
Declarative Syntactic Processing of Natural Language Using
Concurrent Constraint Programming and Probabilistic Dependency

Modeling

Irene Langkilde-Geary
Natural Language Technology Group

University of Brighton
Brighton BN2 4GJ, UK

ilg10@brighton.ac.uk

Abstract

This paper describes a declarative approach
to parsing and realization of natural lan-
guage using a probabilistic dependency
model of syntax within a constrained opti-
mization framework. Such an approach is
particularly well-suited for applications like
machine translation. The paper describes
a test-of-concept implementation applied to
the classic sentence “Time flies like an ar-
row.” and discusses the further research
necessary for scaling up to general broad-
coverage processing of language.

1 Introduction

Interest has grown recently in using syntactically-
informed statistical models to improve the quality of
machine translation (MT) output (eg., (Charniak et
al., 2003; Och et al., 2004; Galley et al., 2006; Has-
san et al., 2007; Chang and Toutanova, 2006)), in
part because syntactic generalizations can help over-
come sparse data problems that are inherent in nat-
ural language processing. (See (Koehn and Hoang,
2007) for a sample of some more detailed motiva-
tions.).

However, leveraging syntactic information poses
several challenges. For one, a system needs syntac-
tic information about the subphrases involved in a
translation before a statistical model of syntax can
be applied to help generate fluent output. Such in-
formation can be expensive and/or time-consuming
to obtain (especially if manual annotation were in-
volved), or available only in approximate forms

(such as via an automatic parser). Another challenge
can be the need for consistent or compatible syn-
tactic representations across different components or
stages of processing—in particular, across the anal-
ysis versus realization components for the target lan-
guage.

Yet another challenge is the increased model com-
plexity inherent in richer representations that include
syntax. The size of the model space may increase
both from additional attributes associated with indi-
vidual words (or phrases) as well as from additional
statistical dependencies such as a parent or head, be-
sides adjacent neighboring words. The combinato-
rial explosion that occurs with higher dimensional
model spaces can easily become intractable for any
algorithm that operates on tuples of three or more
word-and-attribute structures.

Finally, the high degree of interdependence be-
tween subtasks such as lexical choice, choice of syn-
tactic structure, and word order, etc., poses a chal-
lenge for organizing processing steps. Although
a simple pipeline architecture has most commonly
been used for generation systems, one study of 19
systems (Cahill et al., 1999) found that no two sys-
tems implemented exactly the same pipeline. As a
system scales up to broad coverage of vocabulary
and syntax (as it must in translation of newspaper
texts), a pipeline-style architecture becomes less and
less tenable because of the degradations in output
quality that result from separating inter-related deci-
sions and ignoring the full range of statistical depen-
dencies.

A long history of work within the generation com-
munity on system architectures (including (Cahill et

55

al., 2000; Calder et al., 1999; Beale et al., 1998;
Beale, 1997; Elhadad et al., 1997; Smedt et al.,
1996; Robin, 1994; Meteer, 1990)) as well as our
own previous work on realization for MT suggests
to us that fine-grained declarativeness is necessary
for any general solution to the problem of broad-
coverage, high-quality language realization. Declar-
ativeness means that the language representation is
stateless and the computation mechanisms impose
no artificial restrictions on the sequential order of
processing steps. Instead, the flow of processing is
implicitly directed by the propagation of inferences
given an input and a set of relations/constraints.
Fine-grained means that constraints on attributes and
dependencies are as unbundled from each other as
possible, so that they can be handled independently.
Finer granularity inherently enhances declarative-
ness.

A declarative approach not only addresses the
challenge of subtask interdependence, it can simul-
taneously solve the problem of obtaining syntactic
analyses for training syntactically-informed MT sys-
tems, by the very nature of being declarative. The
syntactic analyses thus obtained are also naturally
compatible with the task of realization. Declarative-
ness offers a further advantage of genericity, making
the approach potentially applicable to a wide range
of applications and domains beyond MT.

