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Abstract

In this paper, we investigate the feasibil-
ity of combining two data-driven machine
translation (MT) systems for the transla-
tion of sign languages (SLs). We take the
MT systems of two prominent data-driven
research groups, the MATREX system de-
veloped at DCU and the Statistical Ma-
chine Translation (SMT) system developed
at RWTH Aachen University, and apply
their respective approaches to the task of
translating Irish Sign Language and Ger-
man Sign Language into English and Ger-
man. In a set of experiments supported by
automatic evaluation results, we show that
there is a definite value to the prospective
merging of MATREX’s Example-Based MT
chunks and distortion limit increase with
RWTH’s constraint reordering.

1 Introduction

Sign languages (SLs) worldwide are poorly resourced
and lack political and social recognition. As a result,
members of the Deaf community are often forced to
communicate in a language that is neither their L1
nor natural to them. Given that on average the liter-
acy competencies of a Deaf adult are poor to moder-
ate (Traxler, 2000) and in most cases resemble those
of a 10-year old (Holt, 1991), it is clear that using
the lingua franca can cause some hindrance to them.
This, coupled with the encouraging advancements in
the field of machine translation (MT), data-driven
MT in particular, leads to the intuition that MT
could be employed to help alleviate the communi-
cation problems of the Deaf.

In this paper, we look at the data-driven ap-
proaches of two well-established MT research groups
who have also broached the area of SL MT, namely
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the MATREX system developed at Dublin City Uni-
versity (DCU) and the Statistical Machine Trans-
lation (SMT) system developed at RWTH Aachen
University. We investigate the methodologies of
each for the translation of Irish Sign Language
(ISL) and German Sign Language (DGS, Deutsche
Gebérdensprache) into English and German.

The remainder of the paper is constructed as fol-
lows. In section 2 we introduce SLs and discuss their
current status in Ireland and Germany. In section
3 we overview previous and current research in the
area of SL MT. We present the data-driven systems
of DCU and RWTH Aachen University in Section 4.
The dataset we are using is outlined in section five.
In section 6 we describe the experiments we carried
out and include evaluation results. These results are
discussed in section 7. Finally we conclude the paper
in section 8 and outline the future direction of our
work.

2 Sign Language

SLs are independent and self-contained means of
communication used by the Deaf and many hard-
of-hearing people. Since the languages have evolved
naturally, it is no surprise that most countries have
their own particular SL as well as local dialects. SLs
are grammatically distinct from spoken languages
and the grammar makes extensive use of the possibil-
ities of a visual/gestural modality: locations, verb in-
flections, pronouns and many other linguistic devices
are conveyed by spatial information in front of the
signer. Apart from the obvious employment of the
hands as information carriers, SLs also use affected
facial expressions, tilts of the head and shoulder as
well as the velocity of the sign to incorporate infor-
mation such as comparative degree or subclauses.
In Ireland, ISL is the dominant and preferred lan-
guage of the Deaf community consisting of approx-
imately 5000 people. Despite being used in Ireland
since the 1800s, ISL remains a poorly resourced mi-



nority language that lacks social and political recog-
nition. A standardised form of the language is not
taught to children in Deaf schools in the same way
that English is in spoken language schools. Language
development is slow as a result of “its users’ lack of
access to technical, scientific and political informa-
tion” (O'Baoill & Matthews, 2000).

DGS is spoken and understood by approximately
200,000-300,000 people (including hearing). The lan-
guage evolved naturally and was accepted as an of-
ficial language in 2002. Since then, the Deaf are
legally entitled to hire interpreters free of charge
when dealing with federal authorities, and schools
for Deaf children are beginning to adopt the lan-
guage into their educational system. Although DGS
has a completely different vocabulary, certain similar
grammatical structures seem to be common in most
Western European sign languages.

3 Sign Language MT

The lack of political recognition for SLs worldwide
(Gordon, 2005) means that they are less resourced
than spoken languages. This may be seen in the
areas of SL linguistics and machine translation of
SLs. Compared to their spoken language counter-
parts, both areas are relatively new with significant
SL linguistic research beginning only 47 years ago
with the work of (Stokoe, 1960). The earliest papers
on research into sign language machine translation
(SLMT) date back only 18 years.

