A Probabilisitic Approach to Linguistic Analysis in Machine Translation Output Evaluation

Olivier Gouirand

Laboratoire BABEL, Faculté de Lettres et Sciences Humaines Université du Sud Toulon-Var BP 20132, F-83957 La Garde (France) olivier.gouirand@univ-tln.fr

Abstract

In order to overcome some shortcomings of previous machine translation (MT) evaluation methods, mainly pertaining to the difficulty of measuring actual linguistic quality (if possible in an automated way), a metric based on the distributional features of grammatical categories within the scope of the *Law on Anomalous Numbers* was devised : the text is tagged for parts-of-speech and these are computed into a positional distribution. The deviation of the latter from said law indicates translation errors, which alone is useful in diagnostic evaluations but is also of importance to theoretical linguists.

1 Introduction

The MT evaluation community has contributed a great number of approaches over the years but there are two problems which hamper progress in the field: first, generic evaluation techniques have always been considered difficult to achieve due to the specificity of user needs (King & Falkedal, 1990:1; Spark & Galliers, 1996:70); second, measuring the essential feature of MT i.e. text quality is a very complex task (Hovy et al., 2002:5) due to the many possible planes of analysis that it implies. The response to the former has been to design adaptative frameworks like EAGLES (EWG, 1996) or ISLE (described in Hovy et. al., 2002:4), the risk being to minimize the performance of core technologies factor as set forth by DARPA (White, O'Connell & O'Mara, 1994:intro-

Natural language generated by means of computer software indeed disrupts an equilibrium that lies in the syntax-semantics relations, because a text may seem wellformed while being nonsense all the same. The reason is grammatical categories are primitive constructs controlled by semantic categories and structures into which they fit. Studying MT output is about identifying software issues but also raising interesting questions for linguists to address : why is it that parts-of-speech are organized (of course not necessarily in a uniform way across languages) along the lines of other human and natural constructs, as demonstrated herein? What is their ontological status? etc.

duction). As to the latter, the quest for objective metrics - preferably automatable ones - that would grasp text quality has lead to mainly statistical criteria, the risk being to abstract away from linguistic quality. For example, in the BLEU algorithm (Papinemi, 2001:2-3), the distance between any translation and a set of reference translations stems from a calculus involving *n*-gram similarity (modified unigram precision) deemed to mirror translation quality criteria adequacy and fluency. It only rests on word counts though, so the linguistic level cannot be directly invoked.

The present paper seeks to cope with both problems by asserting the priority of linguistic quality in MT output assessment over any other criterion because that is fundamentally what the end user needs. To pursue this aim, a method which would incorporate linguistic content into a generalizable framework is needed, other than statistical equalizations of human judgements $\dot{a} la$ ALPAC (1966).

What follows is basically the result of an investigation into the very nature of traditional grammatical categories in the wake of Aristotle, viz. nouns as "substance", determiners as "quantity", adjectives as "quality", verbs as "action / affection", just to name a few. We aim at demonstrating that the distribution of categories may be generalizable although categories are not strictly mappable -, at least to a pair of natural languages, namely English and French; that could be useful to better understand the ties between natural languages out of a linguistic standpoint (which is of paramount importance in translation) and shedding light upon phenomena best interpreted at the higher levels of cognition, or rather, semantics following Morris's classification (1938:6).

We shall also see that they clearly fit into the more complex scheme of the syntax-semantics interface, in the sense of words' distributional and semantic properties tallying. Indeed, one of the hurdles of MT, thus its evaluation, has been the gap between syntax and semantics, the former having historically prevailed over the latter, making full-blown linguistic evaluations troublesome, not to mention the other major stumbling block, i.e. the lack of expected results for any one translation, in other words a "correct" or "yardstick" translation.

2 Setup and experimenting with categorial distributions

Our experiment started with an in-depth experiment conducted on four English-French parallel manually translated corpora, each about 180,000 words, drawn from various subject areas and contained in the well-documented MCI/ECI corpus (ACL, 1994) [subcorpora "ILO" and "CCITT"], as well the Hansard (Parliament of Canada, 1999) and the Annual Reports of the UN Secretary General (UN, 1993; UN, 1995-2000). Technically, the first stage of it was devoted to cleaning up the texts from unnecessary information (empty lines, doublets and the like) as well marking sentence boundaries, a requirement of the piece of software carrying out the actual linguistic work. A robust tagger previously trained on the Penn Treebank and the Trésor de la Langue Française corpora (WinBrill[©] by ATILF, formerly InaLF, 1998) was used to assign grammatical tags to parts-of-speech.

After stripping the texts of its lexical information, the tags alone were fed into a standard spreadsheet application, each sentence forming a row. Then the columns were scanned for specific tags and these were totalled (see Figure I). The resulting positional "grammatical n-grams" formed the data, the interpretation of which follows. It should be emphasized that these are linguistic in the sense that every part-of-speech mirrors some syntactic relation : for example, a determiner is only such with respect to the "determined", an adjective (*adjectivum nomen*) relates to a noun, an adverb to a verb and so forth.

The starting point in the interpretation of the results could be the well-known fact that word distributions comply with Zipf's law (Zipf, 1965:38), that is : the rank of a word is inversely proportional to its frequency and their product is constant. But what is less known is that, above a threshold of about 2,000 tokens (although we first noticed this on a manually counted 500-word text, spurring our initial hypothesis), the distribution of parts-ofspeech in English and French matches another statistical discovery, the Law on Anomalous Numbers (Benford, 1938). This law, which states that the distribution D of number digits equals log(1+1/D), applies to all non-random (thus not to lotteries and the like) and non-constrained numbers (thus not to supermarket prices ending with 9 for marketing reasons etc.), ranging from land areas to stockmarket prices, regardless of unit used. It is readily and successfully used in accounting to trace frauds but otherwise limited to a narrow audience despite its mathematical demonstration by Terence Hill in 1996, probably because it encompasses other laws in a disturbing fashion; the history of science has been an array of laws where some paradigms seem to be both the product of man's analysis of his world and the world's laws, which some scientists as Thom (1990:344) acknowledge in the biological nature of language e.g. noun as salience (Thom, 1988:23).

