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Abstract
Pharaoh is a widely-used state-of-the-art decoder for phrasal statistical machine translation. In this paper, we present two modifications to
the algorithm used by Pharaoh that together permit much faster decoding without losing translation quality as measured by BLEU score.
The first modification improves the estimated translation model score used by Pharaoh to evaluate partial hypotheses, by incorporating
an estimate of the distortion penalty to be incurred in translating the rest of the sentence. The second modification uses early pruning of
possible next-phrase translations to cut down the overall size of the search space. These modifications enable decoding speed-ups of an
order of magnitude or more, with no reduction in the BLEU score of the resulting translations.

1. Introduction
Statistical machine translation (SMT) is widely advo-

cated as a promising approach to achieving translation
quality at least comparable to the best rule-based machine
translation (RBMT) systems, with greatly reduced effort
to adapt to new language pairs and new domains, pro-
vided that sufficient parallel training data is available. Such
claims are hotly debated, but there is little argument that,
to date, SMT systems have been much slower than the best
RBMT systems. For example, Language Weaver, currently
the only commercial provider of SMT systems, claims to
translate 5,000 words per minute per CPU,1, while SYS-
TRAN, the market leader in commercial RBMT, claims to
translate up to 450 words per second (27,000 words per
minute) per CPU.2

In this paper, we present two modifications to the al-
gorithm implemented in the widely-used Pharaoh phrasal
SMT decoder (Koehn, 2003; Koehn 2004a; Koehn 2004b)
that together permit much faster decoding without losing
translation quality as measured by the BLEU metric (Pa-
pineni et al., 2002). The first modification improves the
estimated cost function used by Pharaoh to rank partial
hypotheses, by incorporating an estimate of the distortion
penalty to be incurred in translating the rest of the sen-
tence. The second modification uses early pruning of pos-
sible next-phrase translations to cut down the overall size
of the search space. These modifications enable decoding
speed-ups of an order of magnitude or more, with no reduc-
tion in the BLEU score of the resulting translations.

2. A Phrasal SMT Model
Phrasal SMT, as described by Koehn et al. (2003) trans-

lates a source sentence into a target sentence by decompos-
ing the source sentence into a sequence of source phrases,
which can be any contiguous sequences of words (or tokens
treated as words) in the source sentence. For each source
phrase, a target phrase translation is selected, and the target
phrases are arranged in some order to produce the complete

1http://www.languageweaver.com/page.asp?intNodeID=862
&intPageID=851

2http://www.systransoft.com/index/Products/Server-Products
/SYSTRAN-Enterprise-Global-Server/System-Requirements

translation. A set of possible translation candidates created
in this way is scored according to a weighted linear combi-
nation of feature values, and the highest scoring translation
candidate is selected as the translation of the source sen-
tence. Symbolically,

t̂ = arg max
t,a

n∑
i=1

λifi(s, a, t)

wheres is the input sentence,t is a possible output sen-
tence, anda is a phrasal alignment that specifies howt is
constructed froms, and t̂ is the selected output sentence.
The weightsλi associated with each featurefi are tuned to
maximize the quality of the translation hypothesis selected
by the decoding procedure that computes thearg max.

We use a fairly standard phrasal SMT model that in-
cludes the following features:

• the sum of the log probabilities3 of each source
phrase in the hypothesis given the corresponding tar-
get phrase,

• the sum of the log probabilities of each target phrase in
the hypothesis given the corresponding source phrase,

• the sum of lexical scores for each source phrase given
the corresponding target phrase,

• the sum of lexical scores for each target phrase given
the corresponding source phrase,

• the log of the target language model probability for the
sequence of target phrases in the hypothesis,

• the total number of words in the target phrases in the
hypothesis,

• the total number of source/target phrase pairs compos-
ing the hypothesis,

3Koehn describes the translation model and the operation of
Pharaoh in terms of products of probabilities rather than sums of
log probabilities. Our choice is completely equivalent, since the
product of a set of probabilities is monotonically related to the
corresponding sum of log probabilities.