Apart from the data sparseness, an additional is-
sue for MT is the lack of a formally adopted, or even
recognised, writing system. Depending on what the
transcription is to be used for, existing systems also
differ in accuracy and depth of detail. The earliest
linguistic research on SL only dates back to the 1960s
to the work of (Stokoe, 1960), which focuses mostly
on the syntactic structure of the signs, namely the
aspects of manual sign articulation: hand configura-
tion, place of articulation and movement.

For our work, we use so-called ‘glosses’, a semantic
representation of the sign language. As a convention,
the meaning of the sign is written as the upper case
stem form of the corresponding word in a spoken lan-
guage, with additional spatial information and facial
expression added. For our translation, it annotates
all important sign language grammar features.

The example in (1) can be translated into Eng-
lish with ‘The high pressure areas over the Atlantic
Ocean are growing larger’.

(1) ATLANTIC_a IX_a HIGH++ GROWING-(more)-hn

The three signs are transcribed with the glosses
‘HIGH’, ‘ATLANTIC’ and ‘GROWING’ represent-

ing their meaning in English. The sign ‘IX’ is a
pointing gesture to reference the same space ‘_a’ used
by the discourse entity ‘ATLANTIC’. Signs repeated
(for example to indicate plural forms) are annotated
with a double-plus, mouth pictures are written in
brackets, e.g. ‘(more)’, ‘-hn’ means that the signer is
nodding during signing.

Since the inflection of verbs and nouns is tak-
ing place through spatial information, notations like
‘_a’ in the above example pose quite a problem for
the translation system. Including external morpho-
syntactic parsing information usually greatly reduces
errors, especially on sparse data sources, but no pars-
ing algorithm exists for the morphologically rich sign
languages. Therefore, these issues have to be ad-
dressed with proper pre- and post-processing steps.

To collect the data, one has to manually annotate
SL video data in a highly time-consuming process
(the ECHO project!, an EU-funded scheme based
in the Netherlands that has made fully annotated
digitised corpora available on the Internet, reports
one minute of video data takes approximately 100
minutes to annotate). This approach involves tran-
scribing information taken from a video of signed
data. The transcriber may decide the level of de-
tail at which the SL video will be described. These
categories include a gloss term of the sign being ar-
ticulated by the hands and may also contain informa-
tion about non-manual features or any other relevant
linguistic information.

3.1 Previous Approaches

Given the relatively recent research into SLMT, most
systems to date have used ‘second generation’ ap-
proaches. Transfer-based approaches have included
the work of (Grieve-Smith, 1999) who translated
English weather reports into American Sign Lan-
guage (ASL) by mapping syntactic structures. (Van
Zijl & Barker, 2003) also used a syntactic approach
in their work on South African Sign Language with
most of their focus on avatar production. (Marshall
& Safér, 2002; Safar & Marshall, 2002) employ dis-
course representation structures and use HPSG se-
mantic feature structures for the generation of ASL.

There have also been interlingual approaches
adopted by (Veale et al., 1998) and (Zhao et
al., 2000), the latter employing synchronised tree—
adjoining grammars.

A second generation hybrid approach has been de-
veloped by (Huenerfauth, 2005) where interlingual,
transfer and direct approaches are integrated.

"http://www.let. kun.nl/sign-lang/echo/data.html



3.2 Current Developments

More recently, SLMT has followed the more main-
stream MT trend away from rule-based approaches
toward data-driven methods. The following groups
are active in their ‘third generation’ approaches:

e (Morrissey & Way, 2005; Morrissey & Way,
2006) investigate corpus-based methods for
example-based sign language translation from
English to the sign language of the Netherlands.

e (Chiu et al., 2007) present a system for the
language pair Chinese and Taiwanese sign lan-
guage. They show that their optimizing method
surpasses IBM model 2.

e Basic work on Spanish and Spanish sign lan-
guage was done by (San-Segundo et al., 2006).
Here, a speech to gesture architecture is pro-
posed.

e A complete system setup was discussed by Stein
(Stein et al., 2006) for German and German
sign language on the domain weather reports.
Further, they describe how to improve the re-
sults with sign language specific pre- and post-
processing methods.

