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Abstract

The Attribute Selection for Generating Re-

ferring Expressions (ASGRE) Challenge was

the first shared-task evaluation challenge in

the field of Natural Language Generation.

Six teams submitted a total of 22 systems.

All submitted systems were tested automat-

ically for minimality, uniqueness and ‘hu-

manlikeness’. In addition, the output of 15

systems was tested in a task-based exper-

iment where subjects were asked to iden-

tify referents, and the speed and accuracy of

identification was measured. This report de-

scribes the ASGRE task and the five evalu-

ation methods, gives brief overviews of the

participating systems, and presents the eval-

uation results.

1 Introduction

The Attribute Selection for Generating Referring

Expressions (ASGRE) Challenge has come about as

the result of a growing interest in comparative eval-

uation among NLG researchers over the past two

years. The subfield of Generation of Referring Ex-

pressions (GRE) was an obvious choice for a first

shared-task challenge, because it is one of the most

lively and well-defined NLG subfields, with a sub-

stantial number of researchers working — unusually

for NLG — on the same task, with very similar input

and output specifications.

What made the ASGRE Challenge feasible, how-

ever, was the availability of the TUNA corpus, a

collection of paired pictures of objects and human-

produced references annotated with attribute sets

(Gatt et al., 2007). We simplified and reduced the

TUNA corpus somewhat for the purposes of the AS-

GRE Challenge, and divided it into training, devel-

opment and test data. The training and development

data was distributed to participants on 4 June, 2007.

The test data became available on 21 June, and be-

tween then and 28 July, participants were able to re-

quest the test data at any time, but were required to

return test data outputs within a week after receiving

it, or by 28 July, whichever was earlier.

Participating teams were asked to submit a report

describing their method before requesting test data.

Teams were given a program for computing Dice co-

efficients, and were asked to compute Dice scores

(see Section 4.1) on the development data set and

include them in the report. The reports are included

in this volume, and the evaluation results reported

by participants are shown in Table 2.

Following the call for participation, 19 individ-

ual researchers registered their interest. Thirteen of

these then formed six teams which submitted out-

puts of 22 systems by the deadline (see overview

of teams and systems in Table 1). All submitted

system outputs were tested automatically for mini-

mality, uniqueness and humanlikeness (using Dice

scores, see Section 4.1). In addition, 15 systems

were tested in a task-based experiment where sub-

jects were asked to identify referents, and the speed

and accuracy of identification was measured.

This report presents the results of all evaluations

(Section 5), along with an overview of the ASGRE

Task (Section 2), brief descriptions of the partici-

pating systems (Section 3), and explanations of the

evaluation methods (Section 4).
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Team ID Submitted Systems Organisation

CAM CAM-B, CAM-BU, CAM-T, CAM-TU Computer Lab, Cambridge University, UK

DIT DIT-DS, DIT-DI Dublin Institute of Technology, Ireland

GRAPH GRAPH-SC, GRAPH-FP Universities of Twente and Tilburg, NL;

Macquarie University, Australia

IS IS-FBN, IS-FBS, IS-IAC University of Stuttgart, Germany

NIL NIL Universidad Complutense de Madrid, Spain

TITCH TITCH-BS-STAT, TITCH-BS-DYN Tokyo Institute of Technology, Japan

TITCH-AW-STAT, TITCH-AW-STAT-PLUS

TITCH-RW-STAT, TITCH-RW-STAT-PLUS

TITCH-AW-DYN, TITCH-AW-DYN-PLUS

TITCH-RW-DYN, TITCH-RW-DYN-PLUS

Table 1: Overview of participating teams and systems. All systems were included in the automatic evalua-

tions. The 15 systems included in the task-based evaluation are shown in bold.

Some of the terms we use in this report may ben-

efit from up-front explanation: following DUC
1 ter-

minology, a peer system is a system submitted to

the shared-task challenge; peer output and peer at-

tribute set refer to an output produced by a peer sys-

tem; and a reference attribute set is an attribute set

derived from the annotations of a human-produced

referring expression in the TUNA corpus.

2 The Attribute Selection for GRE Task

The ASGRE Task has the same basic functionality as

the majority of existing attribute selection for GRE

methods: given a target referent and a set of distrac-

tors each with their own set of possible attributes,

select a set of attributes for inclusion in a referring

expression to be generated for the target referent.

