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Abstract
We introduce a novel approach to the task of lexical translation. We utilize the translation graph, a massive

lexical resource where each node denotes a word in some language and each edge denotes a word sense shared
by a pair of words. Our current graph contains 1,267,460 nodes and 2,315,783 edges. The graph is automatically
constructed from machine-readable dictionaries and Wiktionaries. Paths through the graph suggest word transla-
tions absent from any of the input dictionaries. We define a probabilistic inference procedure that enables us to
quantify our confidence in a translation derived from the graph, and thus trade precision against recall.

We demonstrate the graph’s utility by employing it in the PANIMAGES cross-lingual image search engine.
Google retrieves images based on the words in their “vicinity”, which limits the ability of a searcher to retrieve
them. Although images are universal, an English searcher will fail to find images tagged in Chinese, and con-
versely. PANIMAGES addresses this problem by translating and disambiguating queries, using the translation
graph, before sending them to Google. Our experiments show that, for queries in “minor” languages, PANIM-
AGES increases the number of correct images in the first 15 pages of results by 75%.

1 Introduction
Lexical translation is the task of translating individual
words or phrases, either on their own (e.g., search-engine
queries or meta-data tags) or as part of a knowledge-based
Machine Translation (MT) system. In contrast with statisti-
cal MT, lexical translation does not require aligned corpora
as input. Because large aligned corpora are non-existent
for many language pairs, and are very expensive to gener-
ate, lexical translation is possible for a much broader set of
languages than statistical MT.

While lexical translation has a long history (cf. (Helm-
reich et al., 1993; Copestake et al., 1994; Hull and Grefen-
stette, 1996)), interest in it peaked in the 1990’s. Yet, as this
paper shows, the proliferation of Machine-Readable Dictio-
naries (MRDs) and the rapid growth of multi-lingual Wik-
tionaries offers the opportunity to scale lexical translation
to an unprecedented number of languages. Moreover, the
increasing international adoption of the Web yields oppor-
tunities for new applications of lexical translation systems.

This paper presents a novel approach to lexical trans-
lation based on the translation graph. A node in the
graph represents a word in a particular language, and
an edge denotes a word sense shared between words
in a pair of languages. Our TRANSGRAPH system
automatically constructs a graph from a collection of
independently-authored, machine-readable bilingual dic-
tionaries and multi-lingual Wiktionaries as described in
Section 2. Figure 1 shows an example translation graph.

When all the edges along a path in the translation graph
share the same word sense, then the path denotes a correct
translation between its end points. When word senses come
from distinct dictionaries, however, we are uncertain about
whether the senses are the same or not. Thus, we define an
inference procedure that computes the probability that two

edges denote the same word sense and use this probabil-
ity, coupled with the structure of the graph, to compute the
probability that a path denotes a correct translation.

Before we consider lexical translation in more detail, we
need to ask: is lexical translation of any practical utility?
While it does not solve the full machine-translation prob-
lem, lexical translation is valuable for a number of practical
tasks including the translation of search queries, meta-tags,
and individual words or phrases. For example, Google and
other companies have fielded WordTranslator tools that al-
low the reader of a Web page to view the translation of par-
ticular word, which is helpful if you are, say, a Japanese
speaker reading an English text and you come across an
unfamiliar word.

In the case of image search, the utility of lexical transla-
tion is even more readily apparent. Google retrieves images
based on the words in their “vicinity”, which limits the abil-
ity of a searcher to retrieve them. Although images are uni-
versal, an English searcher will fail to find images tagged
in Chinese, and a Dutch searcher will fail to find images
tagged in English. To address this problem, we built the
PANIMAGES cross-lingual image search engine.1 PANIM-
AGES enables searchers to translate and disambiguate their
queries before sending them to Google. PANIMAGES uti-
lizes the translation graph; thus it also enables us to evalu-
ate the quality of translations inferred from the graph in the
context of a practical application.

The key contributions of the paper are as follows:

• We introduce the translation graph, a unique,
automatically-constructed lexical resource, which cur-
rently consists of over 1.2 million words with over 2.3
million edges indicating possible translations.

1cs.washington.edu/research/panimages



• We formalize the problem of lexical translation as
probabilistic inference over the translation graph and
quantify the gain of inference over merely looking up
translations in the source dictionaries.

• We identify a set of challenges in searching the
Web for images, and introduce PANIMAGES, a cross-
lingual image search application that is deployed on
the Web to address these challenges.

• We report on experiments that show how PANIMAGES
substantially increases image precision and recall for
queries in “minor” languages, thereby demonstrating
the utility of PANIMAGES and the translation graph.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the translation graph. Section 3 describes
PANIMAGES, our cross-lingual image search application.
Section 4 reports statistics on the translation graph and eval-
uates the utility of the graph by reporting on the precision
and recall of the PANIMAGES application. Section 5 dis-
cusses related work, followed by conclusions and future
work in Section 6.

