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Abstract
The statistical machine translation (SMT) approach has taken a lead place in the field of Machine Translation for its better translation 
quality and lower cost in training compared to other approaches. However, due to the high demand of computing resources, an SMT 
system can not be directly run on hand-held devices. Most existing hand-held translation systems are either interlingua-based, which 
require  non-trivial  human  efforts  to  write  grammar  rules, or  using  the  client/server  architecture,  which  are  constrained by  the 
availability of wireless connections. In this paper we present PanDoRA, a two-way phrase-based statistical machine translation system 
for stand-alone hand-held devices. Powered by special designs such as integerized computation and compact data structure, PanDoRA 
can translate dialogue speech on off-the-shelf PDAs in real time. PanDoRA uses 64K words vocabulary and millions of phrase pairs 
for each translation directions. To our knowledge, PanDoRA is the first large-scale SMT system with build-in reordering models 
running on hand-held devices. We have successfully developed several speech-to-speech translation systems using PanDoRA and our 
experiments show that PanDoRA's translation quality is comparable to that of the state-of-the-art phrase-based statistical machine 
translation systems such as Pharaoh and STTK.

Introduction
The  world  today  sees  great  demands  of  portable 
translation devices. Speech translation systems running on 
hand-held  devices  are  of  great  interest  to  international 
tourism, business and humanitarian aids. 

Statistical  machine  translation  (SMT),  especially  the 
phrase-based SMT has shown great advantages over other 
MT approaches in recent years for its translation quality 
and its ease to be adapted to new language pairs and new 
domains. As an emerging trend, SMT systems have been 
used in  many  areas such  as  webpage  translation,  live 
broadcasting translation, lecture translation and so on.

To use an SMT system on a hand-held device, however, is 
not that easy.  SMT systems use large amount of data to 
train  the  statistical  models.  The  resulting  models  could 
easily  go up to  several  gigabytes  when loaded into  the 
memory.  Hand-held devices, such as mobile phones and 
PDAs, have very limited dynamic memory.  In  addition, 
the  CPUs  on  most  hand-held  devices  are  weak.  Their 
frequencies are less than 1/4 of those used in the regular 
PCs and they do not have numerical co-processors, which 
are  critical  for  calculating  various probabilities  in  SMT 
systems. All these restrictions make it a great challenge to 
develop a practical SMT system for hand-held devices.

In this  paper, we present  PanDoRA, a two-way phrase-
based  SMT  system  for  hand-held  devices  (Figure  1). 
PanDoRA has  been  successfully  applied  to  PDA-based 
speech-to-speech translation systems for various language 
pairs,  including  Arabic/English,  Chinese/English, 
Japanese/English,  Spanish/English,  and  Thai/English,  in 
tourist,  medical  aid  and  force  protection  domains. 
PanDoRA  uses  two  translation  models,  one  for  each 
translation direction and each can have millions of phrase 

pairs1. On a typical set up, PanDoRA translates a sentence 
in  about  10ms  on  a  PDA.  Its  translation  quality  is 
comparable to the state-of-the-art SMT systems.

Figure 1: PanDoRA system running on a PDA

Vocabulary Source Language Up to 64K
Target Language Up to 64K

Translation
Model

Src. →  Tgt.  pairs Up to 4 billion
Tgt. →  Src.  pairs Up to 4 billion
Uniq. Src. phrases Up to 256 million
Uniq. Tgt. phrases Up to 256 million

Language
Model

Type 3-gram LM
Size No limitation2

Table 1: Technical Specifications of PanDoRA

1The data structure allows 4 billion phrase pairs for each 
translation direction. This theoretic bound is subject to the 
capacity limitations of the storage devices.
2 The size of the language model is subject to the storage 
capacity limitation of the device running the system.



The remainder of this paper is organized as follows: we 
first  describe  the  general  concepts  of  phrase-based 
statistical  machine  translation  systems  and  then  we 
introduce the PanDoRA system and its major components. 
We show the performance of PanDoRA system running 
on  a  PDA  with  standard  training/testing  data  sets  and 
discuss the results in the experiments section. 