However, we deliberately refrained from includ-

ing in the task definition any aim that would imply

assumptions about quality (such as producing min-

imal or uniquely distinguishing attribute sets) as is

often the case in existing GRE task formulations.

Instead, we simply told participants which evalu-

ation criteria were going to be used: minimality,

uniqueness, humanlikeness, and identification speed

and accuracy (where identification means selecting

among pictures of entities, see Section 4).

1The Document Understanding Conferences (DUC) are an
established shared-task evaluation intiative in the field of docu-
ment summarisation.

2.1 Data

We used all 780 singular items in the TUNA cor-

pus in both the furniture and people domains. We

simplified representations somewhat and removed

the human-produced referring expressions, retaining

only the attribute sets with which they had been an-

notated.

Each item in the ASGRE corpus consists of an in-

put part, called a domain, and an output part, called

a description. Each domain consists of seven do-

main entities: one target referent and six distractors.

Each entity consists of a set of attribute-value pairs,

as shown in Figure 1. Each output part, or descrip-

tion, consists of a subset of the attribute-value pairs

of the target referent in the same format as shown in

Figure 1.

We divided the data into 60% training data, 20%

development data and 20% test data. Participants in

the ASGRE Challenge were given both input and out-

put parts in the training and development data, but

just inputs in the test data. Participants were asked

to submit the corresponding outputs for test data in-

puts.

3 Participating Methods and Systems

In this section, we give very brief descriptions of the

participating systems. More details (and references)

can be found in the individual participants’ reports

elsewhere in this volume.
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<ENTITY ID="121" TYPE="target">

<ATTRIBUTE NAME="colour" TYPE="literal" VALUE="blue" />

<ATTRIBUTE NAME="orientation" TYPE="literal" VALUE="left" />

<ATTRIBUTE NAME="type" TYPE="literal" VALUE="fan" />

<ATTRIBUTE NAME="size" TYPE="literal" VALUE="small" />

<ATTRIBUTE NAME="x-dimension" TYPE="gradable" VALUE="1" />

<ATTRIBUTE NAME="y-dimension" TYPE="gradable" VALUE="3" />

</ENTITY>

Figure 1: Example of an entity representation from the furniture subdomain.

CAM-B, CAM-BU, CAM-T, CAM-TU

The CAM team submitted four adaptations of Sid-

dharthan and Copestake’s incremental algorithm for

attribute selection in open domains. The CAM meth-

ods compute the discriminating quotient (DQ) of

candidate attributes as the number of distractors

which do not have the same attribute minus the num-

ber which do. CAM-B incorporates attributes in de-

creasing order of DQ. CAM-T additionally weights

attribute values in terms of how discriminating an

attribute is to humans. CAM-BU and CAM-TU are

further variations in which DQ values are updated at

each incremental step.

DIT-DS, DIT-DI

The DIT system is an incremental algorithm, where

the order in which attributes are considered for se-

lection is determined by the absolute frequency of

attributes in the training corpus. The type attribute is

always selected. Other attributes are selected if they

exclude at least one distractor. In the DS version, fre-

quencies are determined separately for the furniture

and people domains; in the DI version, frequencies

computed from both domains combined are used.

GRAPH-SC, GRAPH-FP

The GRAPH systems use Krahmer et al.’s graph-

based framework with two different cost functions:

one where the cost of selecting a property depends

on its frequency in the corpus (GRAPH-SC), and a

variation of this function where certain properties

which are particularly salient to humans can be se-

lected at zero cost (GRAPH-FP).

IS-FBS, IS-FBN, IS-IAC

IS-FBS is an extension of Dale’s full brevity algo-

rithm and selects the attribute set among the smallest

candidate attribute sets that has the highest similar-

ity with any one of the (human-produced) attribute

sets found in the corpus for the same entity.2 IS-

FBN selects the attribute set of any length that has

the highest similarity score in the same sense as

IS-FBS. Similarity in both cases is computed us-

ing the Dice metric. IS-IAC is an incremental algo-

rithm which uses a decision-tree built using Quin-

lan’s C4.5. Given the set of remaining available at-

tributes, and the set of attributes already selected, the

decision tree returns the attribute to be selected next.

NIL

The NIL system is an adaptation of Reiter and Dale’s

fast efficient algorithm for referring expression gen-

eration, using relative groupings of attributes to de-

termine the order in which they are considered. The

relative groupings are obtained empirically from the

training data.

