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Machine translation systems output gobbledygook.  This is not a pretty-printing problem.  
The solution requires a fundamental understanding of what makes a grammatical, sensible, 
and effective piece of text. 
 
(Bad MT output is especially astounding when you consider that there are so many right 
answers!) 
 
What’s going wrong?  For starters, we can look at human translation.  My native language is 
English, and I can translate very well from Spanish to English, but not in reverse, from 
English to Spanish.  I can comprehend the meaning of both Spanish and English sentences 
just fine, but I cannot generate a good Spanish sentence, because I don’t know Spanish well 
enough.  We see an analogous situation in MT.  There are analysis problems, but the main 
problem is generation. 
 
Inside the Pyramid 
 
The MT pyramid looks like this: 
 

interlingua 
source 

 
As generation researchers, we could just stand at the top and say: “We’re ready for our input.”  
There are problems with this approach: 
 
(First) It doesn’t take us anywhere. 
 
(Second) We’re definitely not ready.  Imagine: here comes the input, expressed in some 
formalism whose BNF includes a conceptual inventory as well as where the parentheses go.  
We certainly don’t have the tools and knowledge resources today to generate from that input, 
to say nothing of measuring generation accuracy.  Say we want to be ready by the year 2020.  
What should we be doing today?  Analysis researchers are quite interested in Ontobank and 
related semantic annotation efforts.  MT researchers have also stuck their noses into this 
business and said to Ontobank: you are annotating English, Chinese, and Arabic texts, but it’s 
vital to annotate parallel texts, so we can see how the semantic structures match up.  
Likewise, it’s important to make sure that this semantic annotation effort creates resources 
and opportunities for generation research. 
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(Third) We’re getting generation input already!  It’s coming from people who are tunneling 
through the lower levels of pyramid.  These are the same people producing the above-
mentioned gobbledygook.  We’re tempted to say, “Bad output?  You deserve it, for tunneling 
through the pyramid.”  But maybe we can help. 
 
Transformation formalisms 
 
When we map from one thing to another (e.g., meaning to text), we are trying to capture a 
mathematical relation, which is a possibly infinite set of pairs (e.g., pairs of meanings and 
sentences).  There are benefits to thinking about capturing that set of pairs in a nice 
formalism.  For example, we might be able to get inference algorithms off the shelf.  
(“Efficiently give me the 10,000-best outputs for this one input”).  As another example, we 
might get reversibility for free.  (“Give me all the inputs that would generate this output”).  
Many generation systems have declarative grammar representations for mapping meanings 
into sentences, and they do implicitly capture a mathematical relation, but they are often hard 
to reverse.  The early statistical generation systems could generate many English sentences for 
a given meaning, but they could not take an English sentence and generate all the meanings 
that (if put through the system) would output that sentence.  If we could do that, then we 
could easily imagine building a useful English-to-English paraphraser by composing an 
English-to-meaning transformer with a meaning-to-English transformer.   
 
By contrast, statistical MT systems are routinely built on reversible formalisms, whether 
based on phrase substitution/transposition, synchronous grammars, or tree transducers.  For 
example, the transducer rules that power a recent foreign-string-to-English-tree MT system 
[Galley et al 04] have been used to build a reverse English-tree-to-foreign-string MT system 
[Huang, Joshi & Knight 06].  Moreover, phrase substitution systems have recently been 
strung together to build the paraphrasing capability mentioned above: instead of composing 
an English-to-meaning transformer with a meaning-to-English transformer, they compose an 
English-to-French transformer with a French-to-English transformer [Bannard & Callison-
Burch 05]. 
 
Recently, [Wong & Mooney 06] have been applying synchronous grammars to analyzing 
sentence meanings in database-query domains, and fortunately, they also has explored using 
that formalism for the reverse problem of generation [Wong & Mooney 07].  Since these 
systems operate in several languages, we may start to see compositions of these tools aimed at 
doing meaning-based MT.  Wong & Mooney have also exploited another benefit of these 
formalisms, which is the ability to train from input/output samples. 
 