In our experiment, the average distribution of grammatical categories in the English set of texts from the corpora is : nouns 31.23 %, prepositions 17.39 %, determiners 12.44 %, adjectives 9.43 %, infinitive verbs and participles 7.92 %, other verbs (very weakly correlated to the others positionally) 7.15 % and presumably two groups made up of some wh- words and conjunctions as well as one comprising pronouns and adverbs, account for 6.18 and 4.48 % respectively, see Table I below.

In the French texts, the distribution is : nouns 27.83 %, prepositions 19.73 %, determiners 13.19 %, adjectives 9.41 %, infinitive verbs and participles 6.96 %, conjugated verbs 6.80 % and presumably two groups made up of pronouns, as well as one comprising conjunctions, account for 5.91 and 4.96 % respectively, see Table II below.

The lower part of the spectrum is nonetheless kept truncated because intervals in such a distribution are too close to discriminate between aggregate "minor" categories with certainty, unless finergrained groupings emerge from future research.

These results were checked for reliability : deviations were within acceptable limits and no data relative to the categories presented above that were below the confidence level of 1,000 due to the large number of tokens for each type. Also, only the most strongly correlated groupings were made. When it comes to informativity, the set underwent a subsequent series of processes consisting in a machine translation of all source texts, then the post-processing as described above and the comparison with the manually translated target texts. Interestingly, with a first-generation MT system (Systran), the distribution was distorted significantly : 30 % less proper nouns in English and 22 % in French, more than a fifth less present tense verbs and participles in English, a quarter and a sixth more determiners and prepositions respectively in English, roughly the same loss for French pronouns and other verbs (see Table III and IV). To take just one example for the sake of brevity, Systran has a persistent bug : proper nouns are treated as common nouns when there's a match, as in "Mr <u>Pat</u> O'Brien" translated as *M. tapotent O'Brien* ; that explains the aforesaid deflated proper nouns.

Since the various subsets of the corpus were coherent in our initial experiment, the distortion in the distribution of categories can only mean that it is sensitive to Natural Language Generation (NLG). What's more, the syntactic correctness was preserved despite altered relative values for each category and obviously with an altered sense, as usual with MT, owing to missing or incomplete semantic interpretation (Gouirand, 2002:75).

Categories

3 Discussion

Going back to Benford's law, the correlation with Zipf's law is that they are both based upon the principle of invariance (Zipf's law is insensitive to tagging while discriminating meaning, see Wilks 1996:6) and that there must be an underlying law which can account for the distribution. It has been claimed that lexical distributions relate to Zipf's law by virtue of word length; however, it is easy to show that inflectional grammars such as German or Swedish have a different bearing on word lengths from those of, say, English or French. So the underlying law remains implicit and our duty as linguists is to make it explicit.

Yet the analogy is not complete, for one would not expect Benford's law to be relevant to linguistics as it conveys plain numerical rather than lexical information. The numbering of tags can be posited as arbitrary : the fact that some plot of land measures *n* acres doesn't tell much about what *n* actually *means*, it is simply the outcome of a composite geometrical law expressing surface areas. The numbers are merely arbitrary because whatever their name is, they always retain the underlying law's features, which is precisely why linguistic tags also apply: as Saussure (1916:98-100) showed at length, linguistic signs are arbitrarily chosen, they are signs pointing to "something else", at another level ; thus it is an underlying law which steers the said distribution.

Then, it is our contention that such an underlying law must be of semantic nature since the ancillary experiment set forth above clearly demonstrated that data-processing the corpora with machine translation software having a very limited semantic competence distorted the distribution. In other words, human processing of grammatical categories bears on ontological categories in the realm of semantics (Jackendoff, 1990:23) and therefore keeps the distribution within the boundaries of the law, whereas MT systems don't, insofar as there is no real semantic component attached to them (when they have one, they may to some extent).

Another proof of the validity of our model is given by feeding the text tags into a concordancer. Instead of using words as queries, we used our tags and then we reordered left-hand and right-hand side tags in decreasing order for each corpora.

As seen from Figure II and III (which only display the three most probable tags because as one moves down, volatility rises sharply), nouns (NNx in English/SBx in French), prepositions (IN/PREP) and determiners (DT/DTN) are once again found to be the most frequent top-level *n*-grams (ca. 70 percent of total) and roughly distributed in a way similar to categories, which makes sense : let us assume that tags were evenly scattered over all categories ; their count alone would create a vertical hierarchy within each category in building *n*-grams but this simply does not happen because the distribution takes place horizontally instead, meaning that the distribution is linked to relations among categories, which was the point to be made here.

Stating that syntactic constructs are driven by semantics means that ontological and/or biological nature of grammatical categories and their interplay can be investigated within the scope of an integrated theory of meaning where pre-verbal features of language are the driving force. In the domain of conceptual semantics (Jackendoff, 1983:57), syntactic structures parallel conceptual structures in that ontological categories (such as THING, EVENT, STATE, ACTION, PLACE, PATH, PROPERTY, AMOUNT) are the primitives associated with syntactic constituents; by the way, some of the former are quite similar to Aristotle's findings, suggesting a continuum in the approach. However, in the internal workings of a MT system, invoking a concept from the lexical stratum is not straightforward, because lexemes may refer to several concepts, so clear-cut one-to-one correspondences are out of reach, at least for a computer program, so future research in lexicology should focus on a better mapping of lexical units into semantic categories.