• a distortion penalty reflecting the degree of divergence
of the order of the target phrases from the order of the
source phrases.

The probabilities of source phrases given target phrases
and target phrases given source phrases are estimated from
a word-aligned bilingual corpus. The lexical scores are
computed as the log of the unnormalized probability of
the Viterbi alignment for a phrase pair under IBM word-
translation Model 1 (Brown et al., 1993). For each phrase
pair extracted from the word-aligned corpus, the values of
these four features are stored in a “phrase table”.

The target language model is a trigram model smoothed
with bigram and unigram language models, estimated from
the target language half of the bilingual training corpus.
The distortion penalty is computed as required by the
Pharaoh decoder, which we explain in Section 4. We train
the feature weights for the overall translation model to max-
imize the BLEU metric using Och’s (2003) minimum-error-
rate training procedure.

3. Description of Pharaoh
The Pharaoh decoder uses a beam search to try to find

the translation of an input source sentence that has the high-
est score according to the phrasal SMT model. It creates a
set of possible translations, building each target language
string from left to right. At each step, it extends a partial
translation hypothesis by picking a source phrase cover-
ing words that have not yet been translated in that partial
hypothesis, and a possible target language translation for
that phrase, and appending the target language phrase to
the incomplete target language string. The search through
the partial hypotheses proceeds in order of the number of
source words translated. All the partial hypotheses that
cover the same number of source words are compared to
each other, and this set is pruned before any members of
the set are extended. This core algorithm is presented in
Figure 1, taken from Koehn (2003; 2004a; 2004b).

There are at least two key features of Pharaoh that are
not revealed at the level of detail presented in Figure 1.
First, in addition to beam-search pruning, Pharaoh also per-
forms lossless pruning whenever multiple partial hypothe-
ses agree in

• the source words already translated

• the last two target words produced

• the position of the final word of last source phrase
translated

In this situation, any given hypothesis completion will in-
cur the same incremental cost starting from any of these
hypotheses; so, the best scoring member of a set of such
hypotheses cannot be surpassed by any other in the set.
Pharaoh keeps only the highest scoring such hypothesis in
the beam search, although the others are saved in case mul-
tiple translation hypotheses are desired.

The second key feature of Pharaoh not revealed in Fig-
ure 1 is how Pharaoh computes the partial hypothesis scores
used for pruning. The score that Pharaoh uses to compare

competing hypotheses consists of two components, an ex-
act score for the part of the translation that the hypothesis
is committed to, and an estimated score for the portion of
the source sentence remaining to be translated.

To compute the estimated scores, before starting to
translate a sentence Pharaoh finds the best possible esti-
mated phrase pair score for each source phrase in the phrase
table that matches some contigous subsequence of the input
source sentence. An estimated score for every contiguous
subsequence of the input is then computed by finding the
sequence of source phrases covering the input subsequence
with the highest sum of estimated scores. This is computed
in O(n2) time by dynamic programming.

The estimated score for each phrase pair is computed
as the sum of the feature values in the phrase table for that
phrase pair, along with the target word count and phrase
pair count, plus an approximate target language score for
the target phrase in the pair, all weighted by the correspond-
ing translation model weights. The target language model
score can only be approximated, because we don’t yet know
what the language model context will be if the phrase pair
in question is actually used to complete the translation of
the input source sentence. The approximate target language
model score therefore uses the unigram probabilty estimate
for the first word of the target phrase, the bigram probabil-
ity estimate for the second word of the target phrase, and
the full trigram probabililty estimate only for the third and
subsequent words of the target phrase.

4. Distortion Penalty Estimation
Our first improvement to the algorithm implemented

by Pharaoh is to incorporate an estimate of the distortion
penalty yet to be incurred into the estimated score for the
portion of the source sentence remaining to be translated.
Such an estimate is notably absent from the score used by
Pharaoh for pruning sets of competing partial hypotheses.