2 The Translation Graph
This paper introduces a novel lexical resource, which we
call the translation graph. This section describes how the
TRANSGRAPH system constructs a graph from multiple
dictionaries, and uses paths in the graph to infer lexical
translations.

Each node n in the graph is an ordered pair (w, l) where
w is a word in a language l. An edge in the graph between
(w1, l1) and (w2, l2) represents the belief that w2 is a trans-
lation into l2 of a particular sense of the word w1. The edge
is labeled by an integer denoting an ID for that word sense.
Paths through the graph represent correct translations so
long as all the edges on the path share a single word sense,
and thus enable TRANSGRAPH to identify translations that
are absent from any of its source dictionaries.

Figure 1 shows a portion of a translation graph for two
senses of ‘spring’ in English. The graph also shows two
corresponding French words ‘printemps’ (spring season)
and ‘ressort’ (flexible spring).

TRANSGRAPH builds the translation graph incremen-
tally on the basis of entries from multiple, independent dic-
tionaries, as described in detail in Section 2.1. As edges are
added on the basis of entries from a new dictionary, some
of the new word sense IDs are redundant because they are
equivalent to word senses already in the graph from another
dictionary. For example, TRANSGRAPH assigns one word
sense ID to the seasonal sense of ‘spring’ from an English
dictionary, a new word sense ID to the French dictionary
entry for ‘printemps’, and so forth (see labels ‘1’ and ‘3’ in
Figure 1). We refer to this phenomenon as sense inflation.

Sense inflation would severely limit the utility of the
translation graph, so we have developed a mechanism for
identifying duplicate word senses automatically. TRANS-
GRAPH computes the probability prob(si = sj) that a pair
of distinct IDs si and sj refer to the same word sense (see
Section 2.1 for the details). Thus, TRANSGRAPH deter-
mines that word sense ID ‘3’ on edges from ‘printemps’
has a high probability of being equivalent to ID ‘1’.

The following section discusses building the graph, fo-
cusing on the algorithm for merging word senses originat-
ing from different dictionaries.

Figure 1: A fragment of a translation graph for two senses
of the English word ‘spring’. Edges with the label ‘1’ or
‘3’ are for spring in the sense of a season; edges labeled
‘2’ or ‘4’ are for the flexible coil sense. This graph shows
translation entries from an English dictionary merged with
translation entries from a French dictionary.

2.1 Building the Translation Graph
TRANSGRAPH builds the translation graph from online
dictionaries and Wiktionaries of two kinds: bilingual dic-
tionaries that translate words from one language to an-
other, and multilingual dictionaries that translate words in a
source language to multiple target languages. Some dictio-
naries provide separate translations for each distinct word
sense, which is particularly helpful for our purposes, but
others do not.

As TRANSGRAPH adds to the graph from each new en-
try in a dictionary, it assigns a new, unique word sense ID
for each word sense in that entry. Thus, edges for trans-
lations of the season ‘spring’ from the English dictionary
have one word sense ID, edges for translations of the flex-
ible coil ‘spring’ have a different word sense ID, and so
forth. When the translation in the entry is not word-sense
distinguished, TRANSGRAPH makes the conservative as-
sumption that each translation is in a distinct word sense.
Section 2.2 explains how we recover from word sense in-
flation caused by this assumption and from integrating mul-
tiple dictionaries.

We implement the translation graph as a relational
database. Each row in the Translation table represents an
edge in the graph, while each row in the Word sense equiv-
alence table represents the probability, prob(si = sj), that
two word sense IDs si and sj are equivalent.

2.2 Word-Sense Equivalence
As pointed out earlier, accumulating entries from multiple
dictionaries results in sense inflation. Below, we explain
how TRANSGRAPH addresses this problem by computing
word-sense equivalence probabilities of the form prob(si =
sj).

Figures 2 and 3 give a schematic illustration of how
TRANSGRAPH accumulates entries from multiple dictio-
naries. Figure 2 shows graph edges from an entry for
the word E from an English dictionary that gives transla-
tions into French, German, Hungarian, Polish, and Span-
ish. TRANSGRAPH assigns the word sense ID 1 for these
edges. This figure also shows edges from an entry for word



Figure 2: Schematic diagram of edges from an entry for the
word E from an English dictionary and edges from an entry
for the word R from a Russian dictionary.

R from a Russian dictionary, which in this case has transla-
tions into German, Hungarian, Latvian, and Polish. These
edges are assigned word sense ID 2.