For the French school of linguistics (Culioli, 1999:63), there is also a pre-verbal (and definitively pre-lexical) level of primitive relations where a distinction between syntax semantics is pointless. Hence the *notion* is a set of physical and cultural features that are inserted in a given context (Culioli, 1990:50). For Thom (1988:206), a concept is workable only through categorial operations which constrain the extensional perimeter centered around a prototypical core.

Another assumption is that the number of workable categories cannot be large or the system's output would result in unlimited semiosis and cognitive burdening. This is in line with Aristotle's initial formalization of categories but also with most speakers phenomenological experience.

The current state of this research allows an evaluation based on the distribution of grammatical ngrams that is useful to identify major translation failures but for a finer grained pinpointing, the definition of meaningful relations between syntax and semantics, parts-of-speech and meaning needs to be addressed. These relationships are to be grasped not only at the level of lexical entries analysable as semantic categories (with several impediments that are not yet solved) but also as ontological constructs or notional domains which are modelled as networks or semantic spaces. The overall sense then depends on such features but also on information conveyed by the discursive context as argumentative underpinning, demonstrated by Anscombre and Ducrot (1983:86) as well as Anscombre (1995:32), which provides directions for future research in the field.

Also, the question of whether the distributional features of grammatical categories in English and French are valid in other languages is still open. If they were to be ported, the metric would then be generic and so would the linguistic implications. There are obstacles, however : quality parallel corpora and robust parallel taggers for "exotic" languages (and even less exotic ones for that matter) are scarce, so the task of investigating the matter would be immensely time-consuming and it would require extensive linguistic expertise, let alone the "toolbox" problem. This is because some languages are often presented as resistant to some theories, for example Basque, which lacks a verbal category: the verbal function is still to be found though, in some other category from where it can be extracted; In a language such as Swedish, determiners are embedded in nouns and can thus be backtracked. So applying our model to other languages wouldn't necessarily weaken it, only such an endeavour would require substantial efforts.

References

- ALPAC. 1966. Language and Machines. Computers in Translation and Linguistics. A Report by the Automatic Language Processing Advisory Committee, Division of Behavioural Sciences, National Academy of Sciences. Publication 1416. National Research Council, Washington, DC.
- Association for Computational Linguistics. 1994. *European Corpus Initiative (ECI)*. Multilingual Corpus 1(MCI) [CD-ROM]. ACL, Geneva/Edinburgh.

- Jean-Claude Anscombre and Oswald Ducrot. 1983. *L'argumentation dans la langue*. Mardaga, Brussels, Belgium.
- Jean-Claude Anscombre. 1995. *Théorie des topoï*. Kimé, Paris, France.
- Frank Benford. 1938. The Law of Anomalous Numbers. *Proc. Amer. Phil. Soc.*, 78:551-554.
- Antoine Culioli. 1990. *Pour une linguistique de l'énonciation. Opérations et représentations,* volume 1. Ophrys, Paris, France.
- Antoine Culioli. 1999. *Pour une linguistique de l'énonciation. Formalisation et opérations de repérage*, volume 2. Ophrys, Paris, France.
- EWG. 1996. *EAGLES Evaluation Group*. Final Report. Octobre 1996 version. Center foer Sprogteknologi, Copenhagen, Denmark.
- Olivier Gouirand. 2002. Quelques réflexions sur la traduction automatique comme médiation. *Terminologie et Traduction (T&T)*. La revue des services linguistiques des institutions européennes, 2/2002:72-83. Office des Publications officielles des Communautés européennes, Luxembourg.
- E. Hovy, M. King and A. Popescu-Belis. 2002. In Introduction to MT Evaluation. *Workbook of the LREC 02 Workshop on Machine Translation : Human Evaluators Meet Automated Metrics*, Las Palmas, Spain, 2002, pp. 1-7.
- Institut National de la Langue Française (InaLF), Massachusetts Institute of Technlogy (MIT) and University of Pennsylvania. 1993-98. *WinBrill tagger and lemmatizer*. ATILF, Nancy, France.
- Ray Jackendoff. 1983. *Semantics and Cognition*. MIT Press, Cambridge, Mass.
- Ray Jackendoff. 1990. *Semantic Structures*. MIT Press, Cambridge, Mass.
- Margaret King and Kirsten Falkedal. 1990. Using Test Suites in Evaluation of Machine Translation Systems. *Proceedings of COLING '90*, Helsinki, Finland, 1990.
- Charles W. Morris. 1938. *Foundations of The Theory of Signs*. University of Chicago Press, Chicago, IL.
- K. Papineni, S. Roukos, T. Ward et al. 2001. BLEU: a Method for Automatic Evaluation of Machine Translation. Computer Science IBM Research Report RC22176 (W0109-022). IBM Research Division, Yorktown, NY.
- Parliament of Canada. 1999. Debates of the House of Commons of Canada (Hansard), Dec. 1,2,3 & 10,

1999. Parliament of Canada, Ottawa. http://www.parl.gc.ca/cgi-

bin/36/pb_chb_hou_deb.pl?e> [page viewed April 28, 2000].

- Ferdinand de Saussure. 1916. Cours de linguistique générale. Payot, Paris, France.
- Karen Sparck-Jones and Julia Galliers. 1996. *Evaluating Natural Language Processing*. Springer, Berlin, Germany.
- René Thom. 1988. *Esquisse d'une sémiophysique*. Interéditions, Paris, France.
- René Thom. 1990. *Apologie du logos*. Hachette, Paris, France.
- United Nations (UN). 1993. Annual Report of the Secretary-General on the Work of the Organization. UN, New York, NY. http://www-rali.iro.umontreal.ca/arc-a2/BAF/> [page viewed on Aug 15, 2000].
- UN. 1995. Annual Report of the Secretary-General on the Work of the Organization. UN, New York, NY. <http://www.un.org/Docs/SG/SG-Rpt/> [page viewed on Aug 15, 2000].
- UN. 1996. Annual Report of the Secretary-General on the Work of the Organization. UN, New York, NY. http://www.un.org/Docs/SG/sgrepor.htm [page viewed on Aug 15, 2000].