Declarative representations and computation
mechanisms have been the subject of much
research in the fields of both Linguistics and
Computer Science over the last 30-40 years,
at times motivating each other but also some-
times developing independently. Currently
some of the most popular linguistic theories
of research include HPSG (hpsg.stanford.edu),
LFG (www.essex.ac.uk/linguistics/LFG/), TAG
(www.cis.upenn.edu/ xtag/home.html), and CCG
(groups.inf.ed.ac.uk/ccg/). Older work on declara-
tive linguistic processing mechanisms was purely
symbolic, and had a reputation for being brittle
and slow. More recent work incorporates statistical
modeling—improving robustness—but still tends to
be aimed at parsing more strongly than realization,
resulting in a lack of complete declarativeness. For
example, TAG and CCG explicitly model derivation
order, while the phrase structure grammars tradi-
tionally employed by HPSG and LFG encode more

implicit restrictions on derivation order.
Furthermore, in practice some existing broad-

coverage realizers based on declarative theories pro-
grammatically break processing into stages (usu-
ally to improve efficiency), thereby imposing a
greater sequential order on processing. For exam-
ple, (White, 2006; Carroll and Oepen, 2005) delay
the realization of free-er order elements like modi-
fiers and conjuncts to avoid wasted evaluation of all
possible permutations of constituent order within in-
complete phrases. However, this makes certain other
decisions harder, such as choosing the best lexemes
to express a predicate and its dependent when the de-
pendent might be best realized as an argument with
some lexemes but as an adjunct with others.

In the last 15 years, the field of Computer Sci-
ence has made some interesting and significant ad-
vances in the context of developing modeling lan-
guages for efficiently solving large combinatorial
problems, giving rise to a sub-area called Con-
straint Programming (Dechter, 2003; Apt, 2003;
Marriott and Stuckey, 1998; Rossi, 2006). How-
ever, these advances do not yet seem to have be-
come widely known within the Natural Language
Processing community, where statistical approaches
have been blossoming. Constraint Programming
(CP) is a general-purpose methodology with strong
theoretical foundations whose declarativeness is en-
hanced by concurrency (Roy and Haridi, 2004; San-
giorgi and Walker, 2001). It is designed for integrat-
ing heterogeneous constraint solving mechanisms,
with roots in Artifical Intelligence constraint satis-
faction and Operations Research optimization tech-
niques. In contrast, theoretical linguistic formalisms
traditionally used only a single kind of constraint
solver—unification.

Another important point of difference is in the
nature of how constraints are processed. While
unification-based approaches tend to passively test-
then-generate (or even weaker, generate-then-test)
value assignments for variables during a search pro-
cedure, hard constraint solvers in a constraint pro-
gramming system actively propagate inferences to a
stronger level of consistency between each step of
search. Active propagation tends to dramatically re-
duce the size of the search space, leading to more ef-
ficient and powerful processing. See (Blache, 2000)
for further elaboration on the difference between ac-

56

tive versus passive use of constraints in linguistic
processing.

One actively emerging area of current research in
both linguistics and computer science is combining
hard constraints (ie. logic-oriented reasoning) with
soft preferences, including probabilistic reasoning.
In a previous exploratory paper (Langkilde-Geary,
2005), we proposed a novel optimization approach
to declarative syntactic language processing that ap-
plied probabilistic modeling within the framework
of Concurrent Constraint Programming (CCP). In
this paper we extend and refine that work, giving
stronger evidence of the potential of this solution.
Our results are still preliminary, however, as the
computationally hard nature of this problem and the
ambitiousness of the proposed solution necessitate
solving multiple challenging subproblems before a
full-scale evaluation can be performed.

The paper is organized as follows: we first de-
scribe our refined formulation of parsing/generation
as a constraint program that optimizes sentence
probability in Section 2. Then in Section 3 we dis-
cuss how the program performs on the classic input
sentence, illustrating the synergy of combining log-
ical and probabilistic reasoning and the flexibility of
the approach. Finally, Section 4 concludes.

2 Constraint Program Formulation

A problem in the framework of CCP is represented
as constraints on sets of variables. A constraint pro-
gram consists of a declarative specification of these
variables and contraints, together with a search strat-
egy. One basic kind of constraint specifies a set of
possible domain values for a variable. Non-basic
constraints are associated with specialized solvers
that incrementally infer additional domain restric-
tions.