Figure 3 shows the situation after both sets of edges have
been added to the translation graph. There are 6 nodes with
edges labeled with word sense ID 1, { E, F, G, H, P, S }; 5
nodes with edges labeled 2, { G, H, L, P, R }; and an inter-
section of these sets comprising 3 nodes, {G, H, P}. The
three nodes in the intersection have two incident edges with
distinct sense IDs 1 and 2. The proportion of intersecting
nodes provides evidence that these IDs refer to the same
word sense.

Figure 3: After the entries from Figure 2 have both been
added to the graph, the set of nodes with word sense ID
1 overlaps with the set of nodes for word sense ID 2. The
proportion of overlapping nodes gives evidence that the two
word senses may be equivalent.

TRANSGRAPH determines the probability that two word
sense IDs si and sj are equivalent as follows:

• A word sense is equivalent to itself: prob(s = s) = 1.

• If si and sj are alternate word senses from the same
entry in a sense-distinguished dictionary, then they are
assumed to be distinct: prob(si = sj) = 0.

• If word senses si and sj have at least k intersecting
nodes, then set the probability by equation 1 below.

• In all other cases, the probability is undefined.

TRANSGRAPH estimates the probability that si and sj

are equivalent word senses by the following equation.

If |nodes(si) ∩ nodes(sj)| ≥ k, then:

prob(si = sj) =

max(
|nodes(si) ∩ nodes(sj)|

|nodes(si)|
,
|nodes(si) ∩ nodes(sj)|

|nodes(sj)|
)

(1)
where nodes(s) is the set of nodes that have edges labeled
by word sense ID s, and k is a sense intersection threshold.

As an example of computing the probability of word
sense equivalence, our translation graph has 56 translations
for the season sense of ‘spring’ from an English dictionary,
and 12 translations for ‘printemps’ from a French dictio-
nary. 8 of these translations overlap, giving a probability of
8
12 = 0.67 that the two senses are equivalent.

2.3 Computing Translation Probabilities
Given the translation graph coupled with the word sense
equivalence probabilities, TRANSGRAPH can compute the
probability that a particular word is a translation of another
word in a given word sense. First, we show how to compute
the probability of a single translation path. Then, we show
how we combine evidence across multiple paths.

Consider a single path P that connects node n1 to nk,
where ni is the word wi in language li and the ith edge has
word sense si. Let pathProb(n1, nk, s, P ) be the probabil-
ity that (w1, l1) is a correct translation of (wk, lk) in word
sense s, given a path P connecting these nodes.

The simple case is where the path is of length 1. If s
is the same sense ID as s1, then the probability is simply
1.0; otherwise it is the probability that the two senses are
equivalent:

pathProb(n1, n2, s, P ) = prob(s = s1) (2)

Where the path P has more than one edge, the path prob-
ability is reduced by prob(si = si+1) whenever the word
sense ID changes along the path. We make the simplifying
assumption that sense-equivalence probabilities are mutu-
ally independent. Formally, this gives the term∏

i=1...|P |−1 prob(si = si+1).

If the desired sense s is not found on the path, we also
need to factor in the probability that s is equivalent to at
least one sense si on the path, which we approximate by
the maximum of prob(s = si) over all si. Formally, this
gives the term

maxi=1...|P |(prob(s = si)),

which is equal to 1.0 if s is found on path P.

Putting these two terms together, we have the following
formula for simple paths of length greater than one (i.e.,
|P | > 1):

pathProb(n1, nk, s, P ) =

max
i=1...|P |

(prob(s = si))×
∏

i=1...|P |−1

prob(si = si+1) (3)

Note that we disallow paths that contain non-consecutive
repetition of sense IDs (e.g.1, 2, 1).

There are typically multiple paths from one node to an-
other in the translation graph. The simplest way to compute
prob(n1, nk, s) is to take the maximum probability of any
path between n1 and nk.

prob(n1, nk, s) = max
P∈paths

(pathProb(n1, nk, s, P )) (4)



We also experimented with another method that gives
higher probability if there are multiple, distinct paths be-
tween words. We define two paths from n1 to nk to be
distinct if there is a distinct sequence of unique word sense
IDs on each path.

We use the standard Noisy-Or model to combine evi-
dence. The basic intuition is that translation is correct un-
less every one of the translation paths fails to maintain the
desired sense s. We multiply the probability of failure for
each path. We then subtract that probability from one to get
the probability of correct translation. The probability that
n1 is a correct translation of nk in word sense s is:

prob(n1, nk, s) = 1−
∏

P∈distinctP

(1−pathProb(n1, nk, s, P ))

(5)
where distinctP is the set of distinct paths from n1 to nk.

We found that our current implementation of the Noisy-
Or model tends to give inflated probability estimates, so
we use the maximum path probability in experiments re-
ported here. Defining distinct paths as those with distinct
sense IDs in not sufficient to ensure that paths are based
on independent evidence. We are exploring better methods
for determining independent paths, and more sophisticated
probability models to combine evidence.