- UN. 1997. Annual Report of the Secretary-General on the Work of the Organization. UN, New York, NY. http://www.un.org/Docs/SG/Report97/97con.htm [page viewed on Jun 27, 2000].
- UN. 1998. Annual Report of the Secretary-General on the Work of the Organization. UN, New York, NY. <http://www.un.org/Docs/SG/Report98/con98.htm> [page viewed on Jun 27, 2000].
- UN. 1999. Annual Report of the Secretary-General on the Work of the Organization. UN, New York, NY. http://www.un.org/Docs/SG/Report99/toc.htm [page viewed on Aug 9, 2000].
- UN. 2000. *Millennium Report of the Secretary-General*. United Nations, New York, NY. http://www.un.org/millennium/sg/report/ [page viewed on Aug 9, 2000].
- J. White, T. O'Connell, F. O'Mara. 1994. ARPA Machine Translation Program: 3Q94 Evaluation. Georgetown University and Advanced Research Projects Agency, Washington, DC.
- Yorick Wilks. 1996. The grammar of sense: Is wordsense tagging much more than part-of-speech tagging? Research Memoranda CS-96-05. University of Sheffield, Sheffield, UK..
- George K. Zipf. 1965. *Psycho-Biology of Languages*. MIT Press, Cambridge, Mass.