TITCH-BS, TITCH-AW, TITCH-RW

TITCH-BS is an incremental algorithm which se-

lects attribute-value pairs in order of their discrim-

ination power (computed case by case, and defined

as the number of distractors excluded) until the set

uniquely identifies the target referent. In addition to

discrimination power, TITCH-AW weights attributes

according to their corpus frequency; and TITCH-

RW weights attributes according to how frequently

they are missing when compared to reference at-

tribute sets. Discrimination power can be com-

puted either dynamically (immediately before each

new selection) or statically (once before any selec-

tions are made). These system variants are indi-

2The version of IS-FBS that was submitted to the ASGRE

Challenge inadvertently did not always produce minimal at-
tribute sets, which explains its score in Table 3. The last row in
Table 2 (and Bohnet’s report in this volume) shows self-reported
scores for the corrected version of IS-FBS (marked with an as-
terisk). However, it was too late to update the other evaluation
scores.
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cated by -DYN and -STAT tags in the results tables.

In addition, TITCH-AW and TITCH-RW optionally

model the dependency between the HAIRCOLOUR

and HASBEARD/HASHAIR attributes (indicated by

the -PLUS tag in results tables).

4 Evaluation Methods

Experience in other shared-task evaluation chal-

lenges has shown that the use of a single method

of evaluating participating systems can cause loss

of trust and/or loss of interest, in particular if the

method is seen as biased in favour of a particu-

lar type of system (e.g. BLEU in MT Eval) or if it

severely restricts the definition of quality (e.g. the

PARSEVAL metric in syntactic parsing).

We decided to use a range of different criteria of

quality, including both automatically assessed and

human-evaluated, both intrinsic and extrinsic meth-

ods. The five criteria we used were intended to ad-

dress questions as follows:

1. Uniqueness: do peer attribute sets uniquely de-

scribe the target referent?

2. Minimality: are peer attribute sets of minimal

size?

3. Humanlikeness: are peer attribute sets similar

to reference attribute sets?

4. Identification Accuracy: do peer attribute sets

enable people to identify the target referent ac-

curately?

5. Identification Speed: do peer attribute sets en-

able people to identify a referent quickly?

4.1 Automatic Evaluation Methods

In the explanations of evaluation methods below, we

refer to the following simplified example of a furni-

ture domain:

<DOMAIN>

<ENTITY ID="e1" TYPE="target">

<ATTR NAME="colour" VALUE="red"/>

<ATTR NAME="orientation" VALUE="right"/>

<ATTR NAME="type" VALUE="chair"/>

<ATTR NAME="size" VALUE="small"/>

</ENTITY>

<ENTITY ID="e2" TYPE="distractor">

<ATTR NAME="colour" VALUE="blue"/>

<ATTR NAME="orientation" VALUE="left"/>

<ATTR NAME="type" VALUE="table"/>

<ATTR NAME="size" VALUE="large"/>

</ENTITY>

<ENTITY ID="e3" TYPE="distractor">

<ATTR NAME="colour" VALUE="green"/>

<ATTR NAME="orientation" VALUE="right"/>

<ATTR NAME="type" VALUE="chair"/>

<ATTR NAME="size" VALUE="small"/>

</ENTITY>

</DOMAIN>

Uniqueness:

Peer systems were tested to determine whether

or not the attribute sets they produced uniquely dis-

tinguished the target referent. For example, the set

{TYPE:chair, COLOUR:red} uniquely identi-

fies the target referent e1 in the example above,

since there is no other entity of which these attribute-

value pairs are true. As an aggregate measure, we

computed the proportion of outputs of peer sys-

tems which uniquely identify their target referents.

Uniqueness is often seen as part of the standard

problem definition for GRE, whereby an algorithm is

successful if, and only if, the attribute set it returns

uniquely identifies the referent (Bohnet and Dale,

2005).

Minimality:

A minimal attribute set is defined as an attribute

set which uniquely identifies the referent such that

there is no smaller attribute set which uniquely iden-

tifies the referent. For example, a minimal descrip-

tion of e1 in the above example is {COLOUR:red},

since it is the only red object. There may be more

than one minimal attribute set. As an aggregate mea-

sure, we computed the proportion of minimal distin-

guishing outputs produced by peer systems. Min-

imality has frequently been cited as a desideratum

for GRE algorithms (Dale, 1989; Gardent, 2002).

