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Abstract 
This paper presents a novel statistical machine translation (SMT) model that uses tree-to-tree alignment between a source parse tree 
and a target parse tree. The model is formally a probabilistic synchronous tree-substitution grammar (STSG) that is a collection of 
aligned elementary tree pairs with mapping probabilities (which are automatically learned from word-aligned bi-parsed parallel texts). 
Unlike previous syntax-based SMT models, this new model supports multi-level global structure distortion of the tree typology and 
can fully utilize the source and target parse tree structure features, which gives our system more expressive power and flexibility. The 
experimental results on the HIT bi-parsed text show that our method performs significantly better than Pharaoh, a state-of-the-art 
phrase-based SMT system, and other syntax-based methods, such as the synchronous CFG-based method on the small dataset. 
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Motivation  

Phrase-based SMT 
Phrase-based approach (Marcu and Wong, 2002; Koehn et 
al, 2003; Och and Ney, 2004) to statistical machine 
translation (SMT) has recently achieved significant 
improvements in translation accuracy over the original 
IBM word-alignment-based model (Brown et al., 1993). 
In phrase-based models, a phrase can be any string of 
adjacent words without constraints imposed by any 
syntactic theory. These phrases allow a model to learn 
local reorderings, translations of multiword expressions, 
or insertions and deletions that are sensitive to local 
context. These make it a simple and powerful mechanism 
for machine translation. However, there exist many open 
issues to be resolved in phrase-based models. For 
examples, the handling of discontiguous phrases and 
modeling of global reordering, estimation of phrase 
translation probabilities and phrase partition probabilities 
are not yet effectively addressed in phrase-based models 
(Quirk and Menezes, 2006). Much research has been 
carried out to look into the above issues. One natural 
extension is to utilize syntax-based structure features for 
SMT.  

Syntax-based SMT 
Recent work in SMT has evolved from the word-based 
and phrase-based models to syntax-based models, that 
include hierarchical phrase models (Wu, 1997; Chiang, 
2007), bilingual synchronous grammars (Eisner, 2003; 
Ding and Palmer, 2005; Quirk et al, 2005; Cowan et al., 
2006;) and other syntax-based models (Yamada and 
Knight, 2001; Gildea, 2003; Och et al, 2004b; Liu et al., 
2006). Wu (1997) and Chiang (2007)’s methods are 
formally syntax-based, i.e., their methods are not 
informed by any linguistically syntactic theory. Wu (1997) 
proposes Inversion Transduction Grammars (ITGs, an 
instance of synchronous CFGs), treating translation as a 
process of parallel parsing of the source and target 

languages via ITGs.  Chiang (2007) uses a formal binary 
synchronous CFG to model hierarchical phrase structures. 
Yamada and Knight (2001) use noisy-channel model to 
transfer a target parse tree into a source sentence. Och et 
al (2004) explore using various morphologic and syntactic 
features to re-rank the translation outputs of a phrase-
based system. Ding and Palmer (2005) propose a syntax-
based translation model based on a probabilistic 
synchronous dependency insertion grammar, a version of 
synchronous grammar defined on dependency trees. Quirk 
et al. (2005) propose a dependency treelet-based 
translation model. They project the source dependency 
parse onto the target sentence, extract dependency treelet 
translation pairs and train a tree-based ordering model. 
Cowan et al. (2006) propose a feature-based 
discriminative model for prediction of the target language 
syntactic structures, given the source language parse trees. 
Riezler and Maxwell III (2006) present an approach to 
SMT that combines ideas from phrase-based SMT and 
traditional grammar-based SMT. They incorporate the 
concept of multi-word translation units into transfer of 
dependency structure snippets, and model and train 
statistical components according to phrase-based SMT 
system. Zhang et al. (2006) study the synchronous rule 
binarization for MT. They devise a linear-time algorithm 
for factoring syntactic re-orderings by binarizing 
synchronous rules when possible and show that the 
resulting rules set significantly improves the speed and 
accuracy of a state-of-the-art syntax-based machine 
translation system. Zollmann and Venugopal (2006) 
present a syntax-based machine translation method that 
generates translation results by a chart parsing decoder 
operating on phrase tables augmented and generalized 
with target language syntactic categories. The motivation 
behind all these advances is to exploit syntactic structure 
features to model translation process: lexical selection, 
reordering, structure transfer and generation.  