APPENDIX

Figure I : illustration of spreadsheet processing

	9		_			1					• • • •	_	_	_					
	A420				ABR						V A44		•		ADJ		_		
	A	в	С	D	E	F	G	н	<u> </u>		A	B	C	D	E	F	G	H	D.T.L
	SUB .	DTN	SBC	ECJ	ADV	PREP	SBC	PREP	DTN	419		DTN	SBC	ECJ	ADV	PREP	SBC	PREP	DTN
420		SBP	SBP	REL	ACJ	VPAR	VNCFF	DTN	SBC	420		SBP	SBP DTN	REL SBC	ACJ	VPAR DTN	VNCFF SBP	DTN ACJ	SBC VPAB
421	ADV	DTN	DTN	SBC	PREP	DTN	SBP	ACJ	VPAR	421		SBC	ECJ	ADJ1P		DTC	SBC	PREP	SBC
422	DTN	SBC	ECJ	ADJ1P		DTC	SBC	PREP	SBC	422		PRO	REL	VCJ	DTN	SBC	PREP	DTN	SBC
423	PREP	PRO ACJ	VPAB	VCJ ADV	DTN	SBC	PREP	DTN DTN	SBC	424	_	ACJ	VPAB	ADV	DTC	SBC	PREP	DTN	SBC
424	PBV	ACJ I	VPAB	DTN	SBC	DTC	SBC	DTC	SBC	425		ACJ	VPAB	DTN	SBC	DTC	SBC	DTC	SBC
425	PRU	PRO :	PBV	ADV	ECJ	ADV	ADJ	PREP	VNCFF	426		PRO	PBV	ADV	ECJ	ADV	ADJ	PREP	VNCFF
425	DTN	SBC	PREP	SBC	SUB\$	PBV	VCJ	VNCFF	VINCEE	427	DTN	SBC	PREP	SBC	SUB\$	PBV	VCJ	VNCFF	VCJ
427	SBP	ADJ I	PREP	DTN	SBC	PREP	SBC	ADJ	C00	428		ADJ	PREP	DTN	SBC	PREP	SBC	ADJ	C00
429	DTN	SBC :	PREP	DTN	SBC	VCJ	SUB	SBC	DTN	429		SBC	PREP	DTN	SBC	VCJ	SUB	SBC	DTN
430	DTN	SBC	PBV	ACJ	VPAB	DTC	SBC	PREP	DTN	430		SBC	PBV	ACJ	VPAB	DTC	SBC	PREP	DTN
431	PREP	PBO	REL	VCJ	DTN	SBC	ADJ2PA		SBC	431	PREP	PRO	REL	VCJ	DTN	SBC	ADJ2PA		SBC
432	PREP	DTN	SBC	PREP	PRO	DTN	SBC	REL	VCJ	432		DTN	SBC	PREP	PRO	DTN	SBC	REL	VCJ
433	PREP	SBC	ACJ	VPAB	DTN	SBC	PBV	ADV	PBV:++	433		SBC	ACJ	VPAB	DTN	SBC	PBV	ADV	PBV:++
434	DTN	SBC	VCJ	DTN	SBC	DTC	SBC	PREP	BEL	434	DTN	SBC	VCJ	DTN	SBC	DTC	SBC	PREP	REL
435	DTN	SBC I	VCJ	DTN	SBC	PREP	VNCFF	DTN	SBC	435		SBC	VCJ	DTN	SBC	PREP	VNCFF	DTN	SBC
436	SBC	ADJ :	PREP	DTN	SBC	PREP	SBC	ADJ	C00	436		ADJ	PREP	DTN	SBC	PREP	SBC	ADJ	C00
437	PBV	PBV	VCJ	PREP	SBC	SBP	SBP	SBP	SBP	437	PBV	PBV	VCJ	PREP	SBC	SBP	SBP	SBP	SBP
438	DTN	SBC I	VCJ	ADV	SUB	SBC	SBP	SBP	SBP	438		SBC	VCJ	ADV	SUB	SBC	SBP	SBP	SBP
439	DTN	SBC .	VCJ	SUB	DTN	SBC	ADV	ACJ	ADV	439		SBC	VCJ	SUB	DTN	SBC	ADV	ACJ	ADV
440	DTN	SBC	VCJ	PREP	ADJ	DTC	SBC	PREP	VNCFF	440	-	SBC	VCJ	PREP	ADJ	DTC	SBC	PREP	VNCFF
441	DTN	SBC I	VCJ	ADV	SUB	PBV	PBV:++	ACJ	SBC	441	DTN I	SBC	VCJ	ADV	SUB	PBV	PBV:++	ACJ	SBC
442	DTN	SBC i	VCJ	SUB	PREP	DTN	SBC	SUB\$	DTN	442		SBC	VCJ	SUB	PREP	DTN	SBC	SUB\$	DTN
443	SBP	SBP ·	SBP	SBP	ACJ	EPAR	ADJ1PA		SUB\$	443	SBP I	SBP	SBP	SBP	ACJ	EPAR	ADJ1PA		SUB\$
444	DTN	SBC	VCJ	PREP	DTN	SBC	SUB\$	DTN	SBC	444	DTN	SBC	VCJ	PREP	DTN	SBC	SUB\$	DTN	SBC
445	PBV	VCJ i	ADV	SUB	DTN	SBC	SBP	SBP	SBP	445	PBV	VCJ	ADV	SUB	DTN	SBC	SBP	SBP	SBP
446	ADV	DTN	SBC	VCJ	SUB	DTN	SBC	ADV	ACJ	446	ADV	DTN	SBC	VCJ	SUB	DTN	SBC	ADV	ACJ
447	PREP	SBC .	ADJ	DTN	SBC	PREP	ADJ	SBC	SUB\$	447	PREP	SBC	ADJ	DTN	SBC	PREP	ADJ	SBC	SUB\$
448	ADJ	SBC I	DTN	SBC	VCJ	ADV	SUB	DTN	SBC		ADJ	ISBC	DTN	SBC	VCJ	ADV	SUB	DTN	SBC
449	DTN	SBC	VCJ	DTN	SBC	PREP	PBV	VNCFF	DTN		DTN	SBC	VCJ	DTN	SBC	PREP	PBV	VNCFF	DTN
110		000	100	Dina	000	1110	1111	TIGOTT	Diria										
					ND	01/0	1 10 0			-									
	B2		•	=		<u> </u>	nées!A\$		000;"AB		1								
	A		В	C		D	E	F	G	н	1		J	К	L	M	N		0
N	Pos./C		ABR	ADJ	AD)J1PA A	DJ2PA A	ND¥	CAR	C00	DTN		TC F	GV	INJ	PFX	PREF	P PR	
2		····· ►	1	4	10	0	9	117	59		17	875	35	0		0	0	513	178
3	2	∵-́ f	• • • •	0	82	0	28	58	69		8	357	117	0		0	0	144	23
4	3			0	эà	6	25	88	93		10 j	196	90	0		0	0	159	45
5	4			0	69	27	34	147	49		10 /	388	107	0		0	0	247	29
6	5			0	85	30	30	83	82		17	518	93	0		0	0	284	42
7	6			0	88	19	28	58	70	-	₹1	381	87	0		0	0	303	38
8	7			0	141	23	39	65	76		31	342	117	0		1	0	275	71
9	8			0	98	26	38	67	104		43	356	139	0		0	0	309	33
10	9			0	104	30	55	63	78		38	378	124	0		0	0	293	36
11	10			0	142	28	43	56	81		53	310	150	0		0	0	304	33
12	11			0	109	33	52	59	75		64	321	120	0		1	0	317	41
13	12			0	114	29	34	50	87		55	355	117	0		0	0	341	46
14	13			0	138	32	35	79	76		65	315	121	0		0	0	270	32
15	14			0	109	30	60	47	70		54	302	144	0		0	0	349	33
16	15			0	121	37	32	64	68		67	318	119	1		0	0	300	25
17	16			0	145	24	39	64	75		59	272	115	0		0	0	313	38
18	17			0	125	33	52	63	94		53	297	99	0		0	0	301	33
19	18			0	118	31	36	80	67		80	269	93	0		0	0	298	35
20	19			0	132	33	32	68	67		83	301	104	2		0	0	281	35
														-					