Humanlikeness:

We measured the similarity between the peer

attribute sets and (human-produced) reference at-

tribute sets, because (Grice’s maxim of Clarity

notwithstanding) humans choose to overspecify

and underspecify for a variety of reasons; e.g.

in the above example, humans are likely to use

{TYPE:table, COLOUR:blue} in a descrip-

tion of e2 even though either {TYPE:table} or

{COLOUR:blue} are distinguishing.

Similarity between the peer and reference at-

tribute sets was calculated in terms of the Dice co-
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efficient of similarity between pairs of peer and ref-

erence sets. In this Challenge, given two sets of at-

tributes, A1 (peer) and A2 (reference), Dice was cal-

culated as follows:

2 × |A1 ∩ A2|

|A1 ∪ A2|
(1)

4.2 Design of Task-Based Evaluations

In order to evaluate peer systems in a task-based

experiment, we created a simple realiser (see Sec-

tion 4.3.1) to convert peer attribute sets into natu-

ral language descriptions that subjects in our exper-

iments would be able to read. We then conducted

an experiment in which the realisations of the peer

attribute sets were shown to subjects along with pic-

tures of the seven domain entities (referent and dis-

tractors). The pictures were the same as were used

in the TUNA elicitation experiments. Subjects were

given the task of finding the target referent (details

described below).

4.3 Experimental set-up

The experimental design was Repeated Latin

Squares in which each combination of peer system

and test set item was allocated one trial. Because we

had 148 items in the test set, but 15 peer systems,

we randomly selected 2 test set items and duplicated

them to give us a test set size of 150, and 10 Latin

Squares.

We recruited 30 subjects from among the faculty

and administrative staff at Brighton University. Just

over a third of the subjects are computing science

faculty members, but only one has an NLP back-

ground (not including NLG). The experiments were

carried out on a single laptop3, one subject at a time,

in a quiet environment, under the supervision of the

first author. Subjects were told only that the experi-

ment formed part of an investigation into references

to objects.

During the experiment, subjects were shown pic-

tures of domain entities (referent and distractors) on

the computer screen, along with a realised peer at-

tribute set (description). The presentation of trials

was randomised for each subject. Each subject was

3The processor was a Pentium M 1.6 GHz with 560MHz
Bus and 512MB RAM; 60GB Hard drive; running Windows
XP. We used the maximum screen resolution of 1024×768.

shown 75 trials, so the entire evaluation consisted of

2,250 individual trials. Subjects were told that the

description was of one of the objects in the pictures,

and were asked to mouse-click on the picture that

was being described. Subjects initiated each trial,

and each trial began with a bell sound and a small

cross flashing on the screen, in order to focus sub-

jects’ attention and to direct their gaze to where the

description would appear. Trials timed out after 15

seconds, but only 6 of the 2,250 trials reached time-

out stage.4 There were five practice trials at the be-

ginning (the results of which were discarded), after

which the real evaluation trials began.

4.3.1 Realiser

We used a very simple template-based realiser

(written by Irene Langkilde-Geary, Brighton Uni-

versity, for this purpose) which always realises each

attribute in the same way and in the same position

regardless of context, except that it groups negated

attributes contained in a list of premodifiers or post-

modifiers together at the end of the list, in order to

avoid ambiguity.5 Some examples of realised peer

attribute sets are shown in Figure 2. The shortest re-

alisations of peer attribute sets were five words long

(first example), the longest were 11 words long (two

last examples).

4.3.2 Reaction time software

We used DMDX to display the identification ex-

periment and to measure identification time and

accuracy. DMDX was designed especially for

language-processing experiments, to time the pre-

sentation of text, visual and audio material and to

measure reaction times to such presentations with

millisecond accuracy (Forster and Forster, 2003).

5 Evaluation Results

5.1 Self-reported humanlikeness scores

Table 2 shows the Dice scores for the furniture and

people subdomains computed and reported by the

participants themselves (using code provided by us).

We computed the average of the scores for the fur-

niture and people domains, weighted by the number

4Time-outs were counted as missing trials because there
were so few of them.