The general methodology employed by CCP first
allows the solvers to execute until no further in-
ferences can be drawn about the variable domains.
When propagation has stabilized, the problem space
is split into two or more complimentary sub-cases.
The reduced domains within each subproblem may
make new inferences possible, triggering additional
propagation. Search again waits until stability be-
fore performing a new split. Thus, propagation and
search are iteratively applied. The repeated splitting

of the search space defines a search tree.
A search strategy specifies exactly how a problem

space is split into subcases at each new step of search
and in which order the subcases are to be explored.
Search stops when one or all solutions of interest
have been found. A solution is defined as a complete
assignment of values to variables that is consistent
with all the constraints.

Constraint programming consists of a language
for expressing the specifications of variables, con-
straints, and strategies. The high-level of ab-
straction employed makes it easy describe and ex-
periment with different models. Our work uses
the Mozart/Oz programming language environment,
which provides built-in constructs for concurrent
constraint programming as well as support for new
user-defined constraints. Mozart/Oz is a general-
purpose programming language that has pioneered
the development of light-weight data-flow concur-
rency. Data-flow concurrency synchronizes on the
determination of logic (non-mutable) variables so
that the processing of constraints is implicitly input
driven and declarative. CCP in Mozart/Oz can be
viewed as an implementation of a whiteboard archi-
tecture.

Our CCP formulation of natural language syn-
tactic processing makes use of the dependency-
style corpus described in (Langkilde-Geary and Bet-
teridge, 2006). This corpus is derived from the Penn
Treebank (Marcus et al., 1993) and designed espe-
cially for realization. It represents a sentence as a
sequence of word tokens where each word is as-
sociated with a set of more than 50 linguistically-
motivated features, one of which is a head relation.
It is flatter and more regular than the original an-
notation and other similar corpora, in part because
of its choice of head words for modeling dependen-
cies. The quality of the corpus has in a certain sense
been validated through experiments in which almost
fully-specified inputs constructed from the corpus
were regenerated using the HALogen system, pro-
ducing exact matches with the original sentence a
high percentage of the time. These characteristics
are its main advantages for our purposes.

2.1 Variables

In our test-of-concept implementation, we restrict
our attention to just a handful of features per word

57

FEATURE VALUE

ID a word id
HeadID id of head word
Token inflected word form
Role syntactic function
Group type (GT) clause, np, other
Direction (DIR) +/- from head
Relative position (RP) tree distance from head
Absolute position (AP) distance from start of sent

Table 1: Word features

plus some needed auxiliary variables. Table 1 sum-
marizes the main features associated with each word
that we use in this paper. They are node ID, token,
functional role, group type, direction, relative posi-
tion, and absolute position. In addition, each node
is associated with a set of variables representing its
head, consisting of the same set of features.

The ID is an arbitrary number associated with a
word, and is used together with theHeadID feature
to represent the dependency structure of a sentence.
The value of the ID has no linguistic significance,
and we assume that it is internally assigned during
initialization. Each word has exactly one head. The
top word in the sentence is a special case, defined to
have a null node as its head.

The role feature represents the functional rela-
tionship of a dependent with respect to its head. It
is derived from both functional roles and part-of-
speech tags in the Penn Treebank. Thegroup-type
(gt) feature is a generalization of constituent-style
non-terminal labels associated with the head word of
the constituent. It distinguishes between just three
coarse categories: clause, noun phrase (np), and
other.

Thedirection (dir) feature indicates whether a de-
pendent comes to the left or right of its head. It is
partially redundant with the relative position feature,
but useful as a generalization of it. Therelative po-
sition (rp) indicates that a word is the nth dependent
attached to one side of a head with the sign indicat-
ing which side. The value used forn is actually off-
set by 1000 to keep the domain positive as required
by Mozart. Finally,absolute position (ap) desig-
nates the linear order of words in a sentence, with
the first word of the sentence assigned position 1.

2.2 Constraints

The basic symbolic constraints that enumerate the
domains of each variable are defined according
to Table 1. Our implementation limits the do-
mains of the relative position and absolute posi-
tion features according to the number of nodes
given in the input. To be precise, each rela-
tive position variable is constrained to the range
1000-NumNodes..1000+NumNodes, and the abso-
lute position is constrained to be between 1 and
NumNodes. The token feature in our implementa-
tion has 39067 possible values (drawn from the first
22 sections of the PennTreebank), including a spe-
cial token for unseen words. For implementation
in Mozart, symbolic domain values are arbitrarily
mapped to integers.