Structural Divergences between Languages 
One of the major challenges in applying syntax to SMT is 
structural divergences between languages (Dorr, 1994), 



which are due to either systematic differences between 
two languages in expressing a concept syntactically or 
relatively free translations in the training corpora. As a 
result, syntax-based MT systems have to transduce 
between non-isomorphic tree structures that is beyond the 
power of Synchronous CFGs (only sibling nodes are 
allowed to reorder independently prior to translation). For 
example, the S(VO) structure in English cannot be 
translated into a VSO word order in Arabic by any SCFGs.  
 
Many researchers have investigated and studied the above 
issues. Fox (2002) examines the issue of linguistic phrasal 
cohesion between English and French and discovers that 
while there is less cohesion than we might desire, there is 
still a large amount of regularity in constructions where 
breakdowns occur. The paper also examines the 
differences in cohesion phrase-structure-based parse tree, 
trees with flatten verb phrases and dependency structures, 
and concludes that the highest degree of cohesion is 
presented in dependency structures. Eisner (2003) studies 
how to learn non-isomorphic tree-to-tree or tree-to-string 
mappings for machine translation. The paper sketches an 
EM algorithm to learn the probabilities of elementary tree 
pairs by training on pairs of full trees, and a Viterbi 
decoder to find optimal translations. However, the above 
two papers do not verify their methods empirically on a 
real MT system. Gildea (2003) proposes a new subtree 
cloning operation to either tree-to-tree or tree-to-string 
alignment algorithms for MT. His method is evaluated on 
word alignment rather than machine translation. Galley et 
al. (2004) propose a theory that gives formal semantics to 
word-alignments defined over parallel corpora and use the 
theory to derive from word-aligned parallel corpora the 
minimal set of syntactically motivated transformation 
rules that explain human translation data. They find that 
local transformations (primarily child-node re-orderings) 
of one-level parent-children substructures are an 
inadequate model for parallel corpora, so they learn rules 
involving much larger tree fragments. Melamed (2004) 
studies how to infer the synchronous structures hidden in 
parallel texts for the syntax-aware SMT by generalizing 
ordinary parsing algorithms to synchronous ones. Huang 
et al. (2006) study a tree substitution grammar-based tree-
to-string alignment model for SMT. Liu et al. (2006) 
propose a tree-to-string alignment template-based method 
for SMT. Wellington et al. (2006) study empirically the 
lower bounds on alignment failure rates with and without 
gaps for bilingual/monolingual bitexts under the 
constraints of word alignment alone or with one or both 
side parse trees. Their study finds surprisingly many 
examples of translational equivalence that could not be 
analyzed using binary-branching structures without 
discontinuities. 
 
Previous research discussed above suggests using more 
powerful grammars whose rules can be applied to larger 
tree fragments to address the non-isomorphic issue. 
Shieber and Schabes (1990) introduce synchronous tree-
adjoining grammar (STAG) preliminary for semantics and 
Eisner (2003) uses a synchronous tree-substitution 
grammar (STSG), which is a restricted version of STAG 
without adjunctions (Chiang, 2006), for machine 
translation. STAGs and STSGs use elementary tree 
structure, which is beyond the scope of two-level context-
free rules, to generate more tree relations than SCFGs.  

Synchronous TSG-based Tree-to-Tree Alignment 
In this paper, we propose a synchronous TSG-based tree-
to-tree alignment model for machine translation. 
Specifically, we use elementary tree-based structure 
alignments, which are automatically learned from word-
aligned bi-parsed parallel texts, to model the translation 
process. We separate the source language analysis from 
the recursive transformation. Therefore, to translate a 
source sentence, we first employ a CFG-based Treebank 
parser to produce a source parse tree and then use the set 
of learned elementary tree pairs to transform the source 
parse tree to a target parse tree, which is then used to 
generate target sentence. 
 
There are two major benefits of our STSG-based tree-to-
tree alignment model. First, it is possible to explicitly 
model the syntax of the target language, thereby improve 
the grammaticality of target sentence. Second, our model 
has more expressive power and flexibility since it allows 
multi-level global structure distortion of the tree typology 
and fully utilizes source and target parse tree structure 
features. Therefore, it can solve the deficiencies in SCFG 
and phrase-based models such as non-isomorphic tree 
alignment, global reordering and discontiguous phrase. 
 
