
also finds the tolerance parameters for speech action
assignment. The asynchrony between speech and
actions is respected this way. This method depends
on the assumption that actions frame semantic units,
which are verbalised similarly. Therefore, a correct
assignment of speech to actions results in a better
perplexity rating.

In detail, the optimisation is realised by evaluating
a large number of parameter sets automatically. The

tolerance parameters to the left and the right are var-
ied in a range from 0 to 3 seconds using an increment
0.5. The silence penalty is varied in a range from 0
to 2 analogously. The training data is weighted zero
or once on utterance level. The action-level weight-
ing is varied between 0 and 5. On the action-object
level, weighting factors from 1 to 10 have been ex-
plored. We have chosen 12 sets of these factors in
order to evaluate models with different degrees of
specialisation. All combinations of these parame-
ters result in 2 892 different sets. Each one is used
to generate a complete set of action-specific bi-gram
language models. Unseen events are handled using
absolute discounting with β = 0.8. Due to the large
number of parameter sets and the resulting complex-
ity, this factor has not been made subject to optimi-
sation. Furthermore, the discounting factor has in-
significant influence regarding this method as infor-
mal tests have shown.

After the action-specific language models have
been created the perplexity is computed so that each
combination of language model and the underlying
parameter set is associated with one. This way the
perplexity can be used as optimisation criterion to
find the best language model for each type of action.
In the following section we present first results gath-
ered using these models during speech processing.

4 Results

The language models’ quality is evaluated by assess-
ing the corresponding speech recognition perfor-
mance. Our speech recogniser uses a standard time
synchronous integrated search strategy to weight hy-
potheses generated by the acoustic model addition-
ally with the language model. We have implemented
a strategy, which enables the speech recogniser to
switch language models during speech processing
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WACC % WCORR %
Action-Specific 65.98 ±1.1 68.77
Base Model 69.39 ±1.1 71.96
Difference −3.41 −3.19
Random Usage 48.61 ±1.2 51.36

Table 1: Recognition results (expand strategy) using
optimised action-specific language models, trained
with utterance parts on action-object level only.

Action Base Model Diff
perp. perp.

take-cup 20.84 16.55 4.29
take-tea 34.90 16.97 17.93
take-sugar 24.17 14.04 10.12
take-milk 22.68 19.28 3.40
putdown-tea 28.39 9.83 18.56
putdown-cup 23.01 15.11 7.90
putdown-milk 30.48 12.03 18.45
pourin-tea 41.21 11.95 29.27
pourin-sugar 20.39 12.50 7.89
pourin-milk 36.32 12.54 23.78
pourin-water 34.51 16.10 18.41

Table 2: Comparison of the perplexity regarding the
action-specific models against the perplexity using
a standard bi-gram trained on the whole utterances.
The language models are trained with utterance parts
on action-object level only.

using a set of switch points. In our case these
switch points are generated from the action anno-
tation. Two strategies have been implemented. The
stick strategy uses exactly the interval borders and a
default model when no annotation is available e.g.
between two intervals. The expand strategy expands
each action interval as far as possible so that an
action-specific model is always used. All results
are computed using a leave-one-out cross validation
as described in section 3.4. The audio data belong-
ing to the excluded test subject for each run is used
for evaluating the speech recognizer. Afterwards
the word accuracy WACC and the word correctness
WCORR are calculated.

In order to see how the degree of specialisation af-
fects the recognition results it is possible to apply re-
strictions during optimisation. In the following, we

WACC % WCORR %
Action-Specific 70.56 ±1.1 73.20
Base Model 69.39 ±1.1 71.96
Difference 1.17 1.24
Random Usage 69.22 ±1.1 71.97

Table 3: Recognition results (expand strategy) using
optimised action-specific language models, trained
using the utterance level always once. Weighting
factors have been made subject to optimisation.

Action Base Model Diff
perp. perp.

take-cup 20,43 17,59 2,84
take-tea 26,59 25,15 1,44
take-sugar 23,36 18,98 4,38
take-milk 22,68 21,63 1,05
putdown-tea 26,36 20,57 5,80
putdown-cup 22,51 20,91 1,60
putdown-milk 30,46 21,95 8,51
pourin-tea 27,27 22,51 4,77
pourin-sugar 20,33 15,40 4,93
pourin-milk 31,34 25,46 5,88
pourin-water 29,53 24,62 4,91

Table 4: Comparison of the perplexity regarding the
action-specific models against the perplexity using
a standard bi-gram trained on the whole utterances.
The language models are trained using the utterance
level always once.

Action Tolerance [s] Silence-
left right penalty

take-cup 2.00 1.00 2.00
take-tea 3.00 3.00 0.00
take-sugar 0.00 3.00 1.00
take-milk 3.00 2.50 0.00
putdown-tea 2.50 0.00 0.50
putdown-cup 3.00 0.50 0.50
putdown-milk 0.50 0.00 1.00
pourin-tea 0.50 2.50 1.00
pourin-sugar 0.50 1.00 1.50
pourin-milk 0.00 2.00 0.00
pourin-water 2.50 1.50 0.00

Table 5: Tolerance parameters found by the optimi-
sation process (cp. table 4). The language models
are trained using the utterance level always once.
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Figure 7: Overview of the average perplexity against word accuracy for all evaluation results. Models that
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Action Weighting Factors
Utt. Ac. Ac.-Obj.

take-cup 1 0 3
take-tea 1 0 1
take-sugar 1 0 3
take-milk 1 0 3
putdown-tea 1 0 5
putdown-cup 1 0 1
putdown-milk 1 1 10
pourin-tea 1 1 5
pourin-sugar 1 1 5
pourin-milk 1 0 5
pourin-water 1 0 3

Table 6: Weighting factors determined during pa-
rameter optimisation (cp. table 4).

present detailed results using very specialised mod-
els on the one hand and results where the degree of
specialisation has also been made subject to optimi-
sation on the other hand. The results are compared
against recognition results using a standard bi-gram
model trained on the complete utterance level (base
result). Another comparison is made against results
where an action-specific model is randomly selected
for each action interval during speech recognition in
order to evaluate their level of specialisation.

