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Abstract 
Evaluating the output quality of machine translation system requires test data and quality metrics to be applied. Based on the results of 
the French MT evaluation campaign CESTA, this paper studies the statistical reliability of the scores depending on the amount of test 
data used to obtain them. Bootstrapping is used to compute standard deviation of scores assigned by human judges (mainly of 
adequacy) as well as of five automatic metrics. The reliability of the scores is measured using two formal criteria, and the minimal 
number of documents or segments needed to reach reliable scores is estimated. This number does not depend on the exact subset of 
documents that is used. 

Introduction  
A large number of metrics have been proposed to evaluate 
machine translation systems, as summarized for instance 
in the FEMTI framework (Estrella et al. 2005). However, 
comparatively fewer studies have been devoted to the test 
data needed by evaluation metrics, and in particular to the 
amount of data that is required to obtain reliable scores. 
Indeed, both human and automatic metrics generally 
assign a score to each translated segment, often comparing 
it to one or more reference translations of the same 
segment. While it is commonly acknowledged that a 
“large” number of segments is needed to obtain 
statistically significant scores, the goal of this article is to 
provide empirical estimates of this amount based on 
observations from a recent MT evaluation campaign. 
This article thus analyzes the effect on MT evaluation 
scores of varying test set sizes, and proposes formal 
methods to study the robustness of metrics as the numbers 
of test documents increases. The article first discusses 
related work, and then the data—systems, test data and 
scores—used throughout the study. The bootstrapping 
technique is then introduced, which will be used to 
compute average values and standard deviations for 
human metrics (mainly adequacy) as well as for automatic 
metrics (BLEU, NIST, mWER, mPER and GTM) and its 
application to the study of reliability is then explained. 
The scores obtained for various document samples are 
then discussed along with the effect of document ordering. 
A method to compute a sufficient number of documents 
for each metric is further proposed, and its results for both 
human and automatic metrics are finally discussed. 

Studies of the Required Size of Test Data 
Studies regarding the influence of the test data on the 
reliability of scores are not common in MT evaluation. 
For instance, few guidelines indicate the number and size 
of documents to be used in an evaluation, or the effect on 
scores of various sizes of the test set. This is unlike the 
case of training data for statistical NLP systems, where 
studies of the influence of size of training data on output  

 
quality are more frequent, e.g. for statistical or example-
based MT (Germann 2001), as well as for many other 
domains, e.g. question answering systems (Clarke et al. 
2002; Dumais et al. 2002). 
Closer to our present goal, Elliott et al. (2003) explicitly 
attempt to answer the question of how much text to 
include in a multilingual corpus for MT evaluation, given 
the general hypothesis that more text would lead to more 
reliable scores. Their work concerns human metrics—
fluency, adequacy and informativeness—and mainly 
focuses on the ranking of systems based on the results of 
the FR/EN, SP/EN and JP/EN DARPA 1994 MT 
evaluation campaign. The scores were compared for an 
increasing number of texts, starting with 1 and ending 
with 100 texts, the average length of texts being 350 
words. Based on an empirical assessment of score 
variation, the authors estimate that systems could be 
reliably ranked with around 40 texts (ca. 14,000 words), 
and that using ten texts already separate the highest and 
the lowest ranked systems. These figures can be compared 
with the amounts used in a number of previous 
evaluations which generally use several hundred to 
several thousand sentences (Elliott et al. 2003: Table 1). 
Zhang and Vogel (2004) also studied the influence of the 
amount of test data on the reliability of automatic metrics, 
focusing on confidence intervals for BLEU and NIST 
scores. They used the data of the CH/EN track of the 
TIDES 2002 MT evaluation campaign (100 documents of 
7-9 sentences each), with the output of the 7 participating 
systems and 4 reference translations. Their results show 
that BLEU and NIST scores become stable when using 
around 40% of the data (around 40 documents or 300 
sentences), though stability is defined here in terms of the 
distance between scores of different systems. 
These two studies suggest that an evaluation can be 
reliably performed with less text than is often used. We 
reinforce this hypothesis here, and propose a formal 
method to estimate the necessary amount of test data, 
which evaluators could use to assess the amount of test 
data needed by a given metric. 