To the best of our knowledge, no previous work explores 
empirically STSG-based tree-to-tree alignment over 
phrase-structure parse trees for machine translation. 
Eisner (2003) studies STSG-based alignment on 
dependency trees, but no empirical verification on 
machine translation is done. Compared to Eisner (2003), 
we use different training and decoding algorithms and 
modeling methods. Graehl and Knight (2004) define tree 
transducers that have multi-level trees only on the source-
side. Yamada and Knight (2001) and Zollmann and 
Venugopal (2006) and Galley et al. (2004) only utilize 
target parse tree information. Ding and Palmer (2005) and 
Chris et al (2005) work on dependency grammars while 
Huang et al (2006) and Liu et al (2006) work on tree-to-
string alignment models. Our method, in terms of 
modeling, training and decoding algorithms are different 
from theirs at one or more points. 
 
In the rest of this paper, we elaborate our modeling, 
training and decoding methods and report our 
experimental results in detail. 

Tree-to-Tree Alignment-based Model 
In this section, we first introduce what STSG is and then 
based on which we define our tree-to-tree alignment-
based SMT model. Finally, we present the modeling 
process based on log-linear framework. 

Synchronous TSG (STSG) for SMT 
Shieber (2004) gives a formal and general definition of 
STSG. Here we give a more concrete definition of STSG 
with respect to its application in SMT. A STSG is a septet 

, , , , ,,t t ts s sG N N S S PΣ Σ=< > , where: 
 

• sΣ and tΣ are source and target terminal alphabets 
(POSs or lexical words), respectively, and 

 

• sN and tN are source and target non-terminal 
alphabets (linguistic phrase tag, i.e., NP/VP…), 
respectively, and 

 



 

 
• s sS N∈ and t tS N∈ are the source and target start 

symbols (roots of source and target parse trees), 
and 

 

• P is a production rule set, where a production rule 
is a pair of elementary tree ( sξ ↔ tξ ) with linking 
relation between leaf nodes in source elementary 
tree ( sξ ) and leaf nodes in target elementary tree 
( tξ ).  

 
In TSG and STSG, an elementary tree is a tree fragment 
whose leaf nodes can be either non-terminal symbols or 
terminal symbols. For example, Figure 2 illustrates two 

examples of elementary trees which belong to the English 
parse tree tT shown in Figure 1. Obviously, a normal 
subtree (whose leaf nodes must be terminal symbols) is an 
elementary tree but not always true vice versa. 
 
In STSG, a production or a rule is a pair of elementary 
tree with alignment information (hereafter, PET). We can 
define a PET as a triple < sξ , tξ , A  >, where:  
 
 

• sξ is a source elementary tree, and 
 

• tξ is a target elementary tree, and 
 

• A is the alignments between leaf nodes of two 
elementary trees. It is defined as a subset of the 
Cartesian product of source and target leaf node 
positions: 

 

{( , ) :A i j i⊆ is the position of ith leaf node of 
sξ ; j is the position of jth leaf node of tξ } 

 

Figure 3 shows three examples of PET extracted from the 
word-aligned parse tree pair in Figure 1. We use boxed 
and circled indices to indicate non-terminal and terminal 
alignments, respectively. Obviously, PET allows any tree 
node insertion, deletion and substitution between the two 
elementary trees. We believe this property of PET can 
well address the issues of non-isomorphic structures, 
global reordering and phrase gaps that we discussed in the 
previous section. 

STSG-based Tree-to-Tree Alignment  
We use a STSG to represent tree-to-tree alignment, i.e., a 
STSG-based tree-to-tree alignment template is a PET 
< sξ , tξ , A  >. In the following, we formally describe 
how to develop PETs into probabilistic dependencies to 
model the translation process. 
 

Given the source and target sentences 1
Jf and 1

Ie , we first 

introduce two hidden variable sT and tT that denote the 
source and target parse trees, respectively, then we have1: 
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Next, we introduce another hidden variable D to detach 

sT and tT into a sequence of K PETs < 1,K
sξ , 1,K

tξ , 1,KA >. 

We assume that each source elementary tree i
sξ produces 

a target elementary tree i
tξ independently and they are 

aligned by iA . Then, we have: 
                                                      
1 The notational convention in our paper is as follow. We 
use the symbol Pr(.) to denote general probability 
distribution with no specific assumptions. In contrast, for 
model-based probability distributions, we use generic 
symbol p(.) 