4 Data-Driven MT in DCU and
RWTH University

Over the last 10 years, the National Centre for Lan-
guage Technology at DCU has developed a successful
track record in research on Data-Driven MT. This
is evident from the work of (Veale & Way, 1997) in-
volving a template-driven approach to EBMT, to the
Marker-Based segmentation research of (Gough &
Way, 2004b) and more recently the work of (Stroppa
& Way, 2006) on the development of the MATREX
MT system (cf. section 4.1) which has performed
well in international evaluations such as IWSLT.?

For over a decade, the RWTH University has been
focussing research on SMT. The system has achieved
very competitive results in all international evalua-
tions in which it has participated (TC-STAR? IWSLT,
NIST?).

In light of these developments, we have chosen
to combine the approaches of these two prominent
data-driven MT research centres and apply their ap-
proaches to the area of SL translation. These sys-
tems are described in more detail in sections 4.1 and
4.2.

*http://www.slt.atr.jp/TWSLT2006/
Shttp://www.tc-star.org/
“http://www.nist.gov/speech /tests/mt/

4.1 MaTrEx: The DCU MT System

MATREX (Machine Translation using Examples)
is the Data-Driven MT system developed at DCU
(Stroppa & Way, 2006). It is a hybrid system that
combines Example-Based MT (EBMT) and SMT ap-
proaches. The system is modular in design consist-
ing of a number of extendible and reimplementable
modules. This modular design makes it particularly
adaptable to new language pairs. An overview of the
translation process is in Figure 1.

The decoder is fed by different example databases
to translate new sentences. These chunk and lexical
example databases are created using the the Word
Alignment, Chunking and Chunk Alignment Mod-
ules that are themselves fed by aligned source-target
sentences.

4.1.1 Word Alignment Module

Word alignment for the system is performed using
Gi1za++ (Och, 2003), a statistical word alignment
toolkit. A set of high-quality word alignments are
extracted from the original uni-directional alignment
sets using the “refined” method of (Koehn et al.,
2003).

4.1.2 Chunking Module

The primary chunking strategy employed for our
language pairs in this system is based on the Marker
Hypothesis (Green, 1979). This method is based
on the universal psycholinguistic constraint that lan-
guages are marked for syntactic structure at their
surface level by closed sets of lexemes or morphemes.
Lists of closed-class “marker” words ( i.e. preposi-
tions, conjunctions, determiners etc.) are used to
segment the sentences and derive a new data source:
a set of marker chunks. Each chunk consists of one
or more marker words and at least one non-marker
word to ensure contextual information is withheld in
the chunk. Marker-based chunking has the advan-
tage of being easily adaptable to new languages by
simply providing the system with a relevant list of
marker words.

4.1.3 Chunk Alignment Module

An ‘edit-distance style’ dynamic programming
alignment algorithm is employed to align the chunks
created in the chunking module. Rather than
using the Expectation-Maximization algorithm for
parameter estimation, instead these are directly
computed according to the information within the
chunks. This information is obtained from three
sources:  word-to-word translation probabilities,
word-to-word cognates and chunk labels. The re-
sulting aligned chunks are then combined with the
SMT phrasal alignments. The two alignment styles
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Figure 1: MATREX Architecture

are merged to help produce translations of a higher
quality following the recent research of (Groves &
Way, 2005; Groves & Way, 2006)

4.1.4 Decoder

The MATREX decoder is a wrapper around
MosEs (Koehn et al., 2007), a phrase-based SMT
decoder. Minimum-Error-Rate training (Och, 2003)
is implemented within a log-linear framework (Och
& Ney, 2002) and the BLEU metric (Papineni et al.,
2002) is optimized using the development set.

4.2 The RWTH MT System

We use a SMT system to automatically transfer the
meaning of a source language sentence into a target
language sentence.

Our baseline system maximizes the translation
probability directly using a log-linear model (Och &
Ney, 2002) shown in below:

exp (S Amhn(ef. 17))
> o0 (S0l Mhon (@, 1)

with a set of different features h,,, scaling fac-
tors A, and the denominator a normalization fac-
tor that can be ignored in the maximization process.
We choose the A,;, by optimizing an MT performance
measure on a development corpus using the downhill
simplex algorithm. For a complete overview of the
translation system, see (Matusov et al., 2006).

pleilfi) =

4.2.1 Reordering constraints

When we look for the best translation we can re-
duce the search space by assuming monotone word
dependency. This works well for closely related lan-
guage pairs, such as Catalan-Spanish, that have a
very similar grammatical structure and phrases con-
taining similar sequences of words over large portions
of the text. However, many other language pairs dif-
fer significantly in their word order. To keep compu-

tational costs at a reasonable level, we allow a larger
search space but limit the permutation number by
reordering constraints.

