

“Automatic Language Translation Generation Help Needs Badly”

Kevin Knight
Information Sciences Institute

University of Southern California

Machine translation systems output gobbledygook. This is not a pretty-printing problem.
The solution requires a fundamental understanding of what makes a grammatical, sensible,
and effective piece of text.

(Bad MT output is especially astounding when you consider that there are so many right
answers!)

What’s going wrong? For starters, we can look at human translation. My native language is
English, and I can translate very well from Spanish to English, but not in reverse, from
English to Spanish. I can comprehend the meaning of both Spanish and English sentences
just fine, but I cannot generate a good Spanish sentence, because I don’t know Spanish well
enough. We see an analogous situation in MT. There are analysis problems, but the main
problem is generation.

Inside the Pyramid

The MT pyramid looks like this:

interlingua
source

As generation researchers, we could just stand at the top and say: “We’re ready for our input.”
There are problems with this approach:

(First) It doesn’t take us anywhere.

(Second) We’re definitely not ready. Imagine: here comes the input, expressed in some
formalism whose BNF includes a conceptual inventory as well as where the parentheses go.
We certainly don’t have the tools and knowledge resources today to generate from that input,
to say nothing of measuring generation accuracy. Say we want to be ready by the year 2020.
What should we be doing today? Analysis researchers are quite interested in Ontobank and
related semantic annotation efforts. MT researchers have also stuck their noses into this
business and said to Ontobank: you are annotating English, Chinese, and Arabic texts, but it’s
vital to annotate parallel texts, so we can see how the semantic structures match up.
Likewise, it’s important to make sure that this semantic annotation effort creates resources
and opportunities for generation research.

source
string

source
syntax

logical form
target
logical form

target
syntax

target
string

1

(Third) We’re getting generation input already! It’s coming from people who are tunneling
through the lower levels of pyramid. These are the same people producing the above-
mentioned gobbledygook. We’re tempted to say, “Bad output? You deserve it, for tunneling
through the pyramid.” But maybe we can help.

Transformation formalisms

When we map from one thing to another (e.g., meaning to text), we are trying to capture a
mathematical relation, which is a possibly infinite set of pairs (e.g., pairs of meanings and
sentences). There are benefits to thinking about capturing that set of pairs in a nice
formalism. For example, we might be able to get inference algorithms off the shelf.
(“Efficiently give me the 10,000-best outputs for this one input”). As another example, we
might get reversibility for free. (“Give me all the inputs that would generate this output”).
Many generation systems have declarative grammar representations for mapping meanings
into sentences, and they do implicitly capture a mathematical relation, but they are often hard
to reverse. The early statistical generation systems could generate many English sentences for
a given meaning, but they could not take an English sentence and generate all the meanings
that (if put through the system) would output that sentence. If we could do that, then we
could easily imagine building a useful English-to-English paraphraser by composing an
English-to-meaning transformer with a meaning-to-English transformer.

By contrast, statistical MT systems are routinely built on reversible formalisms, whether
based on phrase substitution/transposition, synchronous grammars, or tree transducers. For
example, the transducer rules that power a recent foreign-string-to-English-tree MT system
[Galley et al 04] have been used to build a reverse English-tree-to-foreign-string MT system
[Huang, Joshi & Knight 06]. Moreover, phrase substitution systems have recently been
strung together to build the paraphrasing capability mentioned above: instead of composing
an English-to-meaning transformer with a meaning-to-English transformer, they compose an
English-to-French transformer with a French-to-English transformer [Bannard & Callison-
Burch 05].

Recently, [Wong & Mooney 06] have been applying synchronous grammars to analyzing
sentence meanings in database-query domains, and fortunately, they also has explored using
that formalism for the reverse problem of generation [Wong & Mooney 07]. Since these
systems operate in several languages, we may start to see compositions of these tools aimed at
doing meaning-based MT. Wong & Mooney have also exploited another benefit of these
formalisms, which is the ability to train from input/output samples.

Language models

The process of over-generating and scoring outputs is common in statistical MT. There, a
target-language n-gram model pulls a lot of weight. With its specialized knowledge about the
target language, it helps craft fluent text and relieves the translation system from having to
know everything about the source language, and from having to know everything about how
to transform source to target. The language model also does lexical selection and word
ordering. This is certainly the province of generation.