2.4 Confidence in Dictionary Entries
Our methods for computing translation probabilities have,
thus far, made a strong assumption. We assume that each
word sense ID comes from a sense-distinguished dictionary
entry. This means that nodes(si), the set of nodes with
edges to sense si, are mutual translations of each other in
the same sense.

We found that many of the errors in computing
pathProb(n1, nk, s, P ) are from cases where this assump-
tion is violated by some word sense ID along the path. If all
words in the set nodes(si) do not share the same sense, any
path that passes through sense si may result in translation
errors.

These “impure” word sense IDs may arise either from
errors in a dictionary or from errors parsing the dictionary.
As an example, the French Wiktionary has an entry for the
word ‘boule’ with English translations as ‘ball’, ‘boule’,
‘bowl’, ‘chunk’, ‘clod’, and ‘lump’. These are all good
translations of ‘boule’, but clearly not all in the same sense.
An example of a parsing error is the truncation of trans-
lation phrases in some dictionary entries, causing bizarre
translations.

To compensate for these impure sense IDs, we have be-
gun experimenting with methods to compute prob(si), the
probability that all words in nodes(si) share a common
word sense. This adds the term prob(s1) to Equations 2 and
3, and adjusts Equation 3 to include prob(si+1) for each
new sense si+1 along the path.

The a priori probability for prob(si) is set according to
a global confidence in the dictionary. If the dictionary has
a high ratio of word senses per entry, the assumption is that
the dictionary entries distinguish word senses, and the de-
fault prob(si) is set to 1.0.

The existence of multiple, possibly non-synonymous
translations into the same language lowers our confidence
that a dictionary entry is pure. While it is possible to find
evidence that two words are synonyms, determining that
they are non-synonymous is more difficult. We found that

even English WordNet is not a strong source of evidence
for non-synonymy. Of the cases where nodes(si) includes
two English translations that are not WordNet synonyms,
they were actually synonymous about half the time. Our
preliminary experiments indicate that even crude estima-
tion of prob(si) can improve the precision of translation
graph traversal. The results shown in Section 4 include a
early attempt to estimate prob(si).

2.5 Bilingual Dictionaries
The method for computing word-sense equivalence dis-
cussed in 2.2 relies on having multiple translations for each
word sense. Unfortunately, we do not always have this lux-
ury. In response, we have identified cliques in the graph as
an additional structure that helps to combat sense inflation.

Consider, for example, the simple clique shown in Fig-
ure 4. The figure shows a 3-node clique where each of
the edges was derived from a distinct dictionary, and hence
has a distinct word sense ID. The edge from (spring, En-
glish) to (printemps, French) is labeled ‘1’ and comes from
an entry for the season of spring from the English Wik-
tionary. The edge ‘2’ from (xuân, Vietnamese) to (spring,
English) is from a Vietnamese-English dictionary that does
not specify which sense of spring is intended. The edge
‘3’ from (xuân, Vietnamese) to (printemps, French) is from
a Vietnamese-French dictionary, again without any indica-
tion of word sense.

It has long been known that this kind of triangulation
gives a high probability that all three words share a com-
mon word sense (Gollins and Sanderson, 2001). We em-
pirically estimated the probability that all three word sense
IDs of a 3-node clique are equivalent to be approximately
0.80 in our current translation graph. The TRANSGRAPH
compiler finds all cliques in the graph of size 3 where two
word senses are from bilingual dictionaries. It then adds an
entry to the word sense equivalence table with probability
0.80 for each pair of sense IDs in the clique. We plan to in-
vestigate longer cliques and evidence from other elements
of graph structure.

Figure 4: TRANSGRAPH infers that word senses are equiv-
alent with high probability when nodes form a 3-node
clique in the graph. In this example the Vietnamese word
‘xuân’ is translated to English ‘spring’ and French ‘print-
emps’ in the season sense of spring.

3 Image Search with PanImages
We now turn to a discussion of the application of the trans-
lation graph to cross-lingual image search.

The Web has emerged as a rich source of images that
serve a wide range of purposes from children adorning their
homework with pictures to anthropologists studying cul-
tural nuances. Most people find images on the Web by
querying an image search engine such as Google’s.

Google collects images as part of its crawl of the Web
and tags them with the words that appear in their vicinity



on the crawled HTML documents and links. It is not sur-
prising that most of the tags are in “major” languages such
as English. So while images are universal, most of them
can be found through Google only if you can query in the
“right” language.

More broadly, monolingual image search engines face
the following challenges:

• Limited Resource Languages - The lower the Web
presence of a language, the fewer hits a speaker of that
language gets from a query. A query for ‘grenivka’
(Slovenian for ‘grapefruit’) produces only 24 results,
of which only 9 are images of grapefruits. Yet translat-
ing the query into English produces tens of thousands
of images with high precision.