Figure II :	Category n-grams	for	English

N 1174 690 174 152 152 131 97 93 91	N2 2070 1127 377	N3 1657 669 376	N4 1696 1237 573	Left IN CC JJ VB VBD RB NN VBN	NODE	Right NN NNS IN TO JJ CC DT NNP CD	N 1475 869 217 171 152 146 79 48 14	N2 2858 1521 388	N3 2119 1023 359	N4 2596 1851 573	N 438 435 313 287 170 85 75 68 61	<u>N2</u> 126 86 66	N3 585 377 157	<u>N4</u> 196 186 163	Left NNP NNS PRP WDT RB WP CC CD	NODE vbd vbd vbd vbd vbd vbd vbd vbd vbd vbd	Right VBN DT RB JJ TO NN NNP NNS	N 604 387 303 266 131 113 75 40 32	N2 108 65 53	N3 337 321 210	N4 219 199 158	N 3276 1492 1151 904 369 302 294 292 286	N2 3725 1604 1594	N3 3263 1274 748	N4 3383 1742 847	Left NN VBN VBN VBD RB CD VBZ IN	NODE in in in in in in in	Right DT NNP JJ NNS CD PRP\$ IN VBG	N 4501 1357 875 661 502 451 347 286 253	1877 1022	N3 3850 1244 1101	N4 3467 1390 1237
82 N 9 9 4 3 3 3 2 2 2	N2 24 23 21	N3 43 20 20	N4 54 36 30	PRP\$ DT IN RB PRP\$ CC NNS VB NN VBD VBD VBG	jj NODE jjr jjr jjr jjr jjr jjr jjr	RB Right IN CC NNS CD VBD VBD VBD VBG DT PRP\$	13 N 23 16 4 2 1 1 1 1 0 0	N2 73 45 21	N3 73 57 31	N4 89 83 38	38 N 146 55 55 36 27 20 12 11 8 7	N2 464 127 99	N3 1219 375 107	N4 403 235 114	EX NNS PRP WDT NN WP NNP RB CC IN CD	vbd NODE vbp vbp vbp vbp vbp vbp vbp vbp vbp vbp	VBG Right VBN RB IN DT JJ TO VBG NN NNS CC	32 N 122 84 50 42 30 18 12 11 9 6	N2 328 126 105	N3 346 329 306	N4 294 167 127	281 N 250 68 63 52 50 36 21 19 18 18	N2 155 113 50	N3 727 322 246	N4 154 102 63	VB IN VB NN WDT NNS NNP TO VBD CC WRB	in Prp prp prp prp prp prp prp prp prp prp	PRP Right VBD VBZ MD IN VBP RB TO DT JJ CC	231 N 287 237 76 74 55 47 18 15 12 12 10	N2 198 145 74	N3 1219 585 579	N4 235 147 136
N 266 200 136 136 118 104 100 98 90 86 N	N2 232 196 158	N3 399 346 315 N3	N4 222 216 207	Left VBD VBZ NN RB NNP CC MD NNS VBN IN Left	NODE rb rb rb rb rb rb rb rb rb rb rb rb rb	Right VBN IN VB DT RB VBZ TO JJ VBD VBD	N 330 313 229 154 136 124 99 97 85 73 N	N2 336 306 248 N2	N3 486 434 376 N3	N4 358 281 245 N4	N 423 257 237 124 99 67 54 46 29 27 N	N2 836 198 158	N3 717 546 229 N3	N4 501 184 136 N4	Left NN PRP NNP RB IN WDT CC NNS EX DT Left	NODE vbz vbz vbz vbz vbz vbz vbz vbz vbz vbz	Right VBN DT RB IN JJ TO NN PRP\$ NNS NNS VBG	N 425 325 200 194 69 67 43 22 21 19 N	N2 531 395 203 N2	N3 556 399 324	N4 337 239 222 N4	N 58 22 17 12 12 8 6 3 2 1 N	N2 7 6 6	N3 77 74 59 N3	N4 16 12 11	Left NNS NN DT IN CC VB VBG TO CD Left	NODE wp wp wp wp wp wp wp wp wp wp	Right VBP VBZ VBD DT IN PRP MD NN NNS J	N 76 27 10 8 8 7 3 2 2 2 1 N	8 5 5	N3 96 91 73 N3	N4 26 19 8 N4
34 15 10 9 7 5 4 4 2 1	110 52 27	80 38 30	21 14 11	NN NNP CD IN RB VB VBN JJ CC	drw wrb wrb wrb wrb wrb wrb wrb wrb wrb w	Right DT PRP NN JJ NNS VBN EX IN PRP\$ RB	47 18 10 8 4 3 3 3 2	170 57 52	118 94 29	29 17 13	149 121 76 65 29 17 14 9 8 7	675 531 176	579 272 144	156 152 131	NN PRP NNP WDT CC EX VBN CD DT	md md md md md md md md md	Right VB RB IN CC TO CD DT JJ MD PRP	392 100 16 4 2 1 1 1 1 1 1 1	1620 232 31	1069 195 47	517 95 9	375 59 39 31 28 22 22 22 15 6 5	111 35 21	424 108 49	299 95 40	IN VB CC VBD TO VBG VBZ VBN RB NNS	8qqq 8qq 8qq 8qq 8qq 8qq 8qq 8qq 8qq 8q	Right NNS JJ NNP CD VBN JJR VBD VBD VBD CC	313 174 82 25 16 9 4 2 1 0	106 48 45	466 266 149	264 164 160
N 654 521 469 140 132	N2 624 474 253	N3 343 247 196	N4 452 231 145	Left NNP NN IN	Cd Cd Cd Cd	Right NNP IN DT	N 496 313 189	N2 342 272 217	N3 277 263 252	N4 227 204 179	N 1151 392 229	N2 1620 1063 306	N3 1785 1069 434	N4 1226 517 151	Left TO MD RB	VD Vb Vb	Right DT IN VBN	N 474 312 266 171	N2 1060 754 334	N3 972 663 324	N4 522 251 244	N 3927 1471 1430		N3 3770 1734 1070	N4 2616 2594 1389	Left DT JJ IN NN	NODE nn nn nn	Right IN NN NNS	3442 1066 711	2358 1979 996	N3 2809 947 685	N4 3381 911 891
94 90 82 33 30				NNS CC CD DT VBN TO RB	cd cd cd cd cd cd	SYM NNS CC CD VBD VBD	189 184 182 165 94 61 53				56 27 17 11 8 6 6				CC NN VBN VBN CD VB	vb vb vb vb vb vb	NN JJ NNS TO PRP RB PRP\$	152 112 71 68 66 59				1066 316 310 240 182 169 155				NNP PRP\$ CC CD VB VBN	nn nn nn nn nn nn	TO CC VBD VBN DT VBX	640 595 512 435 297 291 253			
90 82 33	N2 871 527 221	N3 817 404 282	N4 892 683 449	CC CD DT VBN TO	cd cd cd cd	NNS NN CC CD VBD	184 182 165 94 61	N2 490 315 299	N3 304 268 221	N4 549 497 350	27 17 11 8	<u>N2</u> 380 319 289	N3 372 210 140	<u>N4</u> 362 139 137	NN VBN NNS CD	vb vb vb vb	JJ NNS TO PRP RB	152 112 71 68 66	N2 369 365 254	N3 286 282 203	N4 276 225 196	316 310 240 182 169	N2 1529 1521 993	N3 1023 918 485	<u>N4</u> 1851 784 681	NNP PRP\$ CC CD VB	nn nn nn nn	CC CD VBD VBN DT	595 512 435 297 291	N2 1770 531 527	N3 1338 404 375	N4 1742 683 403
90 82 33 30 804 466 323 165 146 109 69 43 20	871 527	817 404	892 683	CC CD DT VBN TO RB Left NN NNP CD JJ VBN SYM VB RB	cd cd cd cd cd cd cd cd cd cc cc cc cc c	NNS NN CC VBD VBD T NN NNP JJ NNS CD RB VBN	184 182 165 94 61 53 275 265 243 202 174 171 132 104 73	490 315	304 268	549 497	27 17 11 8 6 6 270 178 162 145 73 48 38 36 32	380 319	372 210	362 139	NN VBN VBN VB VB Left IN DT NNS NN RB NNP CC CD VBD	vb vb vb vb vb vbg vbg vbg vbg vbg vbg v	JJ NNS TO PRP RB PRPS RIght DT NN IN TO NNS VBN NNS VBN NNP UJ PRPS	152 71 68 59 160 129 116 112 97 90 52 22	369 365	286 282	276 225	316 310 240 182 169 155 N 1135 869 713 536 266 184 174 171 112	1529 1521	1023 918	1851 784 681 <u>N4</u> 1712	NNP PRP\$ CC VB VBN Left JJ NN NNP CD PRP\$ CC VB	nn nn nn nn NODE nns nns nns nns nns nns nns nns nns nn	CC CD VBD DT VBZ Right N CC VBD VBN DT VBG TO VBP CD	595 512 435 297 291 253 1595 466 313 283 171 162 156 146 140	N2 1770 531 527 521 997 521 474	1338 404	1742 683