Besides domain constraints for each variable,
there are constraints that define the relationships be-
tween the features of words, the tree structure of a
sentence and the probabilistic score of the sentence
as a whole. They are as follows, starting with the
simplest to explain.

2.2.1 Definitional Constraints

The definitional constraints define the representa-
tion itself. For example, the direction feature is con-
strained to have the value ’-’ if it occurs to the left
of its head in the linear order of words in the sen-
tence. In other words, it is ’-’ if its absolute position
is less than the absolute position of its head. Also, by
definition, the relative position features must have a
value strictly less than 1000 iff the direction is ’-’.
Note that the direction and relative position features
are partially redundant logically. This is on purpose,
to facilitate generalization in the face of sparse data
for the probabilistic model.

Other definitional constraints are that the top node
in the sentence has the role ’top’, and a relative po-
sition of exactly 1000, and that the relative positions
of nodes with the same head must all be distinct and
sequential, except skipping the value 1000. The ab-
solute positions of all nodes must also be distinct.
The relative positions are constrained to correlate
with the absolute positions, such that among nodes
with the same head, smaller relative positions are
associated with smaller absolute positions, and vice
versa.

58

2.2.2 Tree Structure Constraints

Another group of constraints define the projec-
tive tree structure between the words in the sentence
and their heads. We implement this using Mozart’s
set constraints. We define several set variables over
node IDs to do this: ancestors, directdeps, leftdi-
rectdeps, rightdirectdeps, and descendents. The set
of ancestors and set of descendents are disjoint (ie.
no head cycles), with the ancestors defined to be a
node’s head unioned with the ancestors of the head’s
head; while the descendents are defined as a node’s
directdeps unioned with each direct dependent’s de-
scendents, with the subsets actually forming a par-
tition among a node’s descendents. A node’s di-
rectdeps consist of unioning the disjoint leftdirect-
deps and rightdirectdeps, where the left- and right-
directdeps are defined by the direction and head id
features described earlier. Finally, the set of abso-
lute positions associated with the descendents of a
node together with the absolute position of a node
itself must form a convex set, or in other words, be a
continuous sequence of integers.

Also, as alluded to earlier, each node is associated
with a set of variables representing a head node. A
selection constraint enforces that the head node vari-
ables must eventually unify with a word node in the
sentence or the null-head node. A sentence is con-
strained to have one node with a null head. The de-
scendents of the null head node include all the word
nodes in the sentence.

2.2.3 Probabilistic Dependency Constraints

With each of the featuresgrouptype, position
direction, relative position, role and token of ev-
ery word node we associate a positive conditional
log probability score. This score is equal to -
logprob(Feature| history). Thehistory in this con-
text refers to features associated with the structural
head of a node and other features of the same node
upon which theFeature depends statistically. These
feature scores are summed to compute a likelihood
score for a whole sentence. The score for the whole
sentence is interpreted as a cost to be minimized in
searching for an optimal solution. Since Mozart cur-
rently only allows constraint variable domains that
are integers, the log probability scores are multiplied
by 10000, rounded, and then truncated to integers.

The conditioning (history) features of each fea-

Feature Interdependencies

group type head: gt; self: role, dir, rp, token
role head: role, gt; self: gt, dir, rp, token
position direction self: rp, role, gt
relative position self: dir, role, gt
token head: gt; self: gt, role

Table 2: Statistical Feature Dependencies

ture f in a node are assumed to be as shown in Ta-
ble 2. Our implementation waits for the head fea-
tures to be determined before computing a feature’s
score, but does not wait for the interdependent ”self”
features. Oncef and the head features it depends
on are determined, only the “self” features that have
been previously determined are used for condition-
ing, iff f depends on it according to Table 2. The
“self” dependencies listed in the table are therefore
symmetric, so that “self” features determined later
are conditioned on ones determined earlier, accord-
ing to the chain rule for probabilities.

