
IS-FBN, IS-FBS, IS-IAC: The Adaptation of Two Classic Algorithms for the
Generation of Referring Expressions in order to Produce Expressions like

Humans Do

Bernd Bohnet
Innovative Language Technology, TTI GmbH

and
University of Stuttgart

Visualization and Interactive Systems Group
Universitätstr. 58, 70569 Stuttgart, Germany

bohnet@informatik.uni-stuttgart.de

Abstract

The first algorithm is the full brevity al-
gorithm combined with nearest neighbour
learning technique which is used for the se-
lection of the referring expression closest
to training examples as uttered by humans.
This algorithm obviously only imitates hu-
man behaviour with the goal to get high
scores. With the Incremental Algorithm that
is known and justified by its human like be-
haviour, we tried to beat the first one.

1 Introduction

The first Shared Task and Evaluation Campaign
(STEC) in Natural Language Generation is the back-
ground of this work.

In section 2, we adopted from Bohnet and Dale
(2005) the description of problem solving by search
in order to describe the methods as used in the algo-
rithms that we contribute to the shared task. In sec-
tion 3, we provide the evaluation and results gained
from the development data.

2 Description of the Methods

Definition 1 shows the node and state classes as well
as the definition of the basic algorithm for problem
solving by search. In contrast to the original defini-
tion of the algorithm by Simon and Newell (1963)
in a functional programming language, we adopt
here an object oriented formalism, since this allows
the representation of dependency between the algo-
rithms by means of inheritance and overwriting.

Full Brevity using Nearest Neighbour. Defini-
tion 2 shows the Full Brevity Algorithm (FB) that
computes all combinations with increasing length.

The first combination that fulfils the goal is the
shortest referring expression or one of the shortest
possible referring expressions.

Definition 1: The Node and State Classes and
the Basic Algorithm Structure

classNode{
s // State
getState() {return s} // returns the state of the node
}

classState{
L // Set of chosen properties and/or relations
C // Set of distractors
P // Set of available properties and/or relations
}

initialState() {return new State(∅,C,P ) }
goal(s) {

// the goal is the empty set of distractors
if s.C = ∅ then return true
else return false
}

makeRefExp() {
// create a initial queue with a single node
nodeQueue ← [new Node(initialState())]
while nodeQueue 6= ∅ do

node← removeFront(nodeQueue)
if goal(node.getState()) then

return node // success
end
nodeQueue← queue(nodeQueue,expand(node))

end
return nil } // failure

The first algorithm, we derive from the FB algo-
rithm is one that aims to find the shortest most hu-
man like referring expression, which we will call
FBS. It uses the nearest neighbour metric to select
the most human-like among the descriptions that all
have the same minimal number of properties in those
cases where there are several. The second algo-
rithm, we derive from the FB is encapsulated by a
loop which continues to create larger combinations.

84



The goal of this algorithm is to compute all possible
combinations. From a strict point of view, it is not
a FB algorithm, since the goals are different. How-
ever, since it is based on the FB, we call itFBN.

Each of the results of the FBN as well as of the
FBS is compared by the nearest neighbour algorithm
using the dice metric to each of the referring expres-
sion in the training set that contains samples which
identify the same entity. The referring expression
with the highest score, that means that one which is
most similar to one of the referring expressions in
the training set, is return as result. For the evalua-
tion, this result referring expression is compared us-
ing again the dice metric to that referring expression
which was build by a human that is in the test set for
exactly the same entity for which the referring ex-
pression was automatically build but of course not
known by the algorithm.

Definition 2: The Full Brevity Algorithm
expand(node) {

N ← ∅

s ← node.getState()
foreachp ∈ s.P do

N ← N ∪ { createNode (node, p)}
end
return N
}

createNode(node, p) {
s ← node.getState()
out ← rulesOut(p, s.C)
if out 6= ∅ & p 6=”type” then

return new Node(s.C − out, s.L ∪ {p},
s.P − {p})

else return newNode(s.C, s.L, s.P − {p})
}

Incremental algorithm using C4.5 (IAC ). Def-
inition 3 shows the Incremental Algorithm as intro-
duced by Dale and Reiter (1995) except that one line
is commented out and the two lines after theif and
before the comment are added. Instead of the pre-
defined list of properties, we use a function to re-
trieve the next property. This function builds out of
the available properties for the intended referentr

and the already selected propertiess.L an instance
which is classified by a decision tree that was build
by C4.51 from the instances created out of the train-
ing set, cf. (Quinlan, 1993). The decision tree gives
as result due to the input instance the property which

1We tried several other learning techniques like support vec-
tor machines, ID3, different types of Bayesian networks, multi-
layer perceptron, but C4.5 close to SVN performed best.

should be selected next. If the chosen property have
been already selected then the result is invalid. In
this case, as next property, the property with the
highest frequency from the remaining properties is
chosen. An instance (referent in question) looks like
the following two lines:
n,-,y,red,n,-n,-,n,-,n,-,n,-,n,-,n-,y,right,n,-,y,large,y,sofa...