Phrase-based Statistical Machine Translation
In statistical  machine translation (SMT), we are given a 
source  language  sentence Jj

J ffff ......11 = ,  which  is  to  be 
translated  into  a  target  language  sentence Ii

I eeee ......11 = . 
Among all possible target language sentences, the decoder 
will choose the one with the highest probability such that 
the output translation:
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The decomposition of  )|( feP  in Eq. 1 is based on the 
source-channel approach which allows us to make use of 
two types of knowledge sources: translation model (TM) 

)|( efP  and language model (LM) )(eP . TM models how 
likely a  source  sentence  is  the  translation  of  the  target 
sentence  and  LM describes  the  well-formedness  of  the 
generated translation.

The original SMT work described in Brown et al. (1990) 
models  the  translation  process  as  a  word-to-word 
mapping. In recent years,  various approaches have been 
developed to  use  phrase-to-phrase  translation  models  to 
encapsulate more local context inside the phrases during 
the translation process (Och et al. 1999; Zhang et al. 2003; 
Koehn et al. 2003; Vogel 2005). The so-called “phrases” 
are not linguistically motivated and they could be n-grams 
running across  linguistic  constituent  boundaries  such as 
phrase “the spokesman said today at.” Phrase-based SMT 
systems  outperform word-based  systems  and  --  despite 
their lack of linguistic grounding -- have become one of 
the dominant approaches in machine translation  research. 
Figure 2 shows some examples of Arabic→English phrase 
translation  pairs  extracted  automatically  from  the 
bilingual  training  data  using  the  PESA  method  (Vogel 
2005).

 school festival is # 0.0034 # احتفال المدرسة 
 school festival is hold # 0.0031 # احتفال المدرسة 
school festival is hold # 0.9980 # احتفال المدرسة عقد 
dolls' festival # 0.5431 # احتفال دل 
dolls' festival # 0.3999 # احتفال دل للفتيات 
festive # 0.7535 # إحتفاليا 
no sekku # 0.5081 # إحتفاليا تتمناه 
sekku # 0.5081 # إحتفاليا تتمناه 
tango # 0.5081 # إحتفاليا تتمناه 
tango no # 0.5081 # إحتفاليا تتمناه 
no sekku # 0.3066 # إحتفاليا تتمناه للنمو 

Figure 2. Phrase Translation Pairs

Another  alternative  to  the  classical  source-channel 
approach  is  the  direct  modeling  of  the  posterior 
probability  )|( feP  using the log-linear model (Och and 
Ney, 2002):
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Each  mφ is a feature function that estimates some feature 
values from (e, f). The two knowledge sources used in the 
classical source-channel approaches can be converted into 
two feature functions such that:
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The denominator  Z serves as a normalization factor and 
depends  only  on  the  source  sentence  f.  For  different 
translation alternatives of f, the normalization factors Z are 
all  the  same.  Therefore  the  decoder  only  needs  to 
calculate  the  numerator  part  in  Eq.  2  to  search  for  the 
optimal translation e* for f. 

Under  the  log-linear  model,  we  could  convert  the 
translation  model,  language  model,  distortion  model, 
sentence  length  model  and  other  models  into  feature 
functions. This allows us to incorporate more knowledge 
sources  than is  the  case  in  the  classical  source-channel 
approach.  The  weights  for  each  feature  function  are 
trained using the Minimum Error (MER) optimization on 
the development set. MER optimizes the feature weights 
to  minimize  the errors,  or  equivalently,  maximizing the 
BLEU/NIST scores (Och, 2003).

PanDoRA System
Based  on  the  general  concepts  of  phrase-based  SMT, 
PanDoRA is  engineered  from scratch  to  cope  with  the 
limitations  on  hand-held  devices.  The  code  base  for 
PanDoRA is completely different from our phrase-based 
SMT system for PC platforms.

Compact Data Structure
When running SMT systems on PCs, we usually load all 
models  into  memory.  The  size  of  phrase-based  SMT 
models can become very large when the training data size 
increases,  or  when  we  consider  longer  phrases  in  the 
translation model. Callison-Burch(2005) estimates that if 
we consider phrases up to 10 words long, storing all the 
phrase translation pairs for the NIST-2004 Arabic-English 
training data3 would need 30.62 GB in memory. Phrase-
based  SMT  systems  are  very  demanding  in  resources. 
Various  approaches  have  been  proposed  to  cut-down 
memory  needs  by  applying  either  the  delayed  phrase 
construction  (Zhang  and  Vogel,  2005;  Callison-Burch, 
2005), or phrase table pruning (Eck 2007).