For example, suppose that for a particular node its
token and role features are given in the input (as it is
in two of the experiments described later), and that
the three other statistical features are determined in
this order: position direction, relative position, and
group type. Then the score for that node is computed
as

NodeScore
= FeatScore(role) + FeatScore(pd)
+ FeatScore(rp) + FeatScore(gt)

= logprob(role) + logprob(pd|role)
+ logprob(rp | role, pd, h_gt)
+ logprob (gt | h_gt, role, pd, rp)

The probabilities are computed using raw (un-
smoothed) empirical frequencies extracted from the
(Langkilde-Geary and Betteridge, 2006) corpus. By
lucky coincidence, the probabilities needed to pro-
cess the sample sentence illustrated in this paper
given the dependencies assumed above were all non-
zero. However, sparse data problems prevent an im-
mediate larger-scale evaluation on more sentences.

2.2.4 Probabilistic Modeling Issues

Dynamic conditioning is important for enabling
truly declarative processing. (In future work, we in-
tend to investigate how to avoid waiting for the rel-
evant head features, to further improve the declar-
ativeness of the approach.) To our knowledge,

59

all existing work in NLP uses static conditioning.
Although dynamic conditioning can sometimes be
simulated with a statically trained model either by
marginalizing, or in conjunction with dynamic pro-
gramming techniques, or by training multiple sets of
models—one for each possible dynamic decompo-
sition, these approaches can all require exponential
amount of work, both in theory and in practice. We
do not believe that any of them would ultimately be
very satisfactory for the problem in this paper.

One not-uncommon alternative to an exact sim-
ulation is to approximate by substituting the de-
sired probability with a statically-smoothed proba-
bility using a somewhat different conditioning con-
text. There are various options for how to choose
a substitute context. However, dynamic condition-
ing is used so extensively in our approach that an
approximation is also unlikely to be satisfactory.

The ideal approach with respect to accuracy is
to perform smoothing dynamically. However, this
poses a different set of challenges: it has been stud-
ied relatively little to date and is very much an un-
solved problem; it is also inherently slower than a
simple look-up. We believe these challenges can be
overcome, and so we are currently in progress of de-
veloping approach along these lines.

2.3 Search Algorithm and Case-Splitting
Strategy

In Constraint Programming the shape of the search
space can be specified separately from the order
in which subparts of the space are searched. Or-
thogonally, one can also specify whether to search
for one, all, or a best solution. Our approach in
this paper is to perform a best-solution search using
Mozart’s built-in branch-and-bound algorithm. This
algorithm injects a new constraint into the problem
space after each intermediate solution is found that
requires any further solutions to have an equal or
better score than the current solution. (An interme-
diate solution is any complete assignment of values
to variables arrived at during search that satisfies all
the hard constraints.) The last solution found is then
the overall best solution returned by the algorithm.

For case-splitting, we define a two-stage strat-
egy. Before the first intermediate solution has been
found, we split on the variable whose two most
likely values have the greatest difference in likeli-

Token Role GT AP RP Dir ID Head
time sbj np 1 -1 - 5 2
flies top c 2 0 + 2 1
like rma o 3 -2 - 7 4
an det o 4 -1 - 6 4
arrow ajt np 5 1 + 4 2
. rpunc o 6 2 + 3 2

Table 3: Solution Sentence

hood. After that, the search space is distributed ac-
cording to the variable with the greatest number of
suspensions waiting on it. Ties are broken with the
likelihood difference, as in the first stage. The moti-
vation for this hybrid strategy is to facilitate the cal-
culation of features scores, which may be waiting on
one or more variables before they can be calculated.
Earlier calculation of scores enables greater pruning
of the search space. Note that since the absolute po-
sition and head id features can be determined from
the others, they are not considered for distribution.

3 Experimental Runs

We experimented with our implementation using the
classic sentence “Time flies like an arrow.” The
complete solution for this sentence with respect to
the features we are using is shown in Table 3. Note
that there is no element of our program that is
tied/hardwired to this particular input.

Table 4 describes three runs of the program
demonstrating the declarativeness of our approach
and the computational benefits of constraint propa-
gation. The first run performs realization, and the
last two do parsing. The first parsing experiment
(which is the second run) provides each word’s syn-
tactic role in the input. The second parsing experi-
ment (the third run) is more realistic, requiring the
program to solve for each word’s syntactic role. The
first two experiments (realization and parsing-given-
roles) are comparable in difficulty, while the third is
clearly harder.