• Cross-Cultural Images - Results of an image search
may vary considerably depending on the language of
the query term. Translating the query ‘baby’ or ‘food’
into Chinese, Arabic, or Zulu allows an interesting cul-
tural comparison.

• Cross-Lingual Masking - A word in one language is
often a homonym for an unrelated word in another lan-
guage. Relevant results can be swamped by results
for the unrelated word. The Hungarian word for tooth
happens to be ‘fog’; the only way to get images of
teeth rather than misty weather is to query with a trans-
lation that doesn’t suffer from cross-lingual masking.

• Word Sense Ambiguity - Searching for an image that
corresponds to a minor sense of a word is problem-
atic. Most results for the query ‘spring’ are images of
flowers and trees in bloom. If a user wants images of
flexible coils or of bubbling fountains, the most effec-
tive queries are translations of this sense of ‘spring’
into languages where that word is not ambiguous.

PANIMAGES, a cross-lingual image-search application
deployed on the Web, enables a monolingual user to se-
lect from any of 50 input languages, automatically looks
up word-sense specific translations into more than 100 lan-
guages, and lets the user control which translations are sent
to an image search engine. At compile time, PANIMAGES
merges information from multiple Wiktionaries and open-
source dictionaries into a translation graph as described in
Section 2. At run time, PANIMAGES accepts a query from
a user, presents the user with possible translations found in
the translation graph, then sends the translations selected
by the user to Google’s image search as described below.

This section describes the implementation and inter-
face of our PANIMAGES system for cross-lingual im-
age search, accessible at www.cs.washington.edu/
research/panimages. Figure 5 shows the system ar-
chitecture.

3.1 Interface Design
The PANIMAGES graphical user interface allows a user to
enter a search query in any of n source languages (n = 50
currently). PANIMAGES presents translations of the query
term, presenting multiple sets of translations if the graph
has multiple senses of the term. The user selects one or
more translations, and PANIMAGES sends this as a query to
Google Images.

Finding Translations:
PANIMAGES looks up the node (wi, li) in the translation
graph that corresponds to the query word and language,
then follows edges in the graph to create one or more sets

Figure 5: Architecture: The PANIMAGES compiler creates
a translation graph from multiple dictionaries. The query
processor takes a user query and presents a set of trans-
lations. The user selects the desired translation(s), which
PANIMAGES sends to Google Image Search.

of nodes (wj , lj) where wj is a translation into lj for a
particular sense of wi. For each word sense, PANIMAGES
follows paths of length up to k in which the probability that
the word sense has not changed according to Equation 4 is
above a threshold τ . In our experiments we set k to 3 and τ
to 0.2.

In the example in Figure 1 for the English word ‘spring’,
translations in sense 1 include nodes reachable from sense 1
and nodes reachable from (printemps, French) along edges
for sense 3. Beginning from ‘spring’ with sense 3 and con-
tinuing on paths for sense 1 or 3 produces an identical set
of translations that TRANSGRAPH later merges with trans-
lations for sense 1.

Presenting Translations to the User:
PANIMAGES presents these sets of translations and allows
the user to select one or more translation to be sent to
Google Images. As a practical consideration, PANIMAGES
defaults to selecting translations in a language with high
Web presence: an English translation for all source lan-
guages but English, and a French translation for English
queries. The user may add or remove any of the translation-
language pairs to the query before clicking on Show Im-
ages. Another option is to click on a single translation to
immediately send that translation as a query to Google’s
image search.

Handling Word Senses:
PANIMAGES lists each distinct word sense along with a
gloss if available and the number of translations for this
word sense. The user can click on a word sense to see the
list of translations for that sense. PANIMAGES presents the
word sense with the largest number of translations first, and
selects this as the default word sense.

4 Experimental Results
This section presents statistics on our current, automatically
constructed translation graph; reports on an evaluation of
translation inferences over the graph; and reports on recall
and precision results from a sample of image search queries
over this translation graph.

4.1 Graph Statistics
The translation graph is composed of 1,267,460 words in
more than 100 languages. 3 of the languages have over



100,000 words and 58 of the languages have at least 1,000
words. The words were extracted from 3 multilingual dic-
tionaries (English and French Wiktionaries, and an Es-
peranto dictionary) and 14 bilingual dictionaries, giving a
total of 2,315,783 direct translations or edges in the graph.
Further translations can be found from graph paths with
length greater than one edge.

Building a translation graph from a combination of these
dictionaries provides more translations than any of these
dictionaries alone. The English Wiktionary had translations
for 19,500 words – after adding the other dictionaries, the
graph has translations for over 255,000 English words and
phrases, the bulk of them from bilingual dictionaries. Sim-
ilarly, coverage of French went from 12,700 words in the
French Wiktionary to 32,800 in the graph.