 
 

Figure 1: A word-aligned parse tree pairs of a Chinese 
sentence and its English translation  

 

 
 

Figure 2: Examples of elementary trees 
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Figure 3: Three examples of PET 
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where we omit the explicit dependences on D and 1
Jf to 

avoid notational overhead. Based on eq. (2), we have: 
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To further decompose ( | )k k
t srP ξ ξ , the elementary tree 

alignment kA is introduced as another hidden variable: 
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From eqs. (1) to (4), we can see that our STSG-based tree-
to-tree translation model is comprised of four sub-models: 
 

1) parse model: 1( | )J
srP T f   

2) detachment model: 1( | , )J
srP D T f  

3) translation model: 1, 1,( | )K K
t srP ξ ξ , including:  

 3.1) tree alignment selection model: ( | )k k
srP A ξ  

 3.2) structure transfer model: ( | , )k k k
t srP Aξ ξ  

4) generation model: 1 1( | , , )I J
t srP e T T f  

 

Figures 1 and 3 show how our tree-to-tree translation 
model works. First, the source sentence is parsed into a 
source parse tree sT (the upper tree in Figure 1). Next, the 

parse tree sT is detached into three elementary trees (the 
left hand side of three PETs shown in Figure 3). Then the 
three PETs shown in Figure 3 are selected to map the 
three source elementary trees to three target elementary 
trees, which are then combined to generate a target parse 
tree tT (the lower tree in Figure 1). Finally, a target 
translation is generated from the target parse tree. 

Features  
Our model is implemented under log-linear framework 
(Och and Ney, 2002). Hence, all knowledge sources, 
including source and target string and all hidden variables 
and any additional knowledge source, such as language 
model or additional dictionaries, are described as feature 
functions.  In our implementation, we further simplify our 
model as follows: 

 

1) The parse model 1( | ) 1J
srP T f ≡  since we usually 

only use the best parse tree for structure mapping. 
2) The detachment model 1( | , ) 1J

srP D T f ≡  since we 
assume all detachments have the same probability. 

3) The generation model 1 1( | , , ) 1I J
t srP e T T f ≡ since we 

just output the leaf nodes of tT to generate the target 

translation 1
Ie regardless of sT  and 1

Jf  and any further 
morphological generation. 

 
After model simplification, we have: 
 

1, 1,
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Eq. (5) is the simplified model. Eq. (6) formalizes the 
modeling process based on log-linear framework. Eq. (7) 
formulizes the decoding, i.e., the translation process. 
 
Finally, for our experiments we use the following seven 
feature functions that are analogous to the default feature 
set of Pharaoh (Koehn, 2004a).  
 
1) Bidirectional elementary tree mapping probability: 
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2) Bidirectional elementary tree lexical translation 
probability: ( | )lex f e and ( | )lex e f . Here, we only 
consider terminal translation probability and set the 
non-terminal translation probability to 1. 

3) Language model (lm): 2 11
log ( | , )I

i i ii
p e e e− −=∏ . 

4) Number of elementary tree pairs used (pp): K. 
5) Number of target words (wp): I. 

Rule Extraction 
Rules or PETs are extracted from word-aligned, bi-parsed 
sentence pairs 1 1( ), ( ),J IT f T e A< > , where ( )T z  
denotes a parse tree covering string z . For better 
understanding our rule extraction algorithm, we classify 
PETs into two categories: 



• initial PET, if all leaf nodes in both source and 
target elementary trees of a PET are terminals 

• abstract PET, otherwise 
 

Hence, an initial PET 2 2
1 1( ), ( ),j i

j iT f T e A< >  would 
satisfy the following constraints: 

• 1 2 1 2( , ) :i j A i i i j j j∀ ∈ ≤ ≤ ↔ ≤ ≤  
• 2

1( )j
jT f is a subtree of 1( )JT f  

• 2
1( )i

iT e is a subtree of 1( )IT e  
 

We introduce another concept here. Given an initial PET 
2 2

1 1( ), ( ),j i
j iT f T e A< > , a triple 4 4

3 3
ˆ( ), ( ),j i

j iT f T e A< >  
is its sub initial PET if and only if: 