The second column reports the size of the search
tree in terms of search nodes. For the sake of com-
parison, the third column shows the size of search
achieved in our previous work, while the raw size of
the total search space for the main variables of in-
terest is estimated in the fourth column. The latter
is calculated simply by multiplying the initial do-
main sizes of the unknown variables listed in the

60

Given VS. Unknown Search Prev. Search Total Search Depth Num Best Num % Correct
Tree Size Tree Size Tree Size Sols Sol Vars

token, role, head VS. dir, rp, ap, gt 70 194 2376 8 1 8 24 100.0
token, role, ap VS. dir, rp, head, gt 71 259 2772 9 2 12 24 100.0
token, ap VS. role, dir, rp, head, gt 5485 na 63756 16 2 17 30 96.7

Table 4: Experimental Runs

first column. These columns show that the refined
set of contraints we applied in this paper reduced the
search by 64-73% compared to the constraints used
in our previous work, and by 91-97% when com-
pared to the size of the entire search space. (Our
previous work did not use tokens at all for condition-
ing any probability scores, and thus could not have
performed well at all on the second parsing exper-
iment.) We expect that constraint propagation can
be considerably strengthed for the third experiment,
and plan to work on this further in the future.

The Depth column is the depth of the search tree.
The next column shows the number of intermedi-
ate solutions found during the branch-and-bound
search. The last “solution” is always the best one.
The “Best Sol” column reports how many search
tree nodes were explored before the best solution
was uncovered. It is especially noteworthy that in
all three runs, the best solution was uncovered re-
markably early. (The minimum is six, since there
are six tokens in the sentence.)

The last column indicates whether the “best” so-
lution matches our desired solution. The percentage
shown is calculated based on the number of vari-
ables whose values were initially unknown. This
was six words times four attributes in the first two
experiments, for example. That column shows that
our program arrived at the correct solution for the
first two experiments when given the role as input,
and very nearly obtained the correct solution even
without the role and given only the limited set of at-
tributes we used in this test.

The sole error was in labeling “time” as an adjunct
rather than as the subject of the sentence. However,
the program correctly identified “time” as a noun
phrase, and “flies” as its head. Upon further analysis
of the corpus, the error can seem reasonable given
the available conditioning features. In the Penn
Treebank the word “time” heads an adjunct much
more often than it heads a subject, even when oc-

curing directly adjacent and left of its head. For ex-
ample, the Treebank contains the following similar
sentences: “Mr. Petrie or his company have been ac-
cumulating Deb Shops stock for several years, each
time issuing a similar regulatory statement.” Also,
“The last time the S&P 500 yield dropped was”;
and “CalTrans begain working on a second round
..., this time wrapping freeway columns....”. We ex-
pect that a model augmented with additional features
should be able to resolve this error and correctly
solve the parse of the sentence.

Table 5 shows the variables chosen for distribu-
tion along the search path to the best solution for
each run of the program. Variables not shown in
this table had their value determined via constraint
propagation, rather than search. The Rel column in-
dicates whether the selected variable was associated
with the word node or its head. The “F” column in-
dicates which feature the variable represented.

The “Vals” column shows in order of decreasing
likelihood the set of possible values for the cho-
sen variable at that point in time. Values from the
original domain not listed were eliminated by that
point via constraint-based inference. Note that the
ordering of values reflects their context-dependent
probabilities, which takes into account dependencies
on previously determined variables (whether deter-
mined via inference or via selection during case-
splitting). The”V” column indicates which path in
the search tree the solution was on by listing the
value assigned to the chosen variable in the current
sub-case.

Finally, the Diff column contains the likelihood
difference between the first and second value pos-
sibilities. The large differences between the first
and second values for most search steps is striking.
There is often a clear preference for the top value
over the others. Note, however, that the top value is
not always correct. For example, in step 3 of the sec-
ond run, the probability model first postulates that

61

the head of arrow has a grouptype of “other”, al-
though it ultimately settles on the correct grouptype
of “clause”.