4.2 Evaluating Inferred Translations
We evaluated the precision and recall gain from inference
using Equations 1 through 4 as follows. We took a ran-
dom set of 1,000 English words and found Hebrew or Rus-
sian translations using the translation graph. We also took
a random set of 1,000 Turkish words and found Russian
translations.2 The set of random words was not weighted
by word frequency, thus they contained many relatively ob-
scure words (e.g., abashment, abjectly, Acrididae, ‘add up’)
for which no translation was found in the target language.

The baseline is the number of words in the source lan-
guage that can be translated using only direct edges in the
graph. We then added inferred translations that can be made
from a single application of the word sense equivalence
equation (Equation 1) with k set to 2 at a probability thresh-
old of 0.2. Finally, we found all inferred translations using
Equations 1 - 4 and using graph paths from all 17 source
dictionaries with path length up to 3 word sense IDs at a
probability threshold of 0.2.

Figures 6 through 8 compare the number of words trans-
lated and the proportion of correct translations. The total
height of each bar represents the number of source lan-
guage words that have at least one translation. We measure
precision as the number of correct translation pairs divided
by the number of translation pairs that the system outputs.
Note that precision is computed over all translations for a
given word, some of which may be correct and others may
be erroneous.

Figure 6: A comparison of direct vs. inferred translations
from English to Russian. Inference from graph traversal
boosted the number of translated words by 33% with a
modest drop in precision.

2We chose these language pairs because we were able to find
bilingual speakers who would evaluate the results for us.

The language pair English-Russian is an interesting test
of the translation graph, because we had neither a bilingual
nor a multilingual Russian dictionary. The only edges to
Russian words came from one of the multilingual dictio-
naries. The baseline accuracy of the source dictionaries is
91%. Adding inferences from Equation 1 gave an 8% in-
crease in translated words with a drop in precision to 82%.
There was a greater gain from combining all translation
paths in the graph – 33% more translated words than the
baseline with negligible further drop in precision.

Figure 7: Graph traversal increased the number of transla-
tions from English to Hebrew by 80%, again with a modest
drop in precision.

Like Russian, there are no bilingual dictionaries for He-
brew and no Hebrew multilingual dictionary. Inference
based on Equation 1 boosts translated words by 43% and
using all translation paths gives a gain of 80% over the base-
line. The baseline precision drops from 93% to 79%.

Figure 8: Translation from Turkish to Russian benefited
from interaction between several bilingual dictionaries, re-
sulting in 3.15 times as many translated words as the base-
line.

Translations from Turkish to Russian showed a large gain
from inferences based on bilingual dictionaries. While di-
rect edges came only from the three multilingual dictio-
naries, there were also three bilingual dictionaries between
Turkish and English, German, or Kurdish. In turn, these
dictionaries interacted with other bilingual dictionaries for
English, German, and Kurdish. Inference from all paths
resulted in a three-fold increase in translated words, while
maintaining high precision (80%).

In summary, we see that inference over the translation
graph yields a tradeoff between translation coverage and
precision. We can control the tradeoff using the proba-
bility threshold—lowering the threshold increases coverage



but reduces precision. In the Web image retrieval context,
where precision is already far-from-perfect, the tradeoff
seems like a good one, particularly for the numerous “mi-
nor” languages where few images are returned in response
to many queries.3 Finally, we anticipate that as we add dic-
tionaries to TRANSGRAPH, and as Wiktionaries grow in
size, both coverage and precision will increase in tandem.

4.3 Image Retrieval Performance
We also evaluated coverage and precision of PANIMAGES
image search for non-English queries, comparing the re-
sults of sending the non-English query directly to Google
Image search with the results of sending the default PAN-
IMAGES translation instead. We chose a limited test set of
languages and words to limit the manual tagging effort nec-
essary for the experiment.

To generate our test set of words, we selected 10 arbi-
trary concepts that are associated with distinctive images, 6
nouns (ant, clown, fig, lake, sky, train), 2 verbs (eat, run),
and two adjectives (happy, tired). Next, we selected 32
languages with a limited Web presence ranging from Dan-
ish and Dutch to Telugu and Lithuanian.4 Now, for each
concept, we chose 1/4 of the languages at random, and
recorded the word for the concept in the language. These
80 words became our set of non-English queries. We then
compared precision and recall of Google’s image search
for these 80 words “as is” with the precision and recall of
Google’s image search for these words translated by PAN-
IMAGES into English.
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Figure 9: Image search results for random words in 32 lan-
guages with a limited Web presence. The PANIMAGES
translation into English increases correct results by 75%
from an average of 49.6 correct results on the first 270 im-
ages (the rightmost white diamond in the graph) to 86.8 for
PANIMAGES (the rightmost black triangle in the graph). In
addition, PANIMAGES boosts precision by approximately
27% throughout the graph.