Data and Metrics: CESTA EN/FR Campaign 
The experiments presented here were done using the test 
data, system outputs and evaluation metrics from the 
French MT evaluation campaign, CESTA (Hamon et al. 
2006). The test data comes from the first run of the 
campaign, on the English to French translation task, in 
which five systems have participated. The results of the 
systems are anonymized, and for the present purpose the 
systems will simply be referred to by the codes S1 to S5 
in no particular order. The systems participating to this 
run were: Comprendium, RALI / University of Montreal, 
Reverso / Softissimo, SDL, and Systran. 
One of the goals of the CESTA campaign was to validate 
the use of automatic evaluation metrics with French as a 
target language, by comparing the results of well-known 
automatic metrics with fluency and adequacy scores 
assigned by human judges. The following automatic 
metrics were applied to the translations produced by the 
five systems participating in the CESTA campaign, with 
four reference translations: mWER, multiple reference 
Word Error Rate (Niessen et al. 2000), mPER, position 
independent Word Error Rate (Tillmann et al. 1997), 
BLEU (Papineni et al. 2001), NIST version of BLEU 
(Doddington 2002). We added to this experiment the 
GTM (General Text Matcher) metric (Turian et al. 2003). 
The test data, i.e. the corpus created for the CESTA 
evaluation campaign, English to French first run, consists 
of 15 documents from the Official Journal of the 
European Communities (JOC, 1993), with a total of 790 
segments or sentences, with an average of 25 words per 
segment (Hamon et al. 2006). The data consists of 
transcribed questions and answers in a parliamentary 
context, and since no particular domain was targeted when 
putting together the corpus, the CESTA campaign 
considered this as general domain data.  
The goal of the experiments presented here is to observe 
how the average scores obtained by human judges and 
automatic metrics evolve, as more documents are 
incrementally added to the evaluation corpus. More 
specifically, the experiments attempt to test whether these 
scores stabilize towards their final value as more 
documents are added, and to find a method to determine a 
sufficient amount of test data to reach this value with 
reasonable precision. 

Bootstrapping over MT Evaluation Scores 
This section describes the bootstrapping technique used to 
compute average scores and related statistics, first from a 
theoretical point of view, then in the setup used here. 

Estimating Variables Using Bootstrapping  
Bootstrapping is a statistical technique that is used to 
study the distribution of a variable based on an existing 
set of values (Efron and Gong 1983). This is done by 
randomly resampling with replacement (i.e. allowing 
repetition of the values) from the full existing sample and 
computing the desired parameters of the distribution of 
the samples. The method has the practical advantage of 
being easy to implement and the theoretical advantage of 
not presupposing anything about the underlying 
distribution of the variable. A simple programming 
routine can thus calculate the estimators of the mean, 
variance, etc., of any random variable distribution. 
Moreover, when the original sample is resampled a large 

number of times (theoretically close to infinite), the law of 
large numbers ensures that the observed probability 
approaches (almost certainly) the actual probability. The 
bootstrapping algorithm can be summarized as follows: 

1. Given a sample X = (X1, X2, …, Xn) from a population 
P, generate N random samples of size n by drawing n 
values from the sample, with replacement (each value 
having probability 1/N).  

2. The resulting population P*, noted X* = (X1
*, …, XN

*), 
with Xi

* = (Xi1
*, Xi2

*, …, Xin
*), i = 1..N, constitute the 

N bootstrapped samples. 
3. If the original estimator of a given population 

parameter was θ(X), with the bootstrapped samples 
we can calculate the same estimator as θ(X*).  
 

An important parameter for bootstrapping is N, the 
number of bootstrapped samples, or the number of times 
the process is repeated. This number should be large 
enough to build a representative number of samples. It 
appears that, for instance, N = 200 leads to slightly biased 
estimations (Efron and Gong 1983; Zhang and Vogel 
2004), so a larger N is preferred, for example N = 1,000 
(Efron and Gong 1983; Koehn 2004) or even N = 10,000 
(Bisani and Ney 2004). Based on these examples, we 
decided to use N = 1,500. 
Another source of error in inference statistics is the error 
induced by using a particular sample to represent a whole 
(unknown) population. In the present case, this amounts to 
considering that the scores on the 15 documents (or 790 
segments) are fully representative of a system’s 
performance on this type of text. 