Token Rel F Vals V Diff
Run 1

1 time head gt c, np, o c 0.99
2 an head gt np, o np 0.99
3 time self dir -, + - 0.93
4 time self gt np, o np 0.62
5 arrow self dir +, - + 0.60
6 arrow self rp 1, 2 1 0.58
7 an self rp 1, 2 1 0.22

Run 2
1 time head gt c, np, o c 0.99
2 time self gt np, o np 0.62
3 arrow head gt o, c c 0.55
4 an head gt np, o np 0.99
5 arrow self rp 1, 2 1 0.58
6 . head gt o, np, c not o 0.43
7 . head gt c, np c 0.93
8 like head gt o, np np 0.43

Run 3
1 an self role det, obj, det 0.99

ajt, sbj,
clr, rma,
lp

2 flies self dir +, - + 0.82
3 time self role ajt, sbj, ajt 0.75

rma, tpc
4 like self role rma, ajt, rma 0.72

top, tpc,
prd, clr,
sbj

5 arrow head gt o, c c 0.55
6 an head gt np, o np 0.99
7 arrow self rp 1, 2 1 0.64
8 an head role ajt, sbj ajt 0.49
9 . head gt o, np, c not o 0.43

10 . head gt c, np c 0.93
11 like head gt o, np np 0.43

Table 5: Search path to best solution for each run

4 Conclusion

This paper argues that a declarative approach is
probably the most appropriate way to address the
challenges of high-quality realization for MT, and
provides additional evidence for the merits of an ap-
proach based on CCP combined with probabilistic
modeling. The evidence is still preliminary, because
such an ambitious project poses several challeng-
ing subproblems that will take time to address be-
fore a full-scale evaluation can be performed. How-
ever, this work illustrates the flexibility of the ap-
proach and has demonstrated some significant com-

putational benefits resulting from the synergy.

A statistical training algorithm designed to learn
weights/smooth probabilities and avoid overfitting
cannot learn from data alone to distinguish between
infrequent versus impossible events (when the popu-
lation space of events is not finite). At best it can ap-
proximate the distinction via regularization, which
limits the amount of weight/probability that can be
retained by seen events or redistributed to unseen
events according to an estimate of the variance in
a sample of data. The reliability of any such ap-
proximation is directly proportional to the size of the
sample/corpus used for obtaining the estimate.

In contrast, hard constraints can easily eliminate
impossible values and vastly reduce the space of
possibilities that must be considered. The reduction
is more dramatic the more that a model is factored
into attributes that are at least somewhat correlated.
Factoring enhances the ability of a model to gener-
alize in the presence of sparse data, but loses infor-
mation about invalid or impossible combinations of
attributes, thereby spuriously increasing model size
and complexity. Hard constraints can be applied to
reduce or eliminate this spurious increase in com-
plexity and thereby improve the tractability of prob-
abilistic modeling within rich feature spaces.

We are not aware of very many people in NLP
taking advantage of the heterogeneity and stronger
propogation offered by CP beyond the following:
Denys Duchier et al., Claire Gardent et al., Tomasz
Marciniak et al., and Dan Roth et al. The first also
uses Mozart/Oz like we do, but focuses on solely
hard constraints. The second is purely symbolic as
well. The latter two actually apply integer linear
programming (ILP), which can be viewed as a spe-
cial case of CP involving only variables with inte-
ger domains. Though theoretically just as powerful
as CP, ILP can be less natural to use since all do-
mains must be mapped to integers. ILP also lacks
the high-level modeling language interface that CP
offers. The ability to combine complimentary tech-
niques (especially hard and soft constraints) and
tackle larger problems that are intractable for sim-
pler methods without resorting to adhoc pipelines
that sacrifice optimality is the main reason CP holds
a lot of promise for NLP, and we hope it becomes
more widely adopted.

62

References

K. Apt. 2003. Constraint Programming. Cambridge
University Press.

S. Beale, S. Nirenburg, E. Viegasy, and L. Wanner. 1998.
De-constraining text generation. InProc. INLG.

S. Beale. 1997.Hunter-Gatherer: applying constraint
satisfaction, branch-and-bound and solution synthesis
to computational semantics. Ph.D. thesis, Carnegie
Mellon University.

P. Blache. 2000. Constraints, linguistic theories and nat-
ural language processing.Natural Language Process-
ing, 1835.

L. Cahill, C. Doran, R. Evans, C. Mellish, D. Paiva,
M. Reape, D. Scott, and N. Tipper. 1999. In search
of a reference architecture for NLG systems. InProc.
EWNLG.