Translating the queries from minor languages into a ma-
jor language gives a large boost in recall. The average num-
ber of results as estimated by Google was 33,000 for minor
language queries and 1,856,000 for the queries translated
by PANIMAGES, a 57-fold increase. For 10% of the minor
language queries Google failed to return any images.

3An experiment in Section 4.3 shows that 10 % of the “minor’
language queries in our experiments returned no results whatso-
ever!

4We selected languages that had words for these concepts
present in our translation graph.

More significant is the number of correct results found
in the first 15 pages (containing 270 images). Here the
PANIMAGES translation resulted in a 75% gain over the un-
translated query, from an average of 49.6 correct results to
an average of 86.8. Average precision also rose 27% from
0.25 to 0.32. The main cause of low precision for the mi-
nor language queries was cross-lingual masking. The query
term was a homonym of a completely unrelated word in a
major language.

5 Related Work
There was considerable research in the 1990’s on meth-
ods to acquire translation lexicons for knowledge-based
MT (Neff and McCord, 1990; Helmreich et al., 1993;
Copestake et al., 1994). Many of these systems used MRDs
to assist manual creation of lexicons, or used automated ac-
quisition with post editing. Despite the shift in emphasis
towards statistical MT, research on knowledge-based MT
has continued, with its need for lexicon acquisition.

Translation lexicons are also a vital resource for cross-
lingual information retrieval (CLIR), a subfield prompted
in part by the TREC conferences (Harman, 1996) and a se-
ries of SIGIR CLIR workshops (Gey et al., 2006). Sur-
veys of CLIR research may be found in (Oard, 1997) and
(Kishida, 2005). Much of the CLIR research, in contrast to
PANIMAGES, has focused on a small number of language
pairs, much of it building systems that must be adapted to
one language pair at a time.

While early CLIR systems typically relied on bilin-
gual dictionaries (Hull and Grefenstette, 1996), corpus-
based methods or hybrid methods soon outstripped purely
dictionary-based systems (Yang et al., 1998). Methods
that derive word-translations from parallel text include
(Gale and Church, 1991; Fung, 1995; Melamed, 1997;
Franz et al., 2001). There are also hybrid systems (Balles-
teros and Croft, 1998; Sharoff et al., 2006) that use corpus-
based techniques to disambiguate translations provided by
bilingual dictionaries.

The main drawback of using bilingual dictionaries, in
past work, has been word-sense ambiguity. A single term
in the source language is typically translated into multiple
terms in the target language, mixing different word senses.
Combining information from multiple bilingual dictionar-
ies only exacerbated this problem: translating from lan-
guage l1 into l2 and then translating each of the possible l2
translations into a third language l3, quickly leads to an ex-
plosion of translations. But this is exactly the problem that
the translation graph inference mechanism solves. This use
of inference to reduce ambiguity is a key capability of PAN-
IMAGES that makes it more powerful than any collection of
dictionaries and Wiktionaries.

The ability of TRANSGRAPH to automatically determine
distinct senses of a word is similar to the work on “seman-
tic mirrors” (Dyvik, 2004). Dyvik clusters translations be-
tween Norwegian and English to find alternate senses of
words in either language.

On the Web, commercial search engines such as Google,
French Yahoo (http://fr.yahoo.com) and German
Yahoo (http://de.yahoo.com), offer query transla-
tion capability for only a handful of languages. For ex-
ample, French and German Yahoo automatically translate
query terms into any of several major languages using Sys-
tran (http://www.systran.com) and translate the re-
sulting Web pages.



In contrast, PANIMAGES translates between a large num-
ber of languages, and infers word-sense preserving trans-
lations that are not found in any single dictionary. PAN-
IMAGES’s translation graph is also a platform for plugging
in more and more dictionaries, increasingly comprehensive
Wiktionaries, and corpus-based translations, all of which
will lead directly to improved cross-lingual image search
over time.

6 Conclusions and Future Work
The recent proliferation of bilingual MRDs and multi-
lingual Wiktionaries is a valuable resource for acquisition
of translation lexicons. Yet, difficulties arise in making use
of these lexical resources. Most bilingual dictionaries do
not distinguish between word senses, giving instead a list
of translations of all senses of a source word. Many MRDs
have only spotty coverage.

To address these issues, we introduced the translation
graph, which combines multiple independently-authored
MRDs and Wiktionaries. Our TRANSGRAPH system has
built a graph with over 1.2 million words in more than 100
languages and over 2.3 million edges that represent trans-
lations between words. TRANSGRAPH provides a proba-
bilistic inferencing mechanism over the graph that can infer
translation pairs that are not found in any of the source dic-
tionaries. Our experiments found that using the graph to in-
fer translations not found in any single dictionary can more
than triple the number of translated words, while maintain-
ing high precision (0.80).