Table 1 shows results using very specific models
trained with utterance parts on action-object level
only. The models are too specific since the results
are less good than using a standard bi-gram model.

The perplexity difference in table 2 shows that these
models are much more specific to the action context
than the standard bi-gram model. The random usage
result confirms that parts not belonging to the cor-
responding action context are not well described by
the model.

Since very specific models with a low perplexity
do not improve recognition results restrictions are
applied during optimisation. The results in table 3
are generated using language models, which have
been trained using the utterance level always once.
The other weighting factors have been made subject
to optimisation. The results are significantly better
in comparison to the standard model. In contrast to
the very specific models, the perplexity difference to
the base model is smaller (see table 4). The random
usage results emphasise the high level of generalisa-
tion. Table 5 shows the optimised tolerance param-
eters. The according weighting factors are shown in
table 6. As one can see, the action-level seems to be
of less importance to the specialisation and is there-
fore rarely used.

We have evaluated more action-specific models
optimised under different restrictions. These re-
sults are summarized in figure 7. In order to verify
that our method actually finds action-specific mod-
els which have better results than others trained dur-
ing the optimisation process we have additionally
evaluated non-optimal action-specific models with a
lower perplexity. These models are selected by leav-
ing different percentages (from 10 % up to 80 %) of
the top rated models unconsidered during the opti-
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misation process. The figure shows that these mod-
els indeed create worse recognition results than the
fully optimised ones.

5 Outlook

We have demonstrated an approach to include visual
context into speech recognition realised by means
of action-specific language models, which are auto-
matically trained and optimised. The action-specific
utterance parts required for training are gained us-
ing an automatic associating method between ac-
tions and speech. The method only requires manual
annotation on a level of low detail. The perplexity is
used as optimisation criterion for the training param-
eter sets and a detailed analysis shows the adequacy
of this approach. In order to ensure a certain level
of generalisation the complete utterance level has to
be always used. The optimisation under this restric-
tion delivers the best results, which are significantly
improved in comparison to speech processing with a
standard bi-gram model.

Although this approach is able to improve speech
recognition, the pairing of speech and actions hap-
pens on a heuristic level. Further research has to
show in how far this association delivers seman-
tically correct results. In contrast to knowledge-
based methods, our approach can easily be trans-
ferred to other domains due to the automated pairing
and training process.

Further applications of action-specific language
models could make it possible that action hypothe-
ses are extracted during speech recognition. In or-
der to realise that, multiple models could be matched
against each other during speech processing.
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A. Green, H. Hüttenrauch, E. A. Topp, and K. S. Eklundh.
2006. Developing a contextualized mulimodal corpus
for human-robot interaction. In Proc. of Int. Conf. on
Language Resources and Evaluation (LREC), Genua.

Ron Kohavi. 1995. A study of cross-validation and
bootstrap for accuracy estimation and model selection.
In International Joint Conference on Artificial Intelli-
gence, pages 1137–1145.

Zhe Li, Jannik Fritsch, Sven Wachsmuth, and Gerhard
Sagerer. 2006. An object-oriented approach using a
top-down and bottom-up process for manipulative ac-
tion recognition. In DAGM06, volume 4174 of Lecture
Notes in Computer Science, pages 212–221, Heidel-
berg, Germany. Springer-Verlag.

Jan F. Maas and Britta Wrede. 2006. BITT: A corpus for
topic tracking evaluation on multimodal human-robot-
interaction. In Proceedings of the international con-
ference on Language and Evaluation (LREC), Genoa,
Italy.

Harry Mcgurk and John Macdonald. 1976. Hearing
lips and seeing voices. Nature, 264(5588):746–748,
Dezember.

U. Naeve, G. Socher, G. A. Fink, F. Kummert, and
G. Sagerer. 1995. Generation of language models us-
ing the results of image analysis. In European Con-
ference on Speech Communication and Technology,
pages 1739–1742, Madrid.

G. Potamianos, C. Neti, G. Gravier, A. Garg, and A. W.
Senior. 2003. Recent advances in the automatic recog-
nition of audiovisual speech. Proceedings of the IEEE,
91(9):1306–1326.

R. Rosenfeld. 2000. Two decades of statistical language
modeling: where do we go from here? Proceedings of
the IEEE, 88(8):1270–1278, Aug.

Deb Roy and Niloy Mukherjee. 2005. Towards sit-
uated speech understanding: visual context priming
of language models. Computer Speech & Language,
19(2):227–248, April.

M. J. Spivey, M. J. Tyler, K. M. Eberhard, and M.K.
Tanenhaus. 2001. Linguistically mediated visual
search. Psychological Science, 12(4):282–286, July.

S. Wachsmuth and G. Sagerer. 2002. Bayesian Networks
for Speech and Image Integration. In Proc. of 18th
National Conf. on Artificial Intelligence (AAAI-2002),
pages 300–306, Edmonton, Alberta, Canada.

J. C. Wolf and G. Bugmann. 2005. Multimodal corpus
collection for the design of user-programmable robots.
In TAROS 2005 Towards Autonomous Robotic Sys-
tems Incorporating the Autumn Biro-Net Symposium,
September.

J. C. Wolf and G. Bugmann. 2006. Linking speech and
gesture in multimodal instruction systems. In IEEE
International Symposium on Robot and Human Inter-
active Communication, pages 141–144, Hatfield, UK,
September.

102