Loading  models  of  several  gigabyte  into  the  dynamic 
memory  (SDRAM)  is  out  of  question  for  hand-held 
devices. Even though the training data for portable speech 
3 The corpus contains 3.75 million sentence pairs and has 
127 million words in English, and 106 million words in 
Arabic.



 

Figure 3. PanDoRA system in a two-way speech 
translation system for language pair Src. and Tgt.

translation systems is usually limited to domains such as 
travel and medical, and is usually much smaller than the 
training data used for the newswire translation, the phrase 
translation model and language model are still too large to 
be fit into the dynamic memory of a PDA. 

In PanDoRA, we designed a compacted data structure for 
the translation model and the language model so that:

1. The resulting models are small in size;
2. Decoder  can  directly  access  the  information 

without  loading  the  model  into  the  dynamic 
memory.

Three techniques  are  developed  to  achieve  these  two 
goals:  1)  converting  words  into  integer  symbol  IDs 
(vocId); 2) cross-indexing the phrase translation models to 
reduce the redundancy in model representation;  and  3) 
serializing  the  model  structure  to  make  it  directly 
accessible from disk.

PanDoRA  is  used  mainly  for  the  speech-to-speech 
translation  (SST)  systems.  It  is  placed  between  the 
Automatic  Speech  Recognition  (ASR)  and  the  Text-to-
Speech (TTS) modules in the SST system (Fig. 3). All the 
input  to  PanDoRA comes  from the ASR output,  which 
means  that  we  operate  under  a  closed  vocabulary 
situation.  In  other  words,  there  are  no  unknown  word 
types  to the translation system and we can map all  the 
words used in the translation/language models into unique 
integer vocIds to avoid the hassle of string operations. By 
doing this, information objects such as 3-grams and their 
probabilities,  have  fixed  sizes  no  matter  how  many 
characters each word in the 3-gram has. The fixed object 
size makes it possible to directly access an object through 
its index by visiting start address + index • sizeof(object). 
During translation, the transcription output from the ASR 
is  first  mapped from text  to  a  sequence of  vocIds,  and 
vocIds  are  used throughout  the decoding process.  After 
the decoding, vocIds of the translation result are mapped 
into words of the target language for the Text-To-Speech 
(TTS) module. Two-byte integers are used for vocIds and 
the system can handle a vocabulary of 64K words for the 
source language and 64K words for the target language.

The  information  in  the  src→tgt  and  tgt→src  phrase 
translation tables have a lot of redundancy. Even though 

the  src→tgt  table  is  not  symmetric  to  the  tgt→src 
translation table,  most  phrases  occur  in  both  tables.  By 
cross-indexing, phrases are converted into integer Ids and 
phrase tables only need to store probability of translating 
from one phrase ID to another phrase ID.

For hand-held devices the synchronous dynamic random 
access memory (SDRAM) is usually small (e.g. <64MB). 
All applications have to share this limited memory. The 
external storage devices such as CF-cards and SD-cards 
are  much  larger  in  capacity  (e.g.  2GB)  and  can  be 
read/write  in  reasonably fast  rate  (about  10MB/second). 
We  serialize  the  model  files  in  a  way  such  that  the 
decoder can directly access the needed information from 
the serialized model file on the external storage card. The 
model  does  not  need  to  be  loaded  into  the  precious 
SDRAM and the dynamic memory can be saved for the 
search process during decoding.

For  our  Thai↔English  system,  the  bilingual  training 
corpus contains 200K sentence pairs, about 1.65 million 
words on the English side. Using the PESA system, the 
extracted Thai→English phrase translation table contains 
2.6 million entries and the English→Thai direction has 3 
million phrase pairs. The two phrase tables are 585 MB 
when stored on disk in the plain text  format.  After the 
cross-indexing  and  conversion  into  compact  binary 
format, the two translation models take only 65.27 MB on 
disk.