Application to MT Evaluation Scores 
In the MT field, bootstrapping has been mainly used to 
estimate confidence intervals for automatic metrics and to 
compute the statistical significance of comparative 
performance of different MT systems, e.g. using the 
BLEU (Koehn 2004; Kumar and Byrne 2004; Zhang and 
Vogel 2004) or WER metric (Bisani and Ney 2004). 
Here, bootstrapping will be used to compute reliable 
estimators for different automatic metrics for MT, namely 
mean, standard deviation (often expressed as a percentage 
of the mean) and confidence intervals (based on standard 
deviations) for the mean of the bootstrapped sample. 
For the application of bootstrapping in MT, the original 
sample X is the set of text segments arranged in 
documents, each segment being accompanied by a list of 
scores obtained by each MT system, according to the 
metrics mentioned in the previous section. 
Described in pseudo code, the routine computing the 
various estimators is particularly simple: M is the number 
of segments to be considered, sample[m] is the m-th 
element of the sample while sample* is a pointer to the 
list of bootstrapped samples: 
 
  for(n=0; n<N; n++){ 
      for(m=0; m<M; m++){  
         sample[m] = selectRandSeg(); 
      } 
      scoreList[n] = calcMetric(sample*); 
  } 
calcEstimators(scoreList); 
 



The test corpus consists of 15 documents, noted d1 … d15. 
Despite the slight differences between their lengths, a 
document is the most reasonable incremental step in our 
bootstrapping study, since a document offers in theory the 
highest topical homogeneity across sentences—as the 
exact topics may change from one document to another.  
The following algorithm evaluates the systems and 
computes parameters related to each of the metrics, for 
each document subset D, incrementally constructed by 
adding one document at a time, starting with D = {d1}. 

1. Select one system and one metric to be applied, say Sk 
and mi , where k = 1, 2, 3, 4, 5 and mi∈{adequacy, 
fluency, BLEU, NIST, GTM, mWER, mPER}. 

2. Apply mi to each translated segment of D output by Sk. 
3. Bootstrap N times to compute mean, relative standard 

deviation and confidence intervals for the mean score 
of mi. 

4. Add one more dj to the evaluation set D, following the 
order j = 2, .., 15 (or a random order). 

5. Repeat steps 2 – 4. 

The process is of course repeated for every metric and 
every system. At the end of the process, the mean, 
standard deviation and confidence intervals are available 
for each system and each metric. The following sections 
make use of these results to analyze the sufficient size of 
the subset of documents D based on formal criteria to get 
reliable scores. 

Variation of Average Scores Depending  
on the Size of the Test Data 

The results of bootstrapping with 1, 2, and up to 15 
documents are discussed in this section, in terms of 
standard deviation and comparison with the global scores 
obtained when the full test data (15 documents) is used. 
The results are given first for the human metrics, then for 
automatic ones. The next section will then attempt to 
determine the minimal number of documents leading to 
evaluation scores that are not substantially different from 
those obtained on the full data set. 

Human Metrics 
Bootstrapping was performed on human metrics, 
computing the average scores for one document first, then 
for two, three, etc. The order of the documents was firstly 
the one used in the CESTA campaign, and secondly, in a 
different experiment, a random order. Figure 1 shows the 
evolution of average adequacy scores computed over 1, 2, 
…, 15 documents, for the five systems evaluated in the 
CESTA campaign (fluency values show a similar pattern). 
The observed trend is that, after some initial variation due 
to the heterogeneity of documents and to the systems’ 
performance, the scores quickly reach their final values 
over the entire test set. A notable exception is system S5, 
having scores particularly low on the first document, 
which penalizes also its performance on {d1, d2}, { d1, d2, 
d3}, etc. 
The lower performance of S5 on d1 may simply be due to 
the inevitable variation of system performance on 
different texts (e.g. caused by missing vocabulary) as no 
other cause could be identified. Similarly, S1 performs 
better on documents d4 and d5; however, in the case of S5 
and d1, the lower performance on the first document of the 
series is much more perceptible graphically. 
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Figure 1: Average adequacy values (on a 0-100% scale) 
for systems S1 to S5, computed on 1, 2, …, 15 documents 