n,n,n,n,n,n,n,n,n,n,n,n,n,n,n,n

The first line defines the properties of the entity
for that the referring expression is searched. Then
ory defines, whether a property is present (y) or not
(n) and the values after they’s andn’s define the
value of that property. For instance the first prop-
erty is age and the second iscolour. The second
line defines, whether a property was already chosen
for this referring expression. In the example, none
of them were chose, what represents the initial state.
In most of the initial states the result of the classifi-
cation is the propertytype. Training examples have
the same structure except that additionally the class
is defined. The training examples are build from the
training set. Instances are build for each referent ac-
cordingly to the number of properties with increas-
ing length using as class the property with the high-
est frequency. The following training examples are
build from a referent with the valueslarge red sofa.
n,-,y,red,n,-n,-,n,-,n,-,n,-,n,-,n-,y,right,n,-,y,large,y,sofa...
n,n,n,n,n,n,n,n,n,n,n,n,n,n,n,n,type

n,-,y,red,n,-n,-,n,-,n,-,n,-,n,-,n-,y,right,n,-,y,large,y,sofa...

y,n,n,n,n,n,n,n,n,n,n,n,n,n,n,n,colour

n,-,y,red,n,-n,-,n,-,n,-,n,-,n,-,n-,y,right,n,-,y,large,y,sofa...

y,n,y,n,n,n,n,n,n,n,n,n,n,n,n,n,size

Definition 3: The Incremental Algorithm
expand(node) {

N ← ∅

s ← node.getState()
if s.P 6= ∅ then

p ← askC4.5(s.L, r, s.P ) for the next property
if p = ∅ then selectp ∈ s.P with highest frequency
// p ← choose the first p in O, wherep ∈ s.P
N ← N ∪ { createNode(node, p) }

end
return N
}

3 Evaluation and Conclusions

Table 1 shows the results for the systems which
have been trained on the training data and evaluated
against the development data. Section 2 describes
the IS-FBS, IS-FBN and IS-IAC. The IAF algorithm
was developed as base line, in order to prove that

85



the learning technique C4.5 for the attribute selec-
tion improves the result at all compared to a naive
approach which selects the next attribute only due to
the frequency as they occur in the training data. The
figures show the improvement clearly.

The reason for the development of the FBS was
two folded: The FBS algorithm is a base line for the
FBN algorithm and it produces the shortest referring
expression which is at the same time similar to that
produced by humans.

Algorithm People Furniture Avg.
IS-FBS 0.32 0.39 0.355
IS-FBN 0.744 0.800 0.772
IS-IAC 0.696 0.752 0.724
IS-IAF 0.64 0.72 0.68

Table 1: Summary of the results.
Since in some experiments the IAC could beat the

FBN, we measure the influence of the size of the
training set. We used an n-fold cross validation leav-
ing one out in order to get a high precision for the
results. Table 2 shows the results. In the first ex-
periment only the development data was used, in the
second experiment only the training data and finally,
the training data and the development data was used.

Algorithm dev train train+dev
IS-FBN 0.68 0.74 0.76
IS-IAC 0.72 0.74 0.74

Table 2: Influence of the amount of training data.

The IAC shows better results on smaller training
set compared to the FBN. However, the accuracy of
the FBN is higher when more training data is avail-
able. The difference of the accuracy with 0.02 be-
tween this two algorithms is very low. An advantage
of the IAC is that it is faster, since it has not to ex-
plore a large amount of combinations. Another ex-
periment made a surprising fact about the IAC ob-
vious. During a n-fold cross validation always the
complete set to which the test trial belongs has been
left out. This had none or no negative effect on the
results. The answer gives a look on the decision tree.
The decision tree for furniture is shown in Figure 1.
The comments added to the decision tree explain the
meaning of the tree. The two numbers in the braces
at the leafs indicate the training instances which fall
into the class. The first number gives the number of
correct classified training instances and the second
number the number of wrongly classified instances.

// if the property (attribute) type has been chosenthen
typea = y

// if colour has been chosenthen
coloura = y

// if type has the value sofathen chose size
typev = sofa: size (5.0/2.0)
// if type has the value sofathen chose orientation
typev = chair: orientation (18.0/11.0)
// etc.
typev = other: orientation (0.0)
typev = desk: orientation (6.0/3.0)
typev = fan: size (3.0)
typev = -: orientation (0.0)

coloura = n
// This part is not completely logic
// since the x-dimensiona is never chosen
x-dimensiona = y

y-dimensiona = y: colour (6.0/1.0)
y-dimensiona = n: y-dimension (6.0)

x-dimensiona = n: colour (75.0/12.0)
typea = n: type(122.0/45.0)

Figure 1: Decision tree.
The a attached to a property indicates the pres-

ence or absence of property and thev indicates a
property with a distinct value. The property after
the colon is the property the decision tree suggest to
chose next. The decision tree has only 15 nodes and
10 leaves, which is very small.

Humans seem to prefer in case of furniture as pro-
vided in the corpus, colour, then somehow the posi-
tion and then depending on the entity in question the
size or orientation. The decision tree for the selec-
tion of properties for people is much larger. It con-
tains 63 nodes and 33 leaves. The top level nodes
of this tree are the propertieshasGlasses followed
by hasBeard. These properties seems to be the most
salient properties looking in human faces. Finally,
the IAC could not beat the FBN. Nevertheless, the
IAC has many advantages, it can be trained on very
small training sets, it is fast, and it does not only im-
itate the referring expressions of humans.

References
B. Bohnet and R. Dale. 2005. Viewing referring expres-

sion generation as search. InIJCAI, pages 1004–1009.

R. Dale and E. Reiter. 1995. Computational Interpre-
tations of the Gricean Maxims in the Generation of
Referring Expressions.Cognitive Science, 19(2):233–
263.

J. R. Quinlan. 1993.C4.5 Programs for Machine Learn-
ing. Morgan Kaufmann, California.

H. Simon and A. Newell. 1963. GPS, A Program that
Simulates Thought. InComputers and Thought, pages
279–293.

86