Integerized Computation 
In  standard  SMT  systems,  translation  model,  language 
model,  and  other  models  use  floating  points  to  store 
probabilities  and feature values.  On PDAs, there are no 
built-in floating point co-processors. This means that we 
have to either use a “soft float” scheme to simulate the 
floating  point  calculation  which  slows  down  the 
computation or to integerize all the floating values in the 
TM/LM.

A pilot study on the PC-based SMT system shows that the 
overall translation quality does not degrade when all the 
probabilities are cast from float/double to integers. Table 
2 shows both BLEU (Papineni, 2001) and NIST (NIST, 
2003) scores of the SMT system using a mid-sized phrase 
table  and  tested  on  the  TIDES  MT03  Chinese-English 
evaluation data. Translations from different combinations 
give  almost  the  same  results.  This  finding  corroborate 
with  the study done by Marcellon and Bertoldi  (2006), 
where probabilities are quantized to  2h number of levels 
and  only  h-bits  are  used  to  represent  a  floating  point 
value. Experiments show that quantization with  h=8 bits 
does not affect performance, and gives even slightly better 
scores.  Even  when  h=4,  which  corresponds  to  only  16 
bins, the translation quality only loses 1.60%  relative  in 
BLEU.

We apply a very simple and straightforward quantization 
method  on  the  probabilities.  We  convert  all  the 
probabilities into minus log probabilities (cost) and map 
the costs into integers ranging from 0 to 4095. In  other 
words, the probabilities are quantized to 4096 bins.  For 
those  belonging  to  the  same  bin,  their  differences  are 
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ignored. The decoder uses the integer costs to calculate 
the probability of a hypothesis during decoding. Thus the 
decoder  only  needs  to  use  the  integer  addition  and 
multiplication operations.

TM LM BLEU NIST
Float Float 19.87 8.03
Int Float 19.82 7.99
Float Int 19.94 8.03
Int Int 19.93 8.04

Table 2. Pilot study on integerize float values in the 
translation model and language model

Language Model
The  n-gram language  model  is  converted  from its  text 
representation to the binary format. By doing so, each n-
gram is represented by  n vocIds and a fixed number of 
bytes  for conditional  probabilities  and back-off weights. 
We store all the  n-grams in a binary file in sorted order. 
The  decoder  can  directly  look  up  an  n-gram  for  its 
information in the file without  loading the LM into the 
RAM. Similar to the compact translation model, this saves 
the  limited  SDRAM  for  the  decoding  process,  which 
requires random allocation of memory for dynamic data 
structures.

Discriminative Language Model
n-gram language  models  are  generative  models,  i.e.,  it 
models  the  stochastic  process  of  how  a  sentence  is 
generated.  Usually  n-gram  LMs  are  trained  from 
collections  of  sentences  which  are  considered  to  be 
“correct” and “grammatical”. With a trained LM, one can 
estimate  how  likely  any  sentence  could  be  generated 
given all these “right” examples.  The generative n-gram 
model  assumes  that  any  sequence  of  words  could  be 
generated and the total probability sums up to 1, i.e., for 
any sentence e , no matter how bad it is, P(e)>0, and for 
all possible sentences that could be generated.

However,  there  are  certain  phenomena  in  natural 
languages  which  we  know  should  never  happen.  For 
example,  “the”  should  never  occur  at  the  end  of  an 
English  sentence,  and  particle  “ga”  should  never  be 
placed at the beginning of a Japanese sentence. In the case 
of  the  generative  n-gram  LM,  it  has  never  seen  such 
events in the training data since it  is  trained only from 
those  “correct”  examples.  n-gram  LM  uses  various 
smoothing techniques to estimate the probability for such 
unseen  events  and  hopefully  it  will  assign  low 
probabilities to them. But assigning a low probability to 
“the </s>” or “<s> ga” can not prevent them from being 
generated  by the SMT decoder.  In PanDoRA, language 
model  plays  an  important  role  in  deciding  the  correct 
reordering pattern during decoding, we need to explicitly 
model  the  “negative  examples”  to  prevent  those 
ungrammatical n-grams from being generated. In addition 
to  the  standard  n-gram  language  model,  we  use  a 
discriminative language model to alleviate the limitations 
of the generative LM.
Discriminative  training has  been shown to  improve  the 
translation quality (Liang et al., 2006). The idea of using 