• 4 4
3 3

ˆ( ), ( ),j i
j iT f T e A< >  is an initial PET 

• 3 4 3 4( , ) :i j A i i i j j j∀ ∈ ≤ ≤ ↔ ≤ ≤  

• 4
3( )j

jT f is a subtree of 2
1( )j

jT f  

• 4
3( )i

iT e is a subtree of 2
1( )i

iT e  
 
 
 

Our rule extraction algorithm includes two steps:  
 
 

1) Extracting initial PETs from 1 1( ), ( ),J IT f T e A< > :  
It is straightforward to extract initial PETs. We just iterate 
all source and target subtree pairs 2 2

1 1( ), ( )j i
j iT f T e< > . 

If the condition “ 1 2 1 2( , ) :i j A i i i j j j∀ ∈ ≤ ≤ ↔ ≤ ≤ ” 

is satisfied, the triple 2 2
1 1( ), ( ),j i

j iT f T e A< >  is an initial 

PET, where A are alignments between leaf nodes 
of 2

1( )j
jT f  and 2

1( )i
iT e . 

 
 

2) Extracting abstract PETs from extracted initial PETs:  
 

We derive abstract PETs from an initial PET by removing 
one or more of its sub initial PETs. Following is the 
algorithm for extracting abstract PETs. 
 
 
 

Input: initial PET set  
Output: abstract PET set 
1) foreach iPET ∈  initial PET set, do 

2) 2.1) put all sub initial PETs of iPET into a set subPET
   2.2) foreach subset subPETξ ⊂  do 

        2.2.1)  remove the portion covered byξ from iPET
        2.2.2)  add it into abstract PET set 
     2.3) end do  

3)  end do  
 
 

 
Finally, same as previous work (Liu et al, 2006; Chiang, 
2007), we set two parameters to control the number of 
extracted PETs:  
 
1) The height of an elementary tree is no greater than h . 
2) The number of non-terminals as leaf nodes is no great 

than c . 

Decoding 
We separate source language analysis from structure 
recursive transformation. Hence, in brief, our decoder 
carries out two-pass (or two-step) search by the following 
two modules.  
 
 

1) The 1st one is a CFG-based chart parser as a pre-
processor for mapping an input sentence to a parse tree 
Ts (for details of chart parser, please refer to Charniak 
(1997)).  

 

2) The 2nd one is a STSG-based (or PET-based) bottom-
up beam search algorithm for mapping the source 
parse tree Ts generated in the 1st pass to a target parse 
tree Tt. In this 2nd pass, a list of candidate translations2 
are computed for the input subtree rooted at each node 
with a post-order traversal3. The root of Ts is the last 
visited node. Hence, the best candidate translation of 
Ts is finally outputted as the target parse tree Tt. 

 
 

Following is the pseudo-code of our 2nd pass search: 
 
 
 

Input: source parse tree Ts 
Output: target parse tree Tt 
Data structures: 
1) ni : 
2) Tni: 
3) Ri: 
4) Hi: 

 the ith node of Ts in post-order traversal 
 the subtree rooted at node ni 
 to store all usable4 Rules or PETs to Tni  
 to store all Hypothesises or candidate translations 
of Tni  

Algorithm: the 2nd pass search for tree structure mapping 

1) foreach node ni (post-order), do 
2) 2.1) extract all usable PETs and put them in Ri 
   2.2) Ri pruning 
   2.3) foreach PET ξ =< sξ , tξ , A  > iR∈  do 
        2.3.1) ifξ is an initial PET, then put it into Hi as 

one candidate translation of  Tni 
        2.3.2) else a list of candidate translations of Tni are 

derived from the abstract PET ξ by 
replacing the non-terminal leaf nodes of tξ  
with candidate translations (which are stored 
in H0~Hi-1) of the corresponding source 
subtrees that are not covered by the current 
abstract PET ξ . 