A reordering constraint is a directed, acyclic graph
that allows limited word reordering of the source sen-
tence. The edges of each possible path equal a per-
mutation 7 of the numbers 1 to J.

In our work, we investigate the influence of three
reordering graphs Figure 2 (Kanthak et al., 2005) on
our translation results: the local constraint, the IBM
constraint and the inverse IBM constraint. Each
graph allows characteristic permutation types, con-
strained by a window size w: the local constraint
allows each word in the sentence to be moved up to
a maximum of w — 1 steps toward the front or the
end of the sentence. The IBM constraint allows up
to w—1 words in the sentence to be moved to the end
of the sentence, likewise, the inverse IBM constraint
allows up to w —1 words to be moved to the sentence
beginning.

The higher the window size w, the higher the
amount of possible permutations has to be consid-
ered. A window size which is higher or equal to the
sentence length J results in a search space that is
equal to the maximum of permutations possible.

5 The Corpus

A prerequisite for data-driven approaches to MT in-
volves a bilingual data set. The broader the domain
and/or vocabulary, the higher the need for a suffi-
cient amount of data to properly train the system.
For spoken language, there are large amounts of data
available for use in MT.

On the contrary, suitable SL corpora are not as
easy to find. Most of the corpora available in SLs
take the form of prose or conversational communica-
tion as they are primarily used for linguistic analy-
sis and are unsuited to MT because of their open-
domain content and use of flowery language. This is



Figure 2: Permutation graph of a source sentence
f1f2f3f4 using a window size w = 2 for a) local con-
straints, b) IBM constraints and ¢) inverse IBM con-
straints

evident from the work of (Morrissey & Way, 2006),
whose SL research made use of data from the ECHO
project data. For the most part, that which is avail-
able is so small in terms of sentence quantity that it
is unusable for data-driven MT. For these reason we
chose to create our own corpora.

We found a suitable dataset in the ATIS corpus
(Hemphill et al., 1990). The ATIS (Air Travel Infor-
mation System) corpus is a dataset of transcriptions
from speech containing information on flights, air-
craft, cities and similar related information. This
corpus is particularly suited to our MT needs as it is
within a closed domain and has a small vocabulary.
The domain itself has a potentially practical use for
Deaf people.

The ATIS corpus consists of 595 English sentences.
Although this is a significantly smaller dataset than
that used in mainstream data-driven MT, it is suffi-
cient to feed our systems, as demonstrated in section
6. We had this dataset translated into ISL by Deaf
native ISL signers and recorded for video and then
annotated with an English gloss. The English data
(EN) was also translated into German (DE) and then
DGS gloss annotation. This provided us with four
parallel corpora, already sententially aligned, with
the potential to work with four translation pair types
containing twelve different language pairs, namely:

EN [ DE [ ISL [ DGS
no. sentences 418

Train | 1O running words | 3008 | 3544 | 3028 2980
vocab. size 292 327 265 244
no. singletons 97 118 71 84
no. sentences 59
Dev no. running words 429 ‘ 503 431 ‘ 434
vocab. size 134 142 131 119
no. sentences 118
Train | 1O running words 999 856 874 877
vocab. size 174 158 148 135
trigram perplexity 15.7 12.4 28.3 11.39
out of vocab. 22 22 30 15

Table 1: Corpus Overview

(i) from SL to spoken language (ISL-EN, ISL-DE,
DGS-EN, DGS-DE),

(ii) spoken language to SL (EN-ISL, DE-ISL, EN-
DGS, DE-DGS),

(iii) spoken language to spoken language (EN-DE,
DE-EN)

(iv) and the novel translation pairings of SL to SL
(DGS-ISL, ISL-DGS).

For this paper, we have chosen to work with type
(i). These language pairings and directions were cho-
sen to facilitate automatic evaluation of the trans-
lated output. With respect to type (ii) and the SL—
SL pairings of type (iv), currently SL automatic eval-
uation is not possible. This is because traditional
string-based evaluation metrics such as BLEU (Pa-
pineni et al., 2002) “are inappropriate for the eval-
uation of SLMT systems, where the primary goal is
translation from an oral to a non-oral language, as
there is no ‘gold standard’ underlying SL annotation
available” (Morrissey & Way, 2006).