an “anti-language  model”  has also been tried in speech 
recognition (Stolcke et al., 2000). We use the perceptron 
algorithm  as  described  in  (Collins,  2002)  to  train  a 
discriminative  language  model.  Given  the  current 
translation  model  and  generative  language  model,  we 
translate the source side of the bilingual training corpus f 
into  e’.  Unlike  Example-based  Machine  Translation 
(EBMT) systems, SMT systems usually can not reproduce 
the same translation as used in the training data, thus the 
target  side  of  the  training  corpus  e is  usually  different 
from e’. We enumerate all the n-grams from the union of 
e and  e’.  For  each  n-gram,  we  increase  the  n-gram’s 
weight if its frequency in e’ is less than its frequency in e 
and decrease its weight if it has been over generated. The 
adjusted weights for  n-grams are then used as a feature 
function  in  the  log-linear  model  (Eq.  2)  for  the  next 
iteration of decoding. 

In other words, we iteratively adjust the weight of each n-
gram in  the  discriminative  language  model  to  push the 
generated  translation  results  towards  the  reference 
translation.

Decoding
Given a testing sentence, PanDoRA applies the translation 
model on the sentence and builds a translation lattice. The 
decoder then searches in this lattice for the optimal path as 
the output translation for the input sentence.

PanDoRA implements two types of search method in its 
decoder: a left-to-right monotone decoding and a bottom-
up  CKY-parsing  using  the  Inverted  Transduction 
Grammar (ITG, Wu 1997). 

Monotone Decoding
The  monotone  decoding  in  the  PanDoRA  system  is  a 
beam search decoder based on the idea described in Vogel 
et  al.  (2003).  Once  the  complete  translation  lattice  has 
been  built,  a  best-first  search  through  this  lattice  is 
performed.  In  addition  to  the  translation  costs,  the 
language  model  costs  are  added  and  the  path  which 
minimizes the combined cost is returned. Starting with a 
special begin-of-sentence hypothesis attached to the first 
node in the translation lattice,  hypotheses  are  expanded 
over all outgoing edges from the current node.

The decoder allows for recombination of hypotheses in a 
flexible way.  It  is important to keep hypotheses apart if 
the partial translations end in different words, as this will 
result in different scores from the language model during 
the next expansion step.  In  addition, we can distinguish 
hypotheses if the length of the translation generated so far 
is different. This comes into effect when a sentence length 
model is applied at the sentence end. 

The search space becomes very large for long sentences 
and when there are many alternative translations for each 
matching source phrase, heavy pruning is enforced during 
the decoding to make the search space reasonably small to 
minimize memory usage. Our monotone decoder realizes 
a standard beam search, where a best hypothesis is stored 
based on the features used for hypothesis recombination, 



and all hypotheses which are worse by some margin are 
deleted.

With  these  PDA-specific  designs  in  the  decoder, 
translating  one  sentence   takes  less  than  10  ms  in  the 
monotone decoding mode.

ITG Reordering Decoding
The monotone translation mode works reasonably well for 
language pairs which have very similar word orders, for 
example,  Spanish  and  English,  but  it  works  poorly  for 
language  pairs  which  have  very  different  word  orders. 
Translating Japanese to English monotonically can result 
in sentences such as “An entry visa do I need a?” and “In 
a  taxi  I  left  my bag.”  To cope  with  this  type  of  long-
distance reordering phenomena,  we implement the ITG-
style reordering in PanDoRA decoder.

The  Stochastic  Inversion  Transduction  Grammar  (ITG) 
introduced  by  Wu  (1997)  is  a  transduction  grammar 
which assumes that a pair of source/target sentences are 
simultaneously  generated  in  a  context-free  manner.  At 
each step, a non-terminal  X can generate its span in two 
ways: either straight:

>→ < 2121 , eeffX ,
or inverted:

>→ < 1221 , eeffX ,
where e1 is the translation for f1 and e2 for f2.

Even though it is quite simple and straightforward, ITG 
has  been  shown  to  have  high  expressiveness.  In  other 
words, most of the reordering patterns in natural language 
translation can be expressed by ITG.