5For example, the person with no beard and glasses is am-
biguous, whereas the person with glasses and no beard is not.
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{Y-DIMENSION:1, TYPE:fan}
the fan at the top

{TYPE:chair, COLOUR:grey, Y-DIMENSION:3, SIZE:large, ORIENTATION:back}
the large grey chair facing back at the bottom

{Y-DIMENSION:2, HASSUIT:0, TYPE:person, HASGLASSES:1}
the person wearing glasses and no suit in the middle row

{TYPE:chair, COLOUR:grey, Y-DIMENSION:1, SIZE:large, X-DIMENSION:3}
the large grey chair in the center column at the top

Figure 2: Example realisations of peer attribute sets.

w-Avg Furniture People Trainable? Dev seen?

IS-FBN 0.774 0.800 0.744 Y N
CAM-TU 0.739 0.782 0.688 Y Y
CAM-T 0.738 0.780 0.688 Y Y
IS-IAC 0.726 0.752 0.696 Y N
DIT-DS 0.726 0.752 0.695 Y N
TITCH-RW-STAT-PLUS 0.694 – 0.678 Y Y
GRAPH-FP 0.692 0.710 0.671 Y N
TITCH-RW-DYN-PLUS 0.689 – 0.678 Y Y
TITCH-AW-STAT-PLUS 0.684 – 0.683 Y Y
TITCH-AW-DYN-PLUS 0.684 – 0.683 Y Y
TITCH-RW-STAT 0.68 0.707 0.648 Y Y
TITCH-RW-DYN 0.676 0.699 0.648 Y Y
TITCH-AW-STAT 0.669 0.685 0.651 Y Y
TITCH-AW-DYN 0.669 0.685 0.651 Y Y
GRAPH-SC 0.659 0.661 0.656 Y N
CAM-BU 0.632 0.585 0.688 N –
CAM-B 0.62 0.563 0.688 N –
NIL 0.612 0.752 0.448 Y N
DIT-DI 0.607 ? ? Y N
TITCH-BS-DYN 0.582 0.601 0.559 N –
TITCH-BS-STAT 0.575 0.588 0.559 N –
IS-FBS 0.505 0.56 0.44 N –
IS-FBS* 0.357 0.39 0.32 N –

Table 2: Self-reported mean Dice scores on development set. ‘Trainable’ indicates whether some aspect

of the system was determined quantitatively from the corpus. ‘Dev seen’ indicates for trainable systems

whether or not the development data set was used in training. To compute w-Avg for each TITCH-*-PLUS

system we included the furniture score from the corresponding TITCH-* system (without the -PLUS exten-

sion). (For IS-FBS* see Footnote 2.)

of items in each domain (80 furniture items and 68

people items). In the table, systems are listed in or-

der of this weighted average score (w-Avg).

5.2 Uniqueness

All systems except one uniquely described the target

referent 100% of the time (as calculated on the test

set). The exception was the TITCH-AW-DYNAMIC

system, in whose output 23% of descriptions did not

describe the target referent uniquely.

5.3 Minimality

Percentages of minimal peer outputs are shown for

each system in Table 3. The negative correlation be-

tween minimality and Dice scores is considered in

Section 5.6 below.

5.4 Humanlikeness

Table 4 displays the mean and standard deviation ob-

tained by each system overall, as well as by domain

(people or furniture). The systems are ordered by

the overall mean score.