Language models 
 
The process of over-generating and scoring outputs is common in statistical MT.  There, a 
target-language n-gram model pulls a lot of weight.  With its specialized knowledge about the 
target language, it helps craft fluent text and relieves the translation system from having to 
know everything about the source language, and from having to know everything about how 
to transform source to target.  The language model also does lexical selection and word 
ordering.  This is certainly the province of generation. 
 
Typical language models operate at the string level, i.e., they compute P(string) using n-gram 
frequencies.  Future language models will operate at all levels of the MT pyramid, not just at 
the string level.  For ten years already, parsing researchers have been building P(tree) models, 
and these have still not entered the mainstream of MT generation.  We will also have 
P(meaning) and P(interlingua) models in the future.  These will lift a heavy burden off of 
transformation systems, which will then be mainly responsible for generating lots of outputs 
for any given input. 
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When we add the language models, we can see that we’ve really got an MT ziggurat on our 
hands: 

interlingua

source target 
logical  logical  

 
 
Software Tools 
 
What tools do MT researchers use when building their systems?  Here are some: 
 

1. SRI-LM, CMU-CU:  tools for building n-gram language models 
2. Charniak/Collins/Stanford parsers:  tools for parsing bilingual MT training data 
3. BBN Serif, etc.:  tools for finding names in MT data 
4. AT&T FSM:  tools for building and composing weighted finite-state transducers 

 
Some of these are strictly algorithms (1 and 4), while others are algorithms shipped with 
knowledge resources (2 and 3).  There are no recognizable generation tools in this list.  There 
are a couple of reasons for this.  First, there are not that many easily installable, easily 
runnable generation tools.  Second, MT systems use an integrated search, in which all 
knowledge resources are brought to bear simultaneously on the input sentence.  This makes it 
hard to tack an existing software tool on to the end of the process.  (An exception is the 
ubiquitous re-capitalization tool, needed because many base MT systems output lower-case 
text).  Tool pipelining can be effective when the pipes are thick -- so, generation tools may 
need to accept packed input representations that store many inputs, all of which are to be 
processed. 
 
What are some potential generation tools?  Every week, some researcher somewhere needs an 
English morphological generator.  As MT research moves into more inflected target 
languages, morphological generation will continue to mount as a serious need.   
 
To any extent that meaning-to-text tools can lift the burden of producing target language, they 
will also be studied carefully.  To put it crudely, MT systems work better if their inputs and 
outputs are more “normalized.”   
 
It’s also important that generation tools come packed with knowledge; by analogy, a bottom-
up chart parsing algorithm is not nearly as useful as the Charniak parser. 
 
Even if generation tools are not welded directly into MT systems at first, the knowledge 
inside of them is critical, and this knowledge will certainly be added in.  For example, a tool 
that can correctly order a bag of English words into a grammatical, sensible string will be of 
immense interest.  Initial results can be seen in [Soricut & Marcu 05]; in this work, we can 
also see input representations that pack many individual inputs.   
 
Tools get evaluated, and this helps drive progress.  There are tools and evaluations for 
morphological analysis (how about morphological generation), parsing and semantic role 
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labeling (how about meaning-to-text), co-reference detection (how about reference 
generation), word sense disambiguation (how about lexical selection).  It’s surely coming. 
 
... and beyond? 
 
Yorick Wilks once joked that generation is harder than analysis, because analysis is like 
counting from one up to infinity, while generation is like counting from infinity down to one.  
Well, if the MT triangle is infinitely high, then okay.  But maybe generation is more like 
counting from 9 billion down to one.  Or maybe (even better), this is the right way to count: 
 
1 
2, 1 
3, 2, 1 
4, 3, 2, 1 
5, 4, 3, 2, 1 
   … 
 
And the additional saving grace -- when we generate language, there are so many right 
answers! 
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