L. Cahill, C. Doran, R. Evans, R. Kibble, C. Mellish,
D. Paiva, M. Reape, D. Scott, and N. Tipper. 2000.
Enabling resource sharing in language generation: an
abstract reference architecture. InProc. LREC.

J. Calder, R. Evans, C. Mellish, and M. Reape. 1999.
“free choice” and templates: how to get both at the
same time. InProc. KI Workshop.

J. Carroll and S. Oepen. 2005. High efficiency real-
ization for a wide-coverage unification grammar. In
R. Dale and K-F. Wong, editors,Proc. IJCNLP, vol-
ume 3651. Springer LNAI.

P. Chang and K. Toutanova. 2006. A discriminative syn-
tactic word order model for machine translation. In
Proc. ACL.

E. Charniak, K. Knight, and K. Yamada. 2003. Syntax-
based language models for machine translation. In
Proc. MT Summit IX.

R. Dechter. 2003.Constraint Processing. Morgan Kauf-
mann.

P. Dienes, A. Koller, and M. Kuhlmann. 2003. Statistical
a-star dependency parsing. InProspects and Advances
in the Syntax/Semantics Interface.

D. Duchier. 2003. Configuration of labeled trees under
lexicalized constraints and principles.Journal of Re-
search on Language and Computation.

M. Elhadad, J. Robin, and K. McKeown. 1997. Floating
constraints in lexical choice.Computational Linguis-
tics, 23(2).

M. Galley, J. Graehl, K. Knight, D. Marcu, S. DeNeefe,
W. Wang, and I. Thayer. 2006. Scalable inference and
training of context-rich syntactic translation models.
In Proc. ACL.

H. Hassan, K. Sima’an, and A. Way. 2007. Supertagged
phrase-based statistical machine translation. InProc.
ACL.

P. Koehn and H. Hoang. 2007. Factored translation mod-
els. InProc. EMNLP.

I. Langkilde-Geary and J. Betteridge. 2006. A factored
functional dependency transformation of the english
penn treebank for probabilistic surface generation. In
Proc. LREC.

I. Langkilde-Geary. 2005. An exploratory applica-
tion of constraint optimization in mozart to probabilis-
tic natural language processing. In H. Christiansen,
P. Skadhauge, and J. Villadsen, editors,Proceedings of
the International Workshop on Constraint Solving and
Language Processing (CSLP), volume 3438. Springer-
Verlag LNAI.

M. Marcus, B. Santorini, and M. Marcinkiewicz. 1993.
Building a large annotated corpus of english: the Penn
treebank.Computational Linguistics, 19(2).

K. Marriott and P. Stuckey. 1998.Programming with
Constraints. MIT Press.

M. Meteer. 1990. The Generation Gap - the problem
of expressibility in text planning. Ph.D. thesis, U. of
Massachusetts.

F. Och, D. Gildea, S. Khudanpur, A. Sarkar, K. Ya-
mada, A. Fraser, S. Kumar, L. Shen, D. Smith, K. Eng,
V. Jain, Z. Jin, and D. Radev. 2004. Final report of
johns hopkins 2003 summer workshop on syntax for
statistical machine translation. Technical report, John
Hopkins University.

J. Robin. 1994. Revision-based generation of natural
language summaries providing historical background:
corpus-based analysis, design, implementation and
evaluation. Ph.D. thesis, Columbia University.

F. Rossi. 2006.Handbook of Constraint Programming.
Elsevier.

P. Van Roy and S. Haridi. 2004.Concepts, Techniques,
and Models of Computer Programming. MIT Press.

D. Sangiorgi and D. Walker. 2001.The Pi-calculus: A
Theory of Mobile Processes. Cambridge University
Press.

I. Schroder. 2002. Natural Language Parsing with
Graded Constraints. Ph.D. thesis, University of Ham-
burg.

K. De Smedt, H. Horacek, and M. Zock. 1996. Archi-
tectures for natural language generation. InTrends in
Natural Language Generation. Springer, Berlin.

M. White. 2006. Ccg chart realization from disjunctive
inputs. InProc. INLG.

63