6 Experiments

The 595 sentences of the ATIS corpus were divided
into training, development and testing sets of 418
sentences, 59 sentences and 118 sentences respec-

tively. An overview of the corpus breakdown is given
in Table 1.

6.1 MaTrEx Experiments

The baseline system for all MATREX experiments
employs the modules as described in section 4.1 with
the exception of the EBMT chunks.

To try to improve on these translations we intro-
duced EBMT chunks into the system in two sets of
experiments. In the first, ‘type 1 chunks’, we used
the Marker Hypothesis described in section 4.1.2 to
segment both the source and target sentences. The
resulting chunks and corresponding alignments were
added to the system.



BLEU WER PER

baseline 51.63 39.32 29.79

DL = 10 52.18 38.48 | 29.67

T1 chunks 50.69 37.75 30.76

ISL-EN DL = 10 51.81 37.39 | 30.68
T2 chunks 49.76 39.92 32.44

DL = 10 50.32 39.56 | 32.32

baseline 38.18 48.52 38.79

DL = 10 39.69 47.25 | 38.47

T1 chunks 40.67 46.72 38.58

ISL-DE DL = 10 42.13 45.45 | 88.16
T2 chunks 38.54 46.93 38.05

DL = 10 40.09 45.66 | 37.63

baseline 45.25 48.85 32.08

DL = 10 48.40 41.87 | 30.88

T1 chunks 44.74 50.66 31.72

DGS-EN DL = 10 47.22 44.14 31.12
T2 chunks 44.34 49.93 33.17

DL = 10 47.43 42.82 | 32.20

baseline 38.66 55.28 39.53

DL = 10 42.09 50.31 39.53

T1 chunks 34.86 56.65 39.53

DGS-DE DL = 10 39.38 51.87 | 38.79
T2 chunks 35.63 55.81 39.74

DL = 10 40.29 50.31 38.90

Table 2: MATREX Evaluation Results

Given the natural lack of closed class lexical items
in SLs, it was noted that frequently one word taken
from the SLs would combine with a whole marker-
based chunk from the corresponding target language.
With this in mind we ran ‘type 2 chunks’ experiments
where the marker-based chunks for the spoken target
languages were aligned with SL chunks where each
SL word formed its own chunk.

The default distortion limit for the decoder is set
to allow for no jumps or ‘block movements’ to oc-
cur in translation. Given the differences in between
SLs and spoken language grammar, particularly the
sentence-initial positioning of time references and
similar grammatical structures, we experimented us-
ing varying distortion limits.

The evaluation results for each set of experiments
is given in Table 2.

The ‘type 1 chunks’ formula worked best for ISL—
DE leading to an improvement in the BLEU score of
2.49% and a decrease in WER of 1.8%. This shows
a relative increase of 6.5% and 3.7% respectively.

The addition of ‘type 2 chunks’ for DGS-DE im-
proved the PER scores but the same improvement
was not reflected in the BLEU score.

Allowing a distance range of 10 for block move-
ments when decoding improves BLEU scores across
all language pairs. This is particularly noted for
the DGS-DE pairing where, for example, when com-
bined with ‘type 2 chunks’, the BLEU score increases
by 4.66% on the ‘type 2 chunks’ score alone, which
shows a relative increase of 13%. This experiment
also had the effect of lowering error rates for all lan-
guage pairings.

BLEU | WER | PER
ISLEN | BN reord. | 5262 | 5703 | 2854
ISL-DE })ngils—elllénl\(j[ reord. igig igig gggg
DGS-EN ?navs—elllénl\?l reord. igig Zégg g?gg
DGS-DE ?nafilénﬁ reord. ggg; Zg?g gggg

Table 3: RWTH Evaluation Results

6.2 RWTH Experiments

The baseline includes minimum error rate training on
the weighting parameters with the WER as the op-
timized evaluation measure. For the reordering con-
straints, the three permutations graphs, their win-
dow size, and the probability of the monotone (orig-
inal) permutation have also been optimized on the
development set. The local optimum was determined
for inverse-IBM reordering with a window size of 3
for all four language pairs. The reordering probabil-
ity was best for values around 0.6. The results can
be found in Table 3.