This paper also introduces PANIMAGES, a fully-
implemented cross-lingual image search system for the
Web based on the translation graph. Our experiments
show that, for queries in languages with a limited Web
footprint, PANIMAGES increases the total number of re-
sults 57-fold (from 33,000 to 1,856,000). PANIMAGES in-
creases the number of correct images by 75% on the first 15
pages (containing 270 images), while increasing precision
by 27%.

Our future work includes expanding the coverage of the
translation graph by increasing the number of source dic-
tionaries, and re-parsing Wiktionaries that have grown in
coverage. We have recently added 10 more Wiktionaries
and are in the process of adding 20 more bilingual dictio-
naries to the translation graph.

We are also exploring ways to improve translation pre-
cision with better estimates of prob(si) and prob(si = sj)
and exploring probabilistic models of how to combine ev-
idence from multiple graph paths. Informal evaluation on
our latest translation graph shows higher precision than the
results presented here.

In future work, we plan to apply the translation graph
to tasks other than image search, including the translation
of tags in social tagging systems such as del.icio.us and in
on-line games such as von Ahn’s “ESP game”

Acknowledgments
This research was supported by a gift from the Utilika
Foundation to the University of Washington’s Turing Cen-
ter. We thank Ethan Phelps-Goodman, Doug Downey, and
Jonathan Pool for helpful comments and thank Jonathan
Pool and Julia Schwarz for help with evaluating translation
accuracy.

References
(Ballesteros and Croft, 1998) Lisa Ballesteros and

W. Bruce Croft. Resolving ambiguity for cross-
language retrieval. In ACM SIGIR, 1998.

(Copestake et al., 1994) A. Copestake, T. Briscoe,
P. Vossen, A. Ageno, I. Castellon, F. Ribas, G. Rigau,
H. Rodriquez, and A. Samiotou. Acquisition of lexical
translation relations from MRDs. Machine Translation,
3(3–4):183–219, 1994.

(Dyvik, 2004) H. Dyvik. Translation as semantic mirrors:
from parallel corpus to WordNet. Language and Com-
puters, 49(1):311–326, 2004.

(Franz et al., 2001) M. Franz, S. McCarly, and W. Zhu.
English-Chinese information retrieval at IBM. In TREC
2001, 2001.

(Fung, 1995) P. Fung. A pattern matching method for find-
ing noun and proper noun translations from noisy paral-
lel corpora. In ACL-1995, 1995.

(Gale and Church, 1991) W. Gale and K.W. Church. A
Program for Aligning Sentences in Bilingual Corpora.
In ACL-1991, 1991.

(Gey et al., 2006) F.C. Gey, N. Kando, C-Y. Lin, and
C. Peters. New directions in multilingual information
access: Introduction to the workshop at SIGIR 2006. In
Workshop on New Directions in Multilingual Informa-
tion Access at SIGIR 2006, 2006.

(Gollins and Sanderson, 2001) T. Gollins and M. Sander-
son. Improving cross language retrieval with triangu-
lated translation. In SIGIR, 2001.

(Harman, 1996) D. Harman. Overview of the Fourth Text
Retrieval Conference (TREC-4). In TREC-4, 1996.

(Helmreich et al., 1993) S. Helmreich, L. Guthrie, and
Y. Wilks. The use of machine readable dictionaries in the
Pangloss project. In AAAI Spring Symposium on Build-
ing Lexicons for Machine Translation, 1993.

(Hull and Grefenstette, 1996) D.A. Hull and G. Grefen-
stette. Querying across languages: a dictionary-based
approach to multilingual information retrieval. In ACM
SIGIR 1996, pages 49–57, 1996.

(Kishida, 2005) K. Kishida. Technical issues of cross-
language information retrieval: a review. Information
Processing and Management, 41:433–455, 2005.

(Melamed, 1997) I.D. Melamed. A Word-to-Word Model
of Translational Equivalence. In ACL-1997 and EACL-
1997, pages 490–497, 1997.

(Neff and McCord, 1990) M. Neff and M. McCord. Ac-
quiring lexical data from machine-readable dictionary
resources for machine translation. In 3rd Intl Confer-
ence on Theoretical and Methodological Issues in Ma-
chine Translation of Natural Language, 1990.

(Oard, 1997) D. Oard. Cross-language text retrieval re-
search in the USA. In 3rd DELOS Workshop, 1997.

(Sharoff et al., 2006) S. Sharoff, B. Babych, and T. Hart-
ley. Using comparable corpora to solve problems diffi-
cult for human translators. In ACL/HLT, 2006.

(Yang et al., 1998) Yiming Yang, Jaime G. Carbonell,
Ralf D. Brown, and Robert E. Frederking. Translingual
information retrieval: Learning from bilingual corpora.
Artificial Intelligence, 103(1-2):323–345, 1998.