The value of the distortion penalty feature used by
Pharaoh is the sum of the distances between source phrases
whose target phrase translations are adjacent in the target
language string. Specifically, Koehn (2004a) defines the in-
cremental distortion penalty for each pair of adjacent target
phrases as:

d = abs( last word position of previously trans-
lated phrase + 1 - first word position of newly
translated phrase )

We can break this down into two simple cases using the
following defnitions:

• ∆d is the distortion penalty increment for a partial hy-
pothesis, relative to the immediate predecessor it was
formed from by adding a translation for the source
phraseS.

• S′ is the last source phrase translated in the immediate
predecessor,

• L(S) andL(S′) are the length in words ofS andS′,
respectively.

• D(S, S′) is the number of words betweenS andS′.



initialize hypothesisStack[0 .. nf];
create initial hypothesis hyp_init;
add to stack hypothesisStack[0];
for i=0 to nf-1:

for each hyp in hypothesisStack[i]:
for each new_hyp that can be derived from hyp:

nf[new_hyp] = number of foreign words covered by new_hyp;
add new_hyp to hypothesisStack[nf[new_hyp]];
prune hypothesisStack[nf[new_hyp]];

find best hypothesis best_hyp in hypothesisStack[nf];
output best path that leads to best_hyp;

Figure 1: Pharaoh beam search algorithm

In terms of these symbols, the two cases are:

• If S is to the right ofS′,

∆d = D(S, S′)

• If S is to the left ofS′,

∆d = D(S, S′) + L(S) + L(S′)

We estimate the distortion penalty yet to be incurred by
a partial hypothesis to be the minimum possible additional
distortion penalty, given the source words translated so far
and the final word position of the last source phrase trans-
lated. It is easy to prove by induction on the number of un-
translated words that, for any partial hypothesis, the mini-
mum additional distortion penalty is that produced by pick-
ing as the next source phrase to translate one that begins
with the left-most untranslated source word and proceeding
left-to-right covering all the remaining untranslated source
words in order.4

The computationally simplest way to take this mini-
mum possible additional distortion penalty into account is
just to fold it into the distortion penalty as we incremen-
tally accumulate it. To describe this modification, we use
the previous definitions, and we also defineS′′ to be the
longest fully-translated initial segement of the source sen-
tence prior to translatingS, andD(S, S′′) to be the number
of words betweenS andS′′. Note thatS′′ immediately pre-
cedes the left-most untranslated word. The computation of
the modified∆d can be broken down four cases:

• If S is adjacent toS′′,

∆d = 0

• Otherwise, ifS is to the left ofS′,

∆d = 2L(S)

• Otherwise, ifS′ is a subsequence ofS′′

∆d = 2(D(S, S′′) + L(S))

• Otherwise,

4The proof requires assuming that a distortion penalty incre-
ment is incurred if the last source phrase translated does not occur
at the end the source sentence. None of the written descriptions of
Pharaoh state whether this is the case.

∆d = 2(D(S, S′) + L(S))

This modified distortion penalty can be shown to have
the same value as that used in Pharaoh, over an entire, com-
pleted translation hypothesis,5 but it “front-loads” the accu-
mulation of the distortion penalty. For example, if we skip
over a single word towards the beginning of a source sen-
tence and then translate a number of phrases monotonically,
the distortion penalty as calculated by Pharaoh will be 1,
until we finally jump back to translate the skipped word.
Using our modified distortion penalty, as we translate more
and more words beyond the skipped word, we accumulate
a progressively larger distortion penalty, because we know
that we must eventually go back to translate the skipped
word.

5. Early Pruning
Our second modification of the Pharaoh algorithm ad-

dresses the sixth line in Figure 1, which says:

for each new hyp that can be
derived from hyp:

This means that (subject to static phrase table and distortion
limits discussed later) every possible translation of every
possible next phrase (not involving words already trans-
lated) will be considered as an extension to a given partial
hypothesis. No pruning of any possible extension is con-
sidered until an estimated score for the extension has been
computed as described in Section 3.