Automatic Metrics 
Turning now to average scores of automatic metrics, 
Figure 2 and Figure 3 display the scores obtained using 
the GTM and mWER metrics (error rate means that lower 
scores are better). These figures display a similar pattern: 
after chaotic variation on the first subsets of documents, 
the ranking of the systems becomes quickly close to the 
final one, and the average scores reach their final values 
quite soon as well. 
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Figure 2: GTM scores (on a 0-1 scale) for systems S1 to 
S5, computed on 1, 2, …, 15 documents  
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Figure 3: mWER scores for systems S1 to S5, computed 
on 1, 2, …, 15 documents (error rates: lower is better) 

The other metrics that were studied (not shown here) also 
have similar behaviors. So, despite having very different 
mechanisms—n-grams vs. precision-recall vs. edit 



distance—metrics behave similarly across systems, i.e. 
they show coherent rankings for the different subsets of 
documents. For instance, regarding their final results (for 
15 documents), all automatic metrics rank S5 as the best 
and S3 as the poorest system: these average results 
obtained using bootstrapping are thus coherent with the 
official results of the CESTA campaign. 
The figures also indicate a significant qualitative 
agreement between human judgments and automatic 
metrics (Hamon et al. 2006). Document d1 appears to be 
“difficult” for most systems, but especially for the best 
system S5, while system S1 performs quite well on 
documents d1-d6 but then its scores decrease. 

Specific Domain Experiment 
To go further, we tested this method on the data used in 
the second run of the CESTA campaign, consisting of 
documents from the health domain. The size of the 
documents and average number of words per segment are 
similar to the corpus of the general domain and also five 
systems were evaluated. 

 

Figure 4: Health domain adequacy results for systems S1 
to S5, for 1, 2, …, 14 documents, in random order 

As in the general domain case, scores stabilize around 10 
documents and the definitive ranking is visible around 9 
documents, the scores being quite chaotic before this 
point, shown in Figure 4. Although the trend is similar to 
that of the general domain, curves seem to be more 
chaotic; this could be explained by the specific 
characteristics of the data but in general the conclusions 
for human metrics of previous sections are valid for this 
domain.  

The Number of Documents Needed to 
Compute Reliable Scores: Two Criteria 

In this section we propose a method to estimate both the 
minimum number of documents that are sufficient to 
obtain reliable scores, and the theoretical, maximum 
number of documents needed to minimize the standard 
deviation. 
We consider that an average evaluation score is reliable 
when the STDEV computed using bootstrapping is close 
to the STDEV obtained using the whole test set of 15 
documents. In addition, since our limit is 15 documents, 
we have no evidence of what happens beyond that limit, 
hence raising the question if there is any other way to 
predict or estimate how many additional documents would 
be necessary to obtain more reliable results, i.e. with a 

lower STDEV. To provide additional guidelines about the 
use of the CESTA corpus, we propose two methods to 
assess reliability. The first one estimates the number of 
documents needed for the STDEV to reach “acceptable” 
values, and the second one estimates the number of 
documents needed to reach an SDTEV close to zero, 
assuming that its tendency is accurately described by the 
values obtained with 1, 2, …, 15 documents. 

The Evolution of Standard Deviation with the 
Number of Documents 
The “convergence” of scores towards their final value 
when the number of documents is increased can also be 
studied through the standard deviation (STDEV) of each 
average score, obtained using bootstrapping. Indeed, the 
1500 samples of documents obtain different average 
scores, therefore the standard deviation across these 
samples is not zero, but is expected to decrease as the 
number of documents increases. 
For instance, Figure 5 shows the average NIST score and 
the confidence interval (based on standard deviations) for 
S1. The STDEV (and the width of the confidence interval) 
decreases from d1 to d7, but as performance varies slightly 
with d8, the STDEV increases again at this point, and 
decreases again afterwards. However, it appears in this 
case that the width of the confidence interval remains 
below ±0.3 starting with the 6th document. Overall, it 
appears that STDEVs do not change much after the 9th 
document. 
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Figure 5: Average scores and confidence intervals (based 
on standard deviations) for the NIST metric applied to S1, 