N 3368 515 415 340 185 174 140 116 99	N2 5927 907 591	N3 2378 979 455	N4 3773 752 616	Left SBC DTN PREP SBP ADJ ADV DTC COO ECJ		Right PREP SBC DTC COO DTN ADJ VCJ ACJ DJ2PAR	908 634 513 305 185 153 148 143	N2 2536 1434 738		N4 1473 1342 893	N 686 351 231 220 167 148 70 49 35 29	N2 262 108 75	N3 642 361 213	N4 388 349 207	Left SBC PRV ADV SBP REL ADJ PRV:++ COO CAR	acj acj	VPAR EPAR ADV DTN APAR PREP SBC .DJ2PAR PRO	N 504 314 118 58 53 18 17 6	N2 143 143 139	350	N4 811 288 250	N 4733 901 675 489 460 425 303 291 283 227	N2 5459 1026 632		N4 4538 1034 563	Left SBC ADJ ADJ2PA ADJ1PA COO VCJ SBP ADV VNCFF	NODE prep prep prep prep prep prep prep pre	SBC VNCFF ADJ PRO SBP CAR REL PRV	N 5008 2402 833 313 265 244 194 138 137 91	3705		N4 4463 2597 1146
61 521 462 111 97 20 3 2 2 2 1	N2 1311 860 224	N3 461 156 132	N4 375 254 152		adj NODE adj1par adj1par adj1par adj1par adj1par adj1par adj1par adj1par adj1par	ADV Right PREP COO DTC DTN ADV SUB SUB SUB SBC ADJ DJ2PAR	140 N 670 98 76 64 56 22 22 22 22 19 17 8	N2 1483 191 174	N3 451 63 56	N4 501 57 49	29 256 249 125 109 95 39 21 17 14 11	N2 1009 370 293	N3 860 430 195	N4 408 349 118	ADJ2PA Left PRV SBC ADV REL ADJ SBP CAR PRV:++ ADJ2PA COO	NODE ecj ecj ecj ecj ecj ecj ecj	COO Right .DJ1PAR ADV ADJ PREP DTN SBC SUB DTC PRO .DJ2PAR	4 1462 200 99 85 70 19 10 9 7 6	N2 1311 422 327	N3 497 461 316	N4 375 337 155	227 270 250 236 187 187 113 75 67 53 45	<u>N2</u> 383 301 207	N3 591 554 520	N4 317 249 224	VPAR Left SUB\$ SUB SBC PREP REL PRV COO ADV ADJ SBP	prep NODE prv prv prv prv prv prv prv prv	ADV Right VCJ ACJ ECJ ADV VNCFF PRV PRV:++ VNCNT ADJ ENCNT	91 604 351 256 165 163 113 49 21 2 2 2	N2 1316 370 167	N3 2002 860 642	N4 954 408 349
N 992 143 127 108 72 56 41 38 31 25	N2 2480 389 212	95 85	N4 808 167 150	Left SBC ADJ ADV CAR COO SBP VNCFF ENCNT VCJ DTN	NODE adj2par adj2par adj2par adj2par adj2par adj2par adj2par adj2par adj2par adj2par	Right PREP DTC DTN ADV COO SUB\$ CAR VCJ ACJ SBC	180 127 71 71 48 42 36 29 23	215	N3 389 120 88	N4 685 133 109	N 1271 604 363 242 160 153 98 45 36 28	N2 1435 1316 438	448	N4 954 531 322	Left SBC PRV REL ADV SBP ADJ COO CAR ADJ2PA PRO	VCj	Right DTN PREP SUB ADV DTC VNCFF SBC ENCFF PRV:++ DJ2PAR	N 697 584 584 414 226 187 115 67 33 31	N2 979 884 862	N3 937 822 730	N4 743 579 510	N 60 49 34 33 28 17 11 10 10 8	N2 102 72 71	N3 214 119 106	N4 111 69 51	Left PREP PRV ADV VCJ SBC ADJ REL COO SBP PRV:++	prv: ++ prv: ++ prv: ++ prv: ++ prv: ++	Right VNCFF ACJ VNCNT VCJ DJ2PAR ECJ PRV:++ SBP ANCFF ENCFF	N 110 70 34 26 22 17 8 3 2 2 2	N2 191 75 39	N3 224 213 73	N4 183 63 52