The differences apparent in the table were fur-

ther confirmed via a 22 SYSTEM × 2 DOMAIN uni-

variate Analysis of Variance (ANOVA) over the Dice

scores. There were significant main effects of SYS-

TEM (F (21, 2896) = 7.466, p < .001) and DO-

MAIN (F (1, 2896) = 79.73, p < .001). The inter-

action was also significant (F (17, 2896) = 5.413,

80



overall furniture people

Mean SD Mean SD Mean SD

IS-FBN 0.7709 0.21 0.80 0.16 0.74 0.25
DIT-DS 0.7501 0.26 0.80 0.27 0.69 0.24
IS-IAC 0.7461 0.27 0.80 0.27 0.68 0.26
CAM-T 0.7249 0.27 0.79 0.24 0.65 0.28
CAM-TU 0.7214 0.27 0.78 0.25 0.65 0.28
GRAPH-FP 0.6898 0.25 0.71 0.26 0.67 0.24
GRAPH-SC 0.6715 0.26 0.71 0.26 0.63 0.25
TITCH-RW-STAT 0.6551 0.25 0.69 0.24 0.61 0.26
TITCH-RW-DYN 0.6551 0.25 0.69 0.24 0.61 0.26
TITCH-AW-STAT-PLUS 0.6532 0.28 – – 0.65 0.28
TITCH-AW-DYN-PLUS 0.6532 0.28 – – 0.65 0.28
TITCH-AW-STAT 0.6455 0.25 0.67 0.25 0.62 0.26
TITCH-AW-DYN 0.6411 0.25 0.66 0.25 0.62 0.26
TITCH-RW-STAT-PLUS 0.6400 0.28 – – 0.64 0.28
TITCH-RW-DYN-PLUS 0.6400 0.28 – – 0.64 0.28
CAM-BU 0.6300 0.27 0.61 0.26 0.65 0.28
NIL 0.6251 0.34 0.80 0.27 0.42 0.30
DIT-DI 0.6243 0.25 0.71 0.18 0.53 0.29
CAM-B 0.6203 0.27 0.59 0.25 0.65 0.28
TITCH-BS-DYN 0.5934 0.25 0.60 0.24 0.58 0.27
TITCH-BS-STAT 0.5928 0.26 0.60 0.26 0.58 0.27
IS-FBS 0.5276 0.28 0.62 0.23 0.42 0.29

Table 4: Mean Dice scores on test set and standard deviation (SD). Mean and SD are shown overall and

separately for each subdomain. To compute overall means for each TITCH-*-PLUS system we included the

furniture outputs from the corresponding TITCH-* system (without the -PLUS extension).

Figure 3: Minimality plotted against mean test set

Dice coefficient (three outlier systems labelled).

p < .001). Table 5 displays the results of pair-

wise comparisons using Tukey’s Honestly Signifi-

cant Difference test. The table6 shows systems and

mean Dice scores, and indicates the homogeneous

subsets in the data, so that systems which do not

6Here and in Table 6 we use the same presentation format as
in the DUC reports.

share a letter are significantly different at p < .05.

5.5 Results of task-based evaluation

In this section, we report on differences between

systems on the two dependent variables in the iden-

tification experiment, identification time and identi-

fication accuracy. For each dependent variable, we

report main effects and, when these are significant,

further pairwise comparisons between systems. In

all cases, our analysis uses items as the error term.

We used SPSS 15.0 to perform all analyses of our

experimental results.

5.5.1 Identification Accuracy

Because of the large number of zero values in

error rate response proportions, and a high depen-

dency of variance on the mean, we used a Kruskall-

Wallis ranks test to compare identification accuracy

rates across systems. This did not reveal any signifi-

cant differences between systems at all (χ2 = 8.971,

= .8).

5.5.2 Identification Speed

A univariate ANOVA was conducted over iden-

tification times using SYSTEM as the sole inde-

pendent variable. The main effect was significant
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System minimal (%)

TITCH-AW-DYN 93.92
TITCH-BS-STAT 93.92
TITCH-BS-DYN 92.56
CAM-BU 83.10
CAM-B 81.08
TITCH-AW-STAT 81.08
GRAPH-SC 77.03
TITCH-RW-DYN 74.32
TITCH-RW-STAT 74.32
TITCH-RW-DYN-PLUS 66.18
TITCH-RW-STAT-PLUS 66.18
TITCH-AW-DYN-PLUS 63.24
TITCH-AW-STAT-PLUS 63.23
IS-FBS 60.08
GRAPH-FP 59.46
CAM-T 40.54
CAM-TU 41.21
NIL 37.16
DIT-DS 31.76
IS-IAC 31.75
IS-FBN 16.22
DIT-DI 14.86

Table 3: Proportion of minimal descriptions per sys-

tem

(F (14, 449) = 6.401, p < .001). Once again,

post-hoc Tukey comparisons were used to compare

the different systems. Homogeneous subsets of sys-

tems, together with mean identification times, are

displayed in Table 6. Again, systems which do not

share a letter differ significantly at p < .05.

5.6 Correlations between scores

There is a strong as well as highly significant posi-

tive correlation (Pearson’s r = .932, p < .001) be-

tween the mean self-reported Dice scores for each

system on the development set (shown in Table 2)

and the mean Dice scores computed by us on the

test data (shown in Table 4).