7 Discussion

Based on the experiments we have carried out on the
ATIS corpora, it is clear that taking into account the
differences in SL and spoken language grammar and
allowing more freedom of movement of units when
decoding has paid off and produced successful im-
provements in evaluation scores. The initial exper-
iments of adding various chunking style alignments
has shown potential for helping to improve scores
and that further chunking styles most suited to SLs
are worth investigating.

Reordering constraints seem to work quite well for
language pairs that include DGS. During translation,
it was stressed by the deaf interpreters that informa-
tion on time and location should always appear at
the beginning of the sentence. Thus, many sentences
benefited from the reordering since in the spoken lan-
guage, time and location might not appear before
the middle or the end of the sentence. An example
is given in Table 4. Although the constraints also
improved for translations starting from ISL, the dif-
ference in the error rate is not as dramatic.

Taking into account the improvements to the MA-
TREX baseline by adding EBMT-style chunks to the
SMT phrasal alignments and increasing the distor-
tion limit for jumps in when decoding, it is clear that
these methodologies would add to a general SMT sys-
tem. Furthermore, the improvements to scores for
the RWTH system baseline following the constraint



source sentence

CORK IX_a a_BIS.b SHANNON IX b a FLIEGEN_b WAS-qu

target sentence

what flights are there from cork to shannon

baseline translation

cork from shannon to what

+ inverse-ibm reordering constraint

what flights go from cork to shannon

source sentence

FREITAG BELFAST IX_a a_BIS_b DUBLIN
IX_b a FLIEGEN_b NAME AER LINGUS WAS-qu

target sentence

welche fliige von belfast nach dublin am freitag mit aer lingus?

baseline translation

freitag von belfast nach dublin, aer lingus welche

+ inverse-ibm reordering constraint

welche fliige von dublin nach belfast am freitag mit aer lingus?

Table 4: Influence of reordering constraints on the translation result

reordering shows that combining this approach with
the previous MATREX methodologies could poten-
tially further improve the translations for these data
sets. With this in mind, we intend to combine these
methodologies. Also, since the evaluation results of
both systems are in the same range for all language
pairs, we also plan on exploiting different system-
specific error types with system combination of the
translation outputs in the future.

Comparative work has been presented on Dutch
Sign Language data of a similar size in (Morrissey
& Way, 2006). Manual annotation was also used in
this work but at a much more detailed level. As high-
lighted in section 5 of this paper, the open domain
of fables and poetry was used in their work. They
present a WER score of 119% and a PER of 78%
for a test set of 55 sentences transating Dutch SL to
English. No BLEU score is reported due to the lack
of 4-gram matches found during evaluation. Based
on these results, it can be assumed that the greatly
improved scores attained by both the MATREX and
RWTH systems described in this paper can partly
be attributed to the more closed domain, and sim-
pler annotation as well as the more sophisticated MT
systems.

8 Conclusions

In this paper, we have investigated the methodolo-
gies of two data-driven MT systems, the MATREX
system and RWTH’s SMT system with a view to
combining their methodologies for translating sign
languages. Through sets of experiments carried out
on ISL and DGS datasets, we have shown promising
results for the addition of EBMT-style chunks, in-
creasing distortion limits and reordering constraints.
This shows some potential for producing improved
translations if incorporated together in a data-driven
system.

Our research has also highlighted the need for MT
to be applied to SLs to aid communication with
the Deaf and hearing communities and have out-

lined current developments in this area. With this
in mind, we have begun to take our work further by
adding an SL recognition tool to the front end of our
current system to develop a fully automatic SL-to-
spoken language MT system (Stein et al., 2007). For
the ATIS corpus and its available video recordings
in ISL, some preliminary but promising experiments
have been carried out to connect the recognition and
MT processes.

At a later stage, to facilitate a more practical use
for the Deaf we hope to reverse the language di-
rection and produce SL translations of spoken lan-
guage through the medium of an avatar, thereby al-
lowing Deaf people to translate and access informa-
tion in their natural language. The development of
both these language directions leads naturally to the
merging of both systems to allow for translation from
SL-to-SL, a novel area of research that could facil-
itate worldwide communication between Deaf com-
munities.
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