   2.4) end do 
   2.5) Hi pruning 

3) end do  
4) output the best candidate translation of Ts as Tt 
 
The above algorithm maps the source subtrees to target 
ones recursively in the post-order sequence of source 

                                                      
2  A candidate translation is a target subtree with 
accumulated feature values and accumulated probability. 
3  The post-order traversal can guarantee that when 
translating the current subtree rooted at current node, all 
subtrees rooted at descendants of the current node have 
already been translated before. 
4 A PET < sξ , tξ , A  > or a structure mapping rule is 
usable to a parse treeT if and only if sξ is rooted at the 
root of T and exactly covers a certain upper part of T .  



subtrees. When translating a subtree, if the source 
elementary tree is equal to the subtree (i.e., the current 
PET is an initial PET), then the target elementary tree is a 
candidate translation (line 2.3.1). Otherwise, we have to 
combine the current abstract PET with previously 
generated candidate translations to form the current new 
candidate translations (line 2.3.2). This combination 
operation is the most time-consuming in our decoder. 
Hence, to speed up the decoder, we use several thresholds 
to limit search beams. For PET pruning (line 2.2), we use 
a fixed threshold (pTableLen) that specifies the maximum 
number of PETs and a probability threshold (pTablePro) 
that specifies the minimal probability of a PET. For 
candidate translations pruning (line 2.5), we also use a 
fixed threshold (hTableLen) and a probability threshold 
(hTablePro) to remove unpromising hypothesises. These 
pruning techniques are widely used in SMT and speech 
recognition. In addition, we only keep the best one among 
the same translations generated from different paths in 
order to further speed up the decoder and produce better 
n-best list. With regard to language model features, we 
use the method of cube pruning (Chiang, 2007) to 
incorporate the language model score into the feature 
function. 

Experiments 
The aim of our experiments is to verify the effectiveness 
of our STSG-based tree-to-tree alignment model for SMT. 

Experimental Settings 

Dataset and Evaluation  
Our experiments were on Chinese-to-English translation. 
We use part of HIT Chinese-English corpus (Yajuan Lv, 

2003) as our experimental data. It is a balance corpus, 
gathered from various newspapers, newswires and 
broadcasts and covering many different topics. Table 1 
shows the statistics on the corpus. We use an automatic 
parser to parse the bilingual corpus. To minimize the 
effect of parse errors on our system performance, we 
check the parse tree results manually before training and 
testing. This enables our evaluation on our tree-to-tree 
model more accurate. In addition, there is only one 
reference in our test set.  
 
For language model, we used SRI Language Modeling 
Toolkit (Stolcke, 2002) to train a trigram language model 
with modified Kneser-Ney smoothing (Kneser and Ney, 
1995; Chen and Goodman 1998) on the 9k English 
sentences. Our evaluation metric is BLEU (Papineni et al., 
2002), as calculated by the NIST script (version 11a) with 
its default settings, which performs case-insensitive 
matching of n-grams up to n = 4. Instead of GIZA++ (Och 
and Ney, 2004) which usually shows much lower 
performance on small data set, we use Lv’s alignment 
toolkits (Yajuan Lv, 2003) to do m-n word alignment for 
each sentence pair. For MER training (Och, 2003), which 
tunes the feature weights to maximize the system’s BLEU 
score on development set, we use Koehn’s trainer (Koehn, 
2004a) for the phrase-based model (Pharaoh), and further 
modify it for our tree-based  system. For significance test, 
we use Zhang et al’s implementation (Zhang et al, 2004), 
which uses bootstrapping resampling (Koehn, 2004b). 

Implementation  
We implement our system using ANSI C++ in Linux, and 
set two baseline systems for comparison. One is Pharaoh 
(Koehn, 2003; Koehn, 2004a), a phrase-based translation 

Data Set # of Sentence Pair # of Chinese Word # of English Word 
Training Set 9,000 75,026 78,223 
Development Set 528 4,432 4,630 
Test Set 1,000 8,334 8,614 

 
Table 1: Statistics of our experimental data 

 
 

Features 
System d ( | )e fφ  lex(e|f) pp wp lm ( | )f eφ  lex(f|e) 

Pharaoh 0.047 0.232 -0.025 0.126 -0.0995 0.167 0.130 0.172 
SCFG ─ 0.191 -0.03 0.054 0.318 0.180 0.20 0.012 

STSG ─ 0.209 -0.045 -0.207 0.152 0.227 0.148 0.010 

 
Table 2: Feature weights obtained by MER training on the development set 

 
 

 
system # of extracted rules # of rules used in testing  system BLEU4 

Pharaoh 499,423 64,491  Pharaoh 0.1208 ± 0.0069
SCFG 70,000 24,302  SCFG 0.0867 ± 0.0048
STSG 2,629,146 98,422  STSG 0.1394 ± 0.0073

 
Table 3: Extracted rules                    Table 4: System performance with 95% confidence intervals 



model; another one is a SCFG-based tree-to-tree 
translation model5. For Pharaoh, we use default settings 
for whole processing, including phrase table extraction, 
model training, MER training and decoding. For SCFG 
and our model, we use the same settings except the 
parameter h (h=5 for STSG and h=2 for SCFG). We 
optimize these parameters on development set and obtain 
the following settings: c=5; pTableLen=30; pTablePro=-
100 (log probability); hTableLen=100 and hTablePro=-
100 (log probability). 