The ITG-style decoding in the PanDoRA system is a CKY 
parser  with  beam  search.  The  idea  of  translating  by 
parsing is similar to the approach used in the Hiero system 
(Chiang, 2005).  Given a source sentence  f,  the decoder 
finds the best derivation that generates <f, e> for some e. 
Unlike the monotone decoder which works on the source 
sentence from left to right, the CKY parser works bottom-
up starting with spans of length 1. While moving up the 
parsing chart, the decoder adds new partial hypotheses to 
cell [j1, j2] in the chart table if:

1. there is an entry in the translation table where the 
source phrase is 2

1

j
jf , then add the corresponding 

translation as a partial hypothesis; or, 
2. there  exist  a  partial  hypothesis  h1 covering the 

subspans (j1, k) and h2 covering (k+1, j2) , create 
a new hypothesis h1h2 according to the “straight” 
combination  rule  and  h2h1 according  to  the 
“inverted” combination  rule  and add them into 
the parsing chart. 

The  number  of  partial  hypotheses  grows  fast  when  we 
move up in the parsing chart. Pruning has to be applied on 
each chart cell to keep the search space in a reasonable 
size. Only a few good hypotheses will be kept in the chart 
for future expansion.

Since we are not decoding from left-to-right, the sentence 
start  symbol  are  not  available  to  the  partial  hypotheses 
until  the  whole  sentence  is  decoded.  Language  model 
probabilities without sentence start are calculated for each 
partial  hypothesis.  When  a  new  partial  hypothesis  is 
created  from combining two shorter  ones,  the language 
model probability of the new hypothesis can be estimated 
from the LM probabilities of the shorter ones with some 
adjustment based on the words across the boundaries. This 
makes the language model probability estimation efficient 
compared  to  the  naive  way  of  calculating  the  LM 
probability for all the words in the hypothesis when a new 
hypothesis is created.

With  ITG-style  reordering  decoding,  the  qualities  are 
significantly improved for Japanese↔English translation 
as shown in the next section.

Experiments
We evaluate the performance of PanDoRA on the IWSLT 
2005  (Eck  and  Hori,  2005)  Arabic→English  and  the 
Japanese↔English test sets. Both BLEU (Papineni, 2001) 
and NIST (NIST, 2003) metrics are used to evaluate the 
translation quality.

PanDoRA runs on a HP iPAQ hx2700 series Pocket PC. 
hx2700  models  are  powered  by  the  Intel  PXA270 
processor with a frequency at 624 MHz. The system has 
256  MB  total  memory  (192  MB  ROM  and  64  MB 
SDRAM)  that  includes  up  to  144  MB  user  available 
persistent storage memory.  We used one 1GB SD card to 
store the TM/LM models.

Arabic-English Experiments
For Arabic (A) → English (E) system, the training data is 
from the Basic Travel Expression Corpus (BTEC), which 
contains  20,000  Arabic/English  sentence  pairs  for  the 
travel  domain  (Table  3.).  The  development  data  (500 
Arabic  sentences)  and  testing  data  (506  sentences)  are 
drawn  from  the  same  domain,  each  with  16  reference 
translations.

Arabic English
Word Tokens 130K 154K
Word Types 18K 6.9K
Sentences 20K 20K
Avg. Sent. Len. 6.5 words 7.7 words

Table 3. Statistics of the BTEC Ar./En training data

We  used  tools  provided  by  Pharaoh  (Koehn,  2004)  to 
extract the phrase translation pairs from the corpus. The 
Arabic to English phrase table has about 155K translation 
pairs (Table 4).

Ar/En Pairs 155,825
Uniq. Arabic Phrases 137,836
Uniq. English Phrases 122,460

Table 4. Arabic to English phrase translation model



The English language model is a 3-gram LM trained from 
the English side of the bilingual corpus using the SRI-LM 
toolkit (Stolcke, 2002). All the models are converted into 
compact  data  structure  as  described  in  the  previous 
section. The complete model is of 6.2MB when stored on 
disk.

Table  5.  shows  the  translation  results  and  speed 
comparison  between  Pharaoh  and  PanDoRA  for  the 
Arabic system. The two systems are compared using the 
same  translation  model  and  language  model.  Feature 
weights  are  optimized  on  the  dev-test  using  MER. 
Pharaoh runs on a Linux machine with a CPU of 3.2G Hz 
and PanDoRA runs on the iPaq with a slow CPU at the 
frequency  of  624M  Hz.  Because  of  the  data  structure 
designed  in  PanDoRA,  the  loading  time  is  negligible. 
Even though the PDA's CPU is not that fast, PanDoRA 
translates 500 sentences in less than 4.5 seconds, less than 
10 ms per sentence.