computed on 1, 2, …, 15 documents 

The average scores obtained using bootstrapping for each 
subset of documents also offer insights about the systems’ 
output, not based on the scores themselves but rather on 
their variation. As an example, in Figure 2 and Figure 3, 
GTM and mWER disagree for S4 when adding document 
d2: both mWER and GTM increase while they are not 
expected to (shown in dashed circle). To explain this 
observation, S4’s output was inspected, and it appeared 
that many words are followed by their synonyms in 
parenthesis, for instance (in French): “ l’avenir (le contrat à 
terme)”, “la Réglementation (le Règlement)”, “la fourniture 
(l’apport, la provision)”. This might be one reason why the 
BLEU score also decreases from {d1} to { d1, d2} due to 
the brevity penalty. The mWER score suggests that S4 
does not use the same vocabulary as the references. 
Therefore, as NIST and GTM do not penalize too much 
and reward more for longer matches, the scores increases 
from {d1} to { d1, d2}, as shown in Table 1. Interestingly, 
S4 is ranked best according to the human scores, who 
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might have been positively biased by the words in 
parenthesis. 

NIST BLEU [%] GTM [%] 
mWER 
[%] 

mPER 
[%] 

7.2612 
±0.54 

0.326 
±0.06 

0.7509 
±0.04 

0.499 
±0.06 

0.405 
±0.04 

7.8868 
±0.42 

0.3192 
±0.04 

0.7732 
±0.02 

0.518 
±0.05 

0.410 
±0.041 

Table 1: Average scores and confidence intervals  
for S4 evaluated with documents d1 and d2 using  

all the automatic metrics 

Influence of Document Ordering 
As we have seen, the scores obtained using the very first 
documents in the series above have a great influence on 
the overall pattern of the results. It is therefore normal to 
explore the influence of document order by changing the 
order of documents d1… d15 and repeating the analyses 
above. To completely discard the effect of document 
ordering, one could perform the analyses for every 
possible ordering, i.e. 15 factorial times (15!), or at least a 
sufficiently representative number of times.  
Here, we performed the same task two more times (run 1 
and run 2) choosing a random order for the documents to 
be added. We found that the scores change at the 
beginning, as expected, but again become stable around 
document d9. The average values of adequacy are 
represented in Figure 6: again, after initial chaotic 
variation, the scores stabilize towards their final values. 
Scores reach stable values after about 10 documents, 
while ranks reach stable values after 4 documents.  
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Figure 6: Adequacy results for systems S1 to S5,  
for 1, 2, …, 15 documents, in random order 

 
A representation of GTM average scores with two random 
orderings of the documents is shown in Figure 7, in which 
the two curves have a different pattern, although they 
converge towards the same score.  
The main question arising at this point is: what is the 
number of documents needed to reach a score which is 
“close” to the final one, i.e. to the objective measure of 
the system’s output quality? Figure 8 provides an initial 
hint: it shows the STDEV of average GTM scores with 
the two random orderings of documents. The curves show 
quite clearly that the STDEVs evolve similarly in the two 
cases. The next section will exploit this fact to define a 
formal criterion for score reliability. 
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Figure 7: GTM average scores for S2 using two  
different random orderings for documents 

 

Figure 8: Relative STDEV (%) of GTM scores for S2 
using two different random orders for documents 

Principles and Computation 
The STDEVs of the scores obtained for every metric 
(human and automatic) and every system exhibit similar 
behaviors, as shown respectively in Figure 9 for adequacy 
and in Figure 10 for BLEU which is typical of the other 
automatic metrics. STDEVs start with relatively high 
values and decrease considerably, ending with a relatively 
low value. 
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Figure 9: STDEV for adequacy scores, computed using 
bootstrapping, depending on the number of documents 

considered (1, 2, …, 15) 
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Figure 10: STDEV for BLEU scores, computed using 
bootstrapping, depending on the number of documents 

considered (1, 2, …, 15) 