N 535 414 314 200 165 158 140 134 117 86	N2 830 594 422	N3 937 624 497	N4 630 579 400	Left SBC VCJ ACJ ECJ PRV ADV ADJ PREP COO SBP	adv	Right PREP DTN SUB VCJ ACJ VPAR ADJ ADV .DJ2PAR ECJ	N 398 330 259 242 231 198 174 158 127 125	N2 662 442 394	N3 783 596 493	N4 769 616 432	N 28 16 10 4 3 3 2 1	N2 862 86 57	N3 98 42 20	N4 97 37 19	Left VCJ PREP ADV VPAR SBC ADJ COO VNCNT PRV:++ ADJ1PA		Right DJ1PAR DTN SBC ADJ ADV DJ2PAR DTC VPAR PREP CAR	N 97 10 7 6 3 3 2 1 0	N2 860 105 35	N3 97 34 13	N4 114 13 13	N 360 33 31 26 22 21 12 9 8	N2 288 166 54	N3 370 161 84	N4 249 109 37	Left PREP DTN SBC SUB SUB SUB ADJ COO VCJ CAR ADV	NODE pro pro pro pro pro pro pro pro pro	Right REL SUB\$ PREP DTC ADV VCJ DTN ACJ SBC COO	N 226 74 59 57 31 28 23 19 17 13	N2 144 133 120	N3 210 185 151	N4 142 97 73
N 957 384 353 351 309 108 91 90 42 35	N2 943 724 568	<u>N3</u> 432 199 199	<u>N4</u> 428 388 149	Left SBC SBP DTN DTC PREP COO CAR ADJ ADJ2PA VNCFF	car	Right SBC PREP DTN COO DTC SBP .DJ2PAR CAR ADJ ADV	N 309 239 214 119 116 108 91 61 60	<u>N2</u> 1123 915 568	<u>N3</u> 541 134 76	N4 611 133 114	N 1135 187 163 110 53 48 47 35 32 13	N2 1852 766 191	N3 1485 513 224	N4 1723 281 183	Left PREP VCJ PRV PRV:++ VNCFF VPAR ADV COO SBC ADJ	NODE vncff vncff vncff vncff vncff vncff vncff vncff vncff vncff	Right DTN PREP DTC SUB ADV SBC VNCFF COO .DJ2PAR CAR	N 375 228 156 73 53 53 43 41 35	N2 1569 719 414	639	N4 1196 593 280	N 5392 1778 1411 411 394 88 64 62 52 26	N2 4254 2637 1500	N3 5436 1441 1394	N4 5108 1790 1683	Left DTN PREP DTC ADJ CAR SBC SBP COO VCJ VNCFF	NODE sbc sbc sbc sbc sbc sbc sbc sbc sbc sbc	Right PREP ADJ DTC VCJ COO CAR DJ2PAR DTN SBP ACJ		N2 3300 1336 891	1348	N4 3214 1771 1065
N 1184 513 345 214 98 71 43 35	N2 1884 763 307	N3 1095 459 240	N4 1534 893 281	Left SBC ADJ SBP CAR ADJ1PA ADJ2PA VNCFF ADV	C00 C00	Right PREP DTN SUB\$ DTC SBC SBP ADV	N 626 499 194 172 160 134 117	N2 911 871 412	N3 476 446 303	N4 842 823 287	N 178 101 60 34 21 19 17	N2 397 131 91	N3 130 96 28	N4 151 70 61	Left SBC PREP ADJ PRV:++ PRV SBP CAR	NODE vncnt vncnt vncnt vncnt vncnt vncnt vncnt	Right DTN PREP DTC SUB ADV SBC VNCFF	N 182 108 63 36 22 18 11	N2 306 230 89	N3 131 72 41	N4 178 104 44	N 1868 1066 774 407 385 134	N2 1962 1014 1000		N4 1411 737 567	Left SBP DTN SBC DTC PREP COO	NODE sbp sbp sbp sbp sbp	Right SBP PREP CAR COO ADJ DTN DTC	N 1868 424 384 345 340 293 257	1162	N3 997 511 335	N4 668 557 428
29 23	110	410		VCJ VPAR	C00 C00 C00	ADJ CAR VCJ	116 108 98				14 8 4	410	410		COO ADJ2PA ADJ1PA	vnent vnent vnent	.DJ2PAR COO SBP	11 8 7 6	410	410		123 116 21 16				ADJ CAR ADJ2PA VCJ	sbp sbp sbp sbp	ACJ SBC VCJ	220 191 160			
	N2 3484 744 476	N3 1775 379 239	N4 2180 491 387	VCJ	COO COO NODE dtc dtc dtc dtc dtc dtc dtc dtc dtc dtc	CAR	108	N2 5845 594 205	N3 2749 673 174	N4 3535 737 163		N2 125 23 4	N3 175 27 2	N4 288 37 4	ADJ2PA	vncnt vncnt vncnt epar epar epar epar epar epar epar	.DJ2PAR COO	8 7	N2 134 8 5	N3 156 12 11	N4 254 31 20	116 21				CAR ADJ2PA	sbp sbp	ACJ SBC	220 191			

Figure III : Category n-grams for French