Pharaoh
Mono. Reorder

PanDoRA 
(Mono.)

CPU(Hz) 3.2G 624M
Time Decoding 0.65s 8.5s 4.3s

+Model 
Loading 7.00s 14.0s 4.4s

Dev BLEU4 47.41 49.05 46.73
NIST 8.87 8.93 8.30

Test BLEU4 48.19 47.93 47.06
NIST 8.81 8.84 8.13

Table 5. Translation results and speed comparisons of 
Pharaoh and PanDoRA (monotonic decoding) on 

Arabic/English test set.

The translation quality of PanDoRA is reasonably good 
compared  to  the  state-of-the-art  SMT decoder  Pharaoh. 
The simplification and the heavy punning in the decoder 
algorithm  sacrificed  some  translation  qualities  for 
efficiency.

The  reordering  model  in  Pharaoh  improves  the  BLEU 
score on the dev-test set for about 1.5 points, however the 
BLEU score for the test set decreased slightly from the 
monotone decoding. The effect of the reordering model, 
as is used in the Pharaoh system, is not consistent in this 
experiment. It is clear that allowing words to be  reordered 
slows  down the  decoding speed by a  factor  of  8.  This 
justifies  our  decision  of  using  monotone  decoding  for 
Arabic↔English  in  PanDoRA  because  speed  is  more 
important than gaining 1 or 2 BLEU points in speech-to-
speech translation.

Japanese-English Experiments
The Japanese (J) ↔English (E) system is trained from the 
JE BTEC corpus for the tourist/medical domain (Table 6.)
PESA (Vogel, 2005) is used to align and extract JE and EJ 
phrase tables from the bilingual corpus. About 4.6 million 
phrase   pairs  are  extracted  for  the  Japanese-to-English 
direction  and  4.8  million  pairs  for  English-to-Japanese 
(Table 7). After converting the models to their compact 

format, the two-way translation model is about 76.11MB 
on disk.

Japanese English
Word Tokens 1.2M 1.0M
Word Types 18K 13K
Sentences 162K 162K
Avg.  Sent. 
Len.

7.32 words 6.18 words

Table 6. Statistics of the BTEC Jp/En training data

J→E Phrase Pairs 4,648,018
E→J Phrase Pairs 4,871,862
Uniq. Japanese Phrases 1,396,719
Uniq. English Phrases 1,015,821

Table 7. Japanese↔English phrase translation model.

We  compare  the  translation  performance  of  PanDoRA 
with the performance of the Statistical  Translation Tool 
Kit  (STTK,  Vogel  et  al.  2003)  running  on  a  PC.  The 
reordering  model  used  in  STTK  is  different  from 
PanDoRA’s ITG-style reordering. STTK allows for local 
reordering by leaving a gap and jumping to a distant node 
in  the  translation  lattice  during  the  decoding  time.  To 
restrict  reordering,  STTK  uses  position  alignment 
probabilities;  specifically,  the  jump  probabilities  as 
estimated in the HMM alignment. Another feature that is 
different  in  STTK  is  its  language  model.  In  this 
experiment, the STTK decoder was used with either the 
SRI  n-gram LM,  or  the  Suffix-Array  Language  Model 
(SALM,  Zhang  2006)  which  allows  arbitrarily  long 
history in estimating the language model probabilities.

Phrase
Table LM Reorder STTK PanDoRA

Pruning
SRI

3-gram
No 46.2 45.93
Yes 52.4 54.59

SALM Yes 53.6

No 
Pruning

SRI
3-gram

No 50.3 49.96
Yes 58.64

SALM Yes 59.1

Table 8. Translation results of the PanDoRA system on 
the Japanese to English task, compared with the 

performance of STTK.