Using the values that we computed, it is possible to find a 
function f(x) that approximates the STDEV curves from 
Figures 8 to 10, performing a regression analysis. It is 
then possible to study the evolution of the STDEV using 
the first order derivative of f(x), i.e. the tangent to f(x) in 
any of its points, as follows. We consider two possible 
approaches that allow us to define two points of interest 
on the x axis, that is two sizes of the test data set 
(expressed as numbers of documents) that are related to 
specific values of the STDEV, called here xmin and xmax. 
The first characteristic value, xmin, is the point where the 
tangent line at the beginning of the STDEV curve crosses 
the x-axis, which suggests a first number of documents 
beyond which the STDEV does not decrease significantly. 
The second point, xmax, is the point where the slope of the 
tangent line becomes very close to zero, after which 
STDEV will stop decreasing drastically. Empirical tests 
must be carried to find out if this value corresponds to an 
acceptable number of documents ( xmax << ∞  ).  
The two proposed parameters can be determined using 
any regression function that properly fits the data. We 
explored two functions, namely the cubic (3rd degree 
polynomial) and power functions, because we found the 
R2 coefficient of correlation between these curves and the 
empirical STDEV curves was quite high.  
 

 

Figure 11: Graphical representation of xmin for two sys-
tems, S1 and S4—the values are the intersection points of 
the tangents at the beginning of the curves with the x axis 

Depending on the metric, one function was more 
appropriate than the other. For instance, as shown in 
Figure 11, Stdev2 (for S4) is better represented by a cubic 
function, while the power function is better for 
Stdev1 (S1). 
In the following subsections, we apply this method to the 
concrete cases of the power and cubic functions and in the 
next section we present the results obtained regarding the 
minimal number of documents. 

Regression with power function 
The power function that estimates the STDEV curves has 
negative exponent and is defined in( )∞,0 . 

bxaxf −⋅=)(   

This function approximates SDTEV by having high 
values for small number of documents (x) and low values 
for larger amount of documents. More specifically: 

0lim =−

∞→

b

x
x    and   +∞=−

+→

b

x
x

0
lim  

In practice, f(x) can be very close but not equal to 0 or 
equivalently, and the tangent line to f(x) will never be 
parallel to the x-axis. Therefore, we fix a threshold ε 
under which the value of the derivative is considered 
equal to zero, for example, of 0.01%. Formally, xmax is the 
first value such that: 

0≅= ε
dx

dy
   for some value of x  <<∞  

Given the derivative of f(x):  )1(' +−⋅⋅−= bxabf  it is then 
possible to calculate xmax, the point where the function 
begins to stabilize, using the equation:  
 

ε=⋅⋅−= +− )1(
max' bxabf    ⇒   

)1(

1
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+−









⋅
−=

b

p
ba

x
ε

 

 
Regarding now xmin, given the tangent line  

111 bxay +⋅=  

we can calculate the slope a1 and the y-intercept b1 with 
the point (xi, f(xi)) that they share. Since this point is 
known, we can make the following operations: 

( ) ( )
ii

xyxf 1=  

⇒  11 bxaxa i

b

i +⋅=⋅
−

  

⇒  i
b

i xaxab ⋅−⋅= −
11  

 
Recall that the derivate of f(x) in xi is the slope of the line 
y1, thus 

( ) 1
)1(' axabxf b

ii =⋅⋅−= +−  

Now, we have all of coefficients of the tangent line and 
we can calculate the pxmin , e.g. the point where the 
tangent line intercepts the x-axis (first equation below) 
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and an approximate minimal number of documents to use 
in the evaluation. 