Experimental Results 
For Pharaoh, eight default features are used: distortion 
model d, a trigram lm, phrase translation probability 

( | )e fφ and ( | )f eφ , lexical weightings lex(e|f) and 
lex(f|e), phrase penalty pp and word penalty wp. For the 
other two systems, the seven features described previously 
in this paper are used. The different feature weights 
obtained by MER training are showed in Table 2. Table 3 
reports the number of extracted translation rules. 
 
Table 4 compares the performance of the three systems 
with 95% confidence intervals. We show that: 

 
 

1) Our STSG-based tree-to-tree model statistically 
significantly outperforms (p < 0.01) Pharaoh with 
an absolute improvement of 0.0186 (0.1394-0.1208) 
in BLEU score, representing a relative performance 

                                                      
5  The SCFG-based tree-to-tree model is easily 
implemented based on our STSG-based tree-to-tree model 
by setting the parameter h  (the maximal height of an 
elementary tree) to 2. 

improvement of 15.3% (0.0186/0.1208). This 
suggests that a) the linguistically motivated structure 
features are very useful for SMT in modeling global 
reordering and structure transfer while phrase-based 
method is only effective for modeling local 
reordering and b) our STSG-based model is very 
effective in capturing such kinds of features since 
we allow any tree node operations: insertion, 
deletion and substitution among any different nodes. 

 

2) Our STSG-based model statistically significantly 
outperforms (p < 0.01) the SCFG-based model with 
an absolute improvement of 0.0527 (0.1394-0.0867) 
in BLEU score, representing a relative performance 
improvement of 60.8% (0.0527/0.0867). This is 
largely because SCFG only allows sibling nodes 
reordering while STSG allows any node reordering 
within an elementary tree.  

 

3) SCFG-based model also performs much worse than 
Pharaoh. This further verifies that linguistically 
motivated two-layer SCFG rule is inadequate in 
modeling language structure transfer. 

 
 

Figure 4 exemplifies the advantage of STSG-based over 
SCFG and Phrase-based models for machine translation. 

Conclusions 
In this paper, we study how to utilize linguistic syntax 
structure features for SMT. The experimental results on 
the small dataset shows that our proposed STSG-based 
tree-to-tree alignment method is much more effective in 
modeling global reordering and structure transfer than 
phrase-based and SCFG-based methods. In the future, we 
will test our method on large data set using automatic 

 
 

          (c) STSG rules used 
 

R1: S(NP[0],VP[1],Y(吗),WJ[2]) ↔ SQ(VB(do),NP[0],VP[1],FSP[2]) P1: <你(you) 的(of) , your> 

R2: NP(R(你),USDE(的),NC(父亲)) ↔  NP(PRP$(your),NN(father)) P2: <父亲(father) 是(be) , father is>
R3: VP(VX[0],NP[1]) ↔  VP(VBZ[0],NP[1]) P3: <个(a) 医生(doctor) ,  a doctor>
R4: VX(是) ↔  VBZ(is)     R6: NC(医生) ↔ NN(doctor) P4: <? , ?> 
R5: NP(Q(个),NC[0]) ↔  NP(ART(a),NN[0]) R7: WJ(？) ↔  FSP(?)   

 
(d) Translation rules used in generating the best translation results: SCFG (left) and Phrase-based (right) 

 

Figure 4: A translation example using the three methods 
 
 

 
 

(a) Input Chinese parse tree 
 

Input:  你/you 的/of 父亲/father 是/be 个/a 医生/doctor 吗/null ?/?

Pharaoh:  your father is a doctor? 
SCFG: do your father is a doctor? 
STSG:     Is your father a doctor? 

 
 

       (b) The best translation results using the three methods 



parser. We will also study how to optimize the translation 
rule set. 
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