Running  on  the  same  iPaq  hx2700  PDA  with  the 
reordering  mode  is  much  slower  than  the  monotone 
decoding  mode.  On  average  it  takes  0.5  second to 
translate  one  sentence  with  reordering  whereas  the 
monotone  translation  needs  only  10ms.  However,  for 
language  pairs  such  as  Japanese  and  English,  word 
reordering makes a big difference in translation quality. 
Table 8 shows the BLEU scores of different conditions. 
Word  reordering  accounts  for  about  10  BLEU  points’ 
differences  in  translation  qualities.  For  all  conditions, 
PanDoRA system has achieved very close performance as 
STTK.



We also trained a discriminative language models (DLM) 
to  correct  errors  which  can  not  be  captured  by  the 
generative language model. As described in the previous 
section, we use the current PanDoRA model to translate 
the source side of the training data and use the perceptron 
algorithm to adjust the weight of an n-gram generated by 
the SMT such that it will be preferred in the next iteration 
if  it  is  under-generated  compared  to  the  reference 
translations, or less preferred if it is over generated.

Training Test.
w/o 

DLM
with 
DLM

w/o 
DLM

with 
DLM

J→E 58.90 60.01 58.64 58.13
E→J 59.40 60.51 46.40 47.01

Table 9. Performance of the DLM

Table  9  shows  the  performance  of  using  the 
discriminative  language  model  for  both  Japanese  to 
English and English to Japanese translation directions. On 
the training data set DLM pushes the generated translation 
towards the reference  translation (the target  side of  the 
bilingual  corpus)  and  the  BLEU  scores  are  improved. 
However, DLM slightly over-fits the training and does not 
show the same improvement over the testing data. On the 
other hand, when we subjectively evaluate the translations 
generated with/without the DLM, human subjects prefer 
the translation generated using the DLM. One explanation 
to  this  is  that  BLEU  score  is  not  so  sensitive  to 
phenomena  such  as  Japanese  particles  occur  at  the 
beginning of the sentence, but correcting such errors make 
the sentence much more readable to humans.

Relevant Work
Zhou et al. (2004) described a two-way speech translation 
on  an  off-the-shelf  hand-held  device.  The  translation 
module in this system uses a statistical natural language 
understanding  (NLU)  and  a  statistical  natural  language 
generation (NLG) module. The NLU module is based on a 
statistical  parser  which  utilizes  statistical  decision-tree 
models  to  determine  the  meaning  and  structure  of  the 
input  utterance.  The  parser  assigns  a  hierarchical  tree 
structure to the reorganized sentence as predicted by the 
statistical model. Next, high level semantic translation is 
performed  by  the  NLU  module.  The  system  uses  a 
bilingual  dictionary  for  the  domain.  To  decrease  the 
memory requirement, the size of the dictionary is cut to 
9K entries from English to Chinese and 15K entries from 
Chinese to English.

Zhou et al. (2006) introduces FOLSOM system: a phrase-
based  statistical  machine  translation  system  using 
weighted  finite-state  transducers  (WFST).  FOLSOM  is 
applied  in  real-time  speech  translation  on  scalable 
computing devices.

Yamabana et al. (2003) used a client-server approach for a 
mobile  speech  to  speech  translation  system.  The  hand-
held  device  is  treated  as  a  client,  and  it  sends  the 
compressed  speech  via  Wi-Fi  (IEEE  802.11b)  to  the 
translation server. The entire speech-to-speech translation 
process is conducted on the server side, and the translated 

speech  in  the  target  language  is  later  sent  back  to  the 
client.

Waibel et al. (2003) developed an interlingua-based two 
way translation system on a consumer PDA that translates 
between  English  and  Egyptian  Arabic.  The  developed 
prototype is limited. It was aimed at medical interviews, 
and dealt with only a few hundred sentence types.

Conclusion
We present PanDoRA, a two-way phrase-based statistical 
machine translation system for hand-held devices. Various 
PDA-specific  designs  have  made  PanDoRA  a  practical 
SMT system that generates translations comparable to the 
state-of-the-art  phrase-based  SMT systems  in  real-time. 
PanDoRA has been successfully applied in a PDA-based 
two-way speech-to-speech translation system for several 
language pairs.

We have been using the PanDoRA system to other PDA-
based language applications such as the Automatic Sign 
Translation  (Chang et  al.,  2007)  and hope  to  see  more 
impact of language technologies on people's daily life.
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