Typical language models operate at the string level, i.e., they compute P(string) using n-gram
frequencies. Future language models will operate at all levels of the MT pyramid, not just at
the string level. For ten years already, parsing researchers have been building P(tree) models,
and these have still not entered the mainstream of MT generation. We will also have
P(meaning) and P(interlingua) models in the future. These will lift a heavy burden off of
transformation systems, which will then be mainly responsible for generating lots of outputs
for any given input.

2

When we add the language models, we can see that we’ve really got an MT ziggurat on our
hands:

interlingua

source target
logical logical

Software Tools

What tools do MT researchers use when building their systems? Here are some:

1. SRI-LM, CMU-CU: tools for building n-gram language models
2. Charniak/Collins/Stanford parsers: tools for parsing bilingual MT training data
3. BBN Serif, etc.: tools for finding names in MT data
4. AT&T FSM: tools for building and composing weighted finite-state transducers

Some of these are strictly algorithms (1 and 4), while others are algorithms shipped with
knowledge resources (2 and 3). There are no recognizable generation tools in this list. There
are a couple of reasons for this. First, there are not that many easily installable, easily
runnable generation tools. Second, MT systems use an integrated search, in which all
knowledge resources are brought to bear simultaneously on the input sentence. This makes it
hard to tack an existing software tool on to the end of the process. (An exception is the
ubiquitous re-capitalization tool, needed because many base MT systems output lower-case
text). Tool pipelining can be effective when the pipes are thick -- so, generation tools may
need to accept packed input representations that store many inputs, all of which are to be
processed.

What are some potential generation tools? Every week, some researcher somewhere needs an
English morphological generator. As MT research moves into more inflected target
languages, morphological generation will continue to mount as a serious need.

To any extent that meaning-to-text tools can lift the burden of producing target language, they
will also be studied carefully. To put it crudely, MT systems work better if their inputs and
outputs are more “normalized.”

It’s also important that generation tools come packed with knowledge; by analogy, a bottom-
up chart parsing algorithm is not nearly as useful as the Charniak parser.

Even if generation tools are not welded directly into MT systems at first, the knowledge
inside of them is critical, and this knowledge will certainly be added in. For example, a tool
that can correctly order a bag of English words into a grammatical, sensible string will be of
immense interest. Initial results can be seen in [Soricut & Marcu 05]; in this work, we can
also see input representations that pack many individual inputs.

Tools get evaluated, and this helps drive progress. There are tools and evaluations for
morphological analysis (how about morphological generation), parsing and semantic role

source
string

source
syntax

form

target
string

target
syntax

form P(meaning)
generateanalyze

parse
P(tree)

P(string)
yield

P(tree)

(MT tunneling
activity in progress)

3

labeling (how about meaning-to-text), co-reference detection (how about reference
generation), word sense disambiguation (how about lexical selection). It’s surely coming.

... and beyond?

Yorick Wilks once joked that generation is harder than analysis, because analysis is like
counting from one up to infinity, while generation is like counting from infinity down to one.
Well, if the MT triangle is infinitely high, then okay. But maybe generation is more like
counting from 9 billion down to one. Or maybe (even better), this is the right way to count:

1
2, 1
3, 2, 1
4, 3, 2, 1
5, 4, 3, 2, 1
 …

And the additional saving grace -- when we generate language, there are so many right
answers!

References

[Bannard & Callison-Burch 05] “Paraphrasing with Bilingual Parallel Corpora”, ACL.

[Galley, Hopkins, Knight, Marcu 04] "What's in a Translation Rule?” NAACL-HLT.

[Huang, Knight & Joshi 06] "Statistical Syntax-Directed Translation with Extended Domain
of Locality", AMTA.

[Soricut & Marcu 05] “Towards Developing Generation Algorithms for Text-to-Text
Applications”, ACL.

[Wong & Mooney 06] “Learning for Semantic Parsing Using Statistical Machine Translation
Techniques”, NAACL-HLT.

[Wong & Mooney 07] “Generating by Inverting a Semantic Parser that Uses Statistical
Machine Translation”, NAACL-HLT.

4