We also looked at the correlation between Dice

scores and mean identification time, for those sys-

tems that were included in the task-based evalua-

tion. The rationale was to obtain a rough indica-

tion of whether high agreement on attribute selection

with the reference attribute sets would indicate faster

identification. Therefore, the expected correlation

is negative (i.e. a higher Dice score entails shorter

identification times). Although the correlation is in

the predicted direction, it is not very strong and fails

to reach significance (r = −.305, p > .2).

We also looked at the relationship between hu-

manlikeness and minimality. This is displayed in

System Dice

IS-FBN 0.7709 A
DIT-DS 0.7501 A B
IS-IAC 0.7461 A B C
CAM-T 0.7249 A B C D
CAM-TU 0.7214 A B C D
GRAPH-FP 0.6898 A B C D E
GRAPH-SC 0.6715 A B C D E
TITCH-RW-STAT 0.6551 A B C D E
TITCH-RW-DYN 0.6551 A B C D E
TITCH-AW-STAT+ 0.6532 A B C D E
TITCH-AW-DYN+ 0.6532 A B C D E
TITCH-AW-STAT 0.6455 B C D E F
TITCH-AW-DYN 0.6411 B C D E F
TITCH-RW-STAT+ 0.6400 B C D E F
TITCH-RW-DYN+ 0.6400 B C D E F
CAM-BU 0.6300 C D E F
NIL 0.6251 D E F
DIT-DI 0.6243 D E F
CAM-B 0.6203 D E F
TITCH-BS-DYN 0.5934 E F
TITCH-BS-STAT 0.5928 E F
IS-FBS 0.5276 F

Table 5: Homogeneous subsets following post-hoc

Tukey comparisons on mean Dice score. Systems

which do not share a common letter are significantly

different at p < .05.

the scatter plot in Figure 3 which plots the mean

Dice scores for each system against the proportion of

minimal descriptions produced. With the exception

of the three labelled outliers, there is a trend for the

mean Dice score obtained by a system to decrease

as the proportion of minimal descriptions increases.

6 Conclusions

Since the ASGRE Challenge was the first shared-task

challenge in NLG, we regarded (and presented) it as

a pilot event for a full-scale — and hopefully longer-

term — NLG shared-task evaluation initiative. Our

aim was to organise the Challenge in a relaxed, non-

competetive and collaborative atmosphere, and ini-

tial feedback from participants indicates that we suc-

ceeded in this aim.

A crucial component of the ASGRE Challenge has

been the use of five different criteria of quality, from

the traditional criteria of uniqueness and minimality,

and the more recent criterion of humanlikeness, to

new extrinsic criteria of identification time and ac-

curacy. Results showed the importance of using sev-

eral evaluation criteria: some scores are negatively

correlated (Dice and minimality), and can yield dra-
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System Mean IT

TITCH-RW-STAT 2514.367 A
CAM-TU 2572.821 A
CAM-T 2626.022 A
TITCH-AW-STAT-PLUS 2652.845 A
CAM-BU 2659.369 A
GRAPH-FP 2724.559 A
TITCH-RW-STAT-PLUS 2759.758 A
CAM-B 2784.804 A
DIT-DS 2785.396 A
GRAPH-SC 2811.091 A
IS-IAC 2844.172 A B
TITCH-AW-STAT 2864.933 A B
NIL 2894.77 A B
IS-FBN 3570.904 B C
IS-FBS 4008.985 C

Table 6: Homogeneous subsets following post-hoc

Tukey comparisons on Identification Time. Systems

which do not share a common letter are significantly

different at p < .05.

matically different system rankings (e.g. Dice and

identification time).

Another important aspect of the Challenge (one

that is new in NLP shared-task challenges as far as

we are aware) were the self-reported scores which

gave participants a degree of control over the re-

ported results.

The enthusiastic response from GRE researchers

to the Challenge (and supportive comments from the

wider NLG community) demonstrates that parts of

the NLG field are willing and able to participate in

comparative evaluation events, and we plan to or-

ganise similar events in the future.

As with all shared-task evaluations, the evaluation

results of the ASGRE Challenge do not tell us what

is in general terms the best way to do attribute selec-

tion for GRE. Rather, we have directly comparable

results for 22 different systems and five quality cri-

teria. This can help guide development and selection

of attribute selection systems for similar domains in

the future, in particular where such systems are re-

quired to maximise specific aspects of quality.
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