Recall that in order to have an estimated score for each
possible subsequence of the input source ready, we have
precomputed an estimated score for each possible phrase
translation that includes all aspects of the translation model,
except for the distortion penalty and a language model
score adjustment that replaces the unigram and bigram
scores for the first two words of the target phrase with their
full trigram scores. We can prune the search earlier than
Pharaoh does, in a way that lets us eliminate multiple pos-
sible next source phrases and multiple possible translations
for source phrases not eliminated, without even examining
them, provided we are willing to forgo having the pruning
take into account the language model score adjustment for
the last phrase translated in a given partial hypothesis.

5This requires making the same assumption about a sentence-
final distortion penalty noted eariler.



We introduce additional points at which the search is
pruned by comparing each partial hypothesis to its possible
extensions, and stopping the search for extensions when the
estimated score of the extensions (before making the lan-
guage model score adjustment) is worse than the estimated
score of the partial hypothesis we are extending by more
than a fixed early pruning threshold. We do this in addi-
tion to performing Pharaoh’s pruning step, which compares
all partial hypotheses that cover the same number of source
words using an estimated score that does include the lan-
guage model score adjustment.

Several observations help us organize the search
through possible extensions to a given partial hypothesis.
First, for any given starting point for the next phrase to
be translated, a phrase of length 1 will produce the min-
imum additional distortion penalty. Second, the minimum
additional distortion penalty given a starting point never de-
creases as we move the starting point from left to right.
Third, for any given starting point, the additional distor-
tion penalty never decreases as we increase the length of
the source phrase to be translated.

With these facts in mind, we search from left to right
through the possible starting positions for the next source
phrase to translate. For each position, we compute the
minimum additional distortion penalty for a source phrase
starting at that position. If we find a possible starting po-
sition such that the minimum additional distortion penalty
(weighted by the corresponding translation model weight)
is greater than our early pruning threshold, we stop looking
for possible next source phrases to translate, because all the
ones that we have not considered will also have additional
distortion penalties greater than the threshold.

For each possible starting position that passes this test,
we search through possible ending positions from left to
right. If we find a possible ending position such that the
weighted additional distortion penalty for the phrase span-
ning the starting and ending positions is greater than the
threshold, we stop looking for possible ending positions
for that starting position, because all the ones that we have
not considered will also have weighted additional distortion
penalties greater than the threshold.

Each starting and ending position pair that passes this
test defines a possible next source phrase to translate. For
each such source phrase that has entries in the phrase table,
we search through its possible translations, from best scor-
ing to worst scoring, having sorted the phrase table in this
way offline. For each translation, we compute the estimated
score of the resulting partial hypothesis, taking into account
everything except the language model score adjustment. If
the difference between this estimated score and that of the
hypothesis we are extending is greater than the early prun-
ing threshold, we stop looking at possible translations for
this source phrase, because all the translations that we have
not considered will also yield estimated score differences
greater than the threshold.

6. Evaluation
We have carried out experiments evaluating three dif-

ferent algorithms: the original Pharaoh algorithm, the
Pharaoh algorithm plus distortion penalty estimation, and

the Pharaoh algorithm plus distortion penalty estimation
and early pruning.6 In order to measure the effects of our
modifications to the Pharaoh algorithm as accurately as
possible, we have reimplemented the algorithm described
by Koehn in such a way that the three systems are identical
except for the algorithmic differences under evaluation.

We have implemented all three algorithms in Perl,
which is a byte-code interpreted language, so the absolute
time measurements are slower that what would be expected
from implementations that compile to native machine code.
The relative timings should still be indicative of the relative
efficiency of the algorithms, however. Moreover, we also
report a measure of the search space explored that should
be independent of other implementation details: the num-
ber of partial hypotheses evaluated per source word.

Since decoding effort depends on several pruning para-
meters, a fair evaluation of the Pharaoh algorithm and its
variants requires testing many combinations of settings for
these parameters. There are four main pruning parameters:

• T-table threshold: the maximum difference in esti-
mated score between the best translation and the worst
translation in the phrase table for a given source phrase

• Beam threshold: the maximum difference in esti-
mated score between the best partial hypothesis and
the worst partial hypothesis retained for a given num-
ber of source words covered

• T-table limit: the maximum number of translations in
the phrase table for a given source phrase

• Beam limit: the maximum number of partial hypothe-
ses retained for a given number of source words cov-
ered

Below, when we discuss particular vectors of pruning pa-
rameter settings, we will give them in the order above. In
Koehn’s implemetation of Pharaoh, the two threshold para-
meters are expresssed as ratios of probabilities. Our thresh-
old parameters have exactly the same effect, but at different
specific settings.

A fifth parameter that can be viewed as a pruning para-
meter is the distortion limit, which restricts the maximum
distortion increment permitted between source phrases
whose translations are adjacent in the output target sen-
tence. We prefer to view this as a model parameter, how-
ever, because setting it to an optimum value usually im-
proves translation quality over leaving it unrestricted. For
all the experiments reported here, we set the distortion limit
to 5. This seems to be within the range of typical settings
for using Pharaoh, and it also appeared in informal experi-
mentation that for settings greater than 5, translation quality
started to decline markedly given our data and models.

6Without distortion penalty estimation, early pruning can lead
to failure to find a translation, because it is possible for all exten-
sions to fail the early pruning test for all partial hypotheses within
the beam. This cannot happen if our distortion penalty estimate
is used, because in that case, at least one extension of each par-
tial hypothesis will have an estimated score (without the language
model score adjustment) identical to the estimated score of the
hypothesis it extends.



The exact version of distortion limit we implemented
allows one more word in the backward direction than the
forward direction (otherwise a distortion limit of 1 would
allow no distortion at all, since the minimum cost of a
backwards jump is 2), and we also disallowed configu-
rations where jumping back to the left-most untranslated
word would violate the distortion limit.7 For all three al-
gorithms tested, we used Koehn’s definition of distortion
for applying the distortion limit, even when the modified
version was used in the beam search.

For the decoder with early pruning, the early pruning
threshold might also be treated as an independent parame-
ter. However, there is a close connection between the early
pruning threshold and the T-table threshold. If the T-table
threshold is increased beyond the early pruning threshold,
none of the additional phrase table entries will ever survive
early pruning. We therefore always used the same setting
for the T-table and early pruning thresholds.

We performed a hill-climbing search for combinations
of settings of the four pruning parameters that produce good
trade-offs of decoding time vs. BLEU score. We tried five
different settings for each of the pruning paramenters; 0.5,
1.0, 1.5, 2.0, and 2.5 for the threshold parameters, and 5,
10, 15, 20, and 25 for the limit paramters. For the modified
algorithms, this appeared to be a sufficient range to find the
operating points that produced the highest BLEU score, but
the baseline Pharaoh algorithm seemed to require a greater
beam limit to avoid losing translation quality. So, we also
tested beam limits of 30, 35, 40, 45, 50, 60, 75, and 100
with the baseline system, with the other parameters set to
selected combinations of settings that produce good time-
quality tradeoffs at lower beam limits.

Our training and test data came from an English-French
bilingual corpus of Canadian Hansards parliamentary pro-
ceedings supplied for the bilingual word alignment work-
shop held at HLT-NAACL 2003 (Mihalcea & Pedersen,
2003). Automatic sentence alignment of this data was pro-
vided by Ulrich Germann. We used 500,000 sentences pairs
from this corpus for training both the phrase translation
models and IBM Model 1 lexical scores. This training data
was word-aligned using a state-of-the-art word-alignment
method (Moore et al., 2006), and all pairs of phrases up to
7 words in length were extracted and their translation prob-
abilities estimated using the method described by Koehn et
al. (2003). A separate set of 500 sentence pairs was used to
train the translation model weights, and an additional 2000
sentence pairs were used for test data.

For each combination of pruning parameter settings
tested, we measured the time required for decoding in mil-
liseconds per word, the size of the search space in partial
hypotheses evaluated per word, and the BLEU score of the
resulting translations on a scale of 0–100 (BLEU[%]). The
scatter plots in Figures 2 and 3 display BLEU score vs. de-
coding time, and BLEU score vs. search space.

Since the scatter plots for the three algorithms overlap
somewhat, we have highlighted the limits of each algorithm
as defined by the upper convex hull of points for that algo-

7We believe this is more-or-less how the distortion limit works
in Koehn’s implementation of Phraraoh, but the published descrip-
tions do not go into these details.

rithm. This picks out what are arguably the best points in
terms of the trade off between decoding effort and trans-
lation quality as measured by our metrics. Note that the
horizontal axes are presented logarithmically to make the
differences in decoding effort clear at all scales.

From Figures 2 and 3, we see that all three algorithms
eventually produce the same highest value for the BLEU

score (30.22 BLEU[%]), but the algorithm that employs dis-
tortion penalty estimation does so with much less decoding
effort than the baseline algorithm, and the algorithm that
uses both distortion penalty estimation and early pruning
requires even less decoding effort. This is true whether de-
coding effort is measured in terms of time or search space.
Indeed, for each of the three algorithms, the correlation
between the decoding time and the number of partial hy-
potheses evaluated is greater than 0.99. The pruning para-
meter vectors that produced the highest BLEU score were
(1.5, 1.0, 20, 10) for both of the modified algorithms, and
(1.5, 1.0, 20, 75) for the Pharaoh baseline algorithm.

Comparing the decoding times needed to obtain the
highest BLEU score, the Pharaoh algorithm takes 106.0 mil-
liseconds per word, adding distortion penalty estimation
brings this down to 34.2 milliseconds per word, and adding
early pruning to that reduces the time to 9.02 milliseconds
per word. If we are willing to accept a score 0.02 BLEU[%]
lower (30.20), the Pharaoh algorithm takes 38.6 millisec-
onds per word, adding distortion penalty estimation yields a
time of 14.7 milliseconds per word, and adding early prun-
ing yields 3.59 milliseconds per word.

The ratio of decoding times for the Pharaoh algorithm
compared to that for the best system is 11.8 to 1 to reach the
highest BLEU score, and 10.8 to 1 to reach a score of 30.20
BLEU[%]. The ratios of search space for the Pharaoh al-
gorithm compared to that for the best system are even more
dramatic. The ratio to reach the highest BLEU score is 18.4,
and the ratio to reach a score of 30.20 BLEU[%] is 20.5.

We can cast some light on where the speed-ups are com-
ing from by comparing the algorithms at the same pruning
settings, looking at differences in BLEU score and decod-
ing time ratios. Comparing the original Pharaoh algorithm
to the Pharaoh algorithm plus distortion penalty estimation,
up to a beam limit of 25, the decoding time ratio for the
same pruning settings ranged from 0.88 to 1.19 — very lit-
tle difference. However, the difference in BLEU score when
distortion penalty estimation was used ranged from+0.17
BLEU[%] to +0.68 BLEU[%]. Thus the speed-up from dis-
tortion penalty estimation came from being able to obtain
a given BLEU score at much tighter pruning settings than
were necessary with the baseline alogorithm, rather than
speeding up decoding at a given combination of pruning
settings.

Comparing distortion penalty estimation to distortion
penalty estimation plus early pruning, the difference in
BLEU score at the same pruning settings ranged only from
−0.024 BLEU[%] to +0.016 BLEU[%]. The decoding time
ratio, however, ranged from 1.37 to 6.36 times faster for the
decoder with early pruning. Thus early pruning makes al-
most no difference in BLEU score at a given combination
of pruning settings, but it makes decoding up to six times
faster.
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7. Conclusions
We have demonstrated two fairly simple modifications

to the Pharaoh decoding algorithm that result in decod-
ing speed-ups of more than an order of magnitude. The
decoding speed of 3.59 milliseconds per word produced
by accepting a score lower than the best obtainable by
just 0.02 BLEU[%] is equivalent to translating more than
16,700 words per minute. Since this was obtained using
an implementation in Perl, there seems little doubt that we
could easily obtain translation speeds comparable to those
of commercial RBMT systems, simply by coding the algo-
rithm in a language that compiles to native machine code.
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