01min11 =+⋅= bxay p   

⇒
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1
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b
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Resolving the latter equation we get: 
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Regression with cubic function 
Let f(x) be the 3rd order polynomial function that best 
approximates STDEV: 

( ) axbxcxdxf +⋅+⋅+⋅= 23  

Its derivative is: 

023' 2 =+⋅⋅+⋅⋅= bxcxdf  

Setting f’=0  and calculating its roots is equivalent to 
looking for a local minimum of f(x); for our purpose, this 
will serve to calculate xmax3, , the number of documents 
where the function stops decreasing drastically. To find 
these roots, we use the well-known formula for solving 
second order equations: 
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We only consider the cases where the roots are positive 
and discard all other cases (negative or imaginary roots), 
leading to the following potential cases: 

a) Two positive roots, we choose the smallest 
b) One positive and other negative root, we choose 

the positive one 
c) If the discriminant equals 0 there are two 

identical roots and we only consider the case 
when they are > 0 

Replacing f’  in the formula above, we define xmax3 as 
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Following the same procedure, we now calculate 3minx  in 
a similar way as in the previous case. Having the linear 
function representing the tangent,  

111 bxay +⋅=  

we calculate the slope a1 and the y-intercept b1 as follows: 
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Using a shared point between f and y1 
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replacing in 0111 =+= ⋅ bxay   we obtain  
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Number of Documents Needed for Reliable 
Scores: Observed Results 

We applied the method explained above, fixing xi = 1 for 
both functions and ε = 0.001 for the power function. 
Recall that ε is the acceptable error threshold, thus the 
choice of its value is arbitrary, depending on the evaluator 
applying the method. We observed that if we choose a 
larger value of ε, the resulting xmax decreases but if we are 
stricter about the error threshold and choose a small ε, the 
value of xmax increases. These results are coherent with the 
practice, since we need more data to obtain less deviated 
scores. 
In general, S2’s to S5’s standard deviation are better 
represented with the power function and S1 with the cubic 
function. In the case of mWER and mPER for S5, neither 
function seems to be suitable; we can check it graphically 
and with the R2 coefficients. 
Table 2 shows the values obtained empirically from the 
CESTA data for xmin and xmax, using always the power 
function, which in the majority of cases correlates better 
(in terms of R2) with the STDEV function. 
The conclusion is that xmin, the characteristic number of 
documents, is almost uniformly equal to four (here, 
documents have about 65 sentences). 
 

Metric Var. S1 S2 S3 S4 S5 
R2 .674 .996 .995 .987 .996 

xmin 5 3 3 4 4 GTM 
xmax 20 20 20 20 20 
R2 .905 .995 .997 .990 .972 

xmin 4 4 4 4 4 NIST 
xmax 27 24 26 27 26 
R2 .984 .995 .998 .993 .995 

xmin 3 4 3 3 4 BLEU 
xmax 50 46 51 47 48 
R2 .960 .995 .975 .924 .707 

xmin 4 4 4 4 6 mPER 
xmax 38 37 34 41 40 
R2 .991 .975 .970 .963 .752 

xmin 4 4 4 4 5 mWER 
xmax 39 15 7 41 43 
R2 .989 .987 .989 .985 .993 

xmin 4 3 3 3 3 Fluency 
xmax 53 64 61 50 50 
R2 .992 .987 .995 .990 .993 

xmin 9 4 3 3 3 Adequacy 
xmax 49 54 54 45 47 

Table 2: Values of here xmin and xmax using the power 
regression as an approximation of the STDEV curves 

Conclusions and Future work 
This study shows that different metrics behave coherently 
across systems and documents. The study also takes 
advantage of the particular cases that were found to gain 



more insight about systems’ output; e.g., we were able to 
detect documents that are “difficult to translate”, pointed 
out by the disagreement between metrics for the same set 
of documents and system; inspecting the last document 
added to the set we discovered information that was useful 
to understand the variation of metrics. We also reinforce 
the hypothesis that we can obtain reliable evaluation 
results with fewer documents than expected, reducing 
evaluation cost (effort and time). Our results show that for 
human or automatic evaluation about five documents from 
the same domain—with ca. 250 segments or 6,000 
words—seem sufficient to establish the ranking of the 
systems and about ten documents are sufficient to obtain 
reliable scores.  
Finally, we propose a method to empirically determine the 
minimum number of documents needed to obtain 
acceptably reliable results. The results presented here are 
also a valuable resource, which could complement the 
guidelines for users of the CESTA corpus—made public 
by ELDA—along with reference translations and scores 
for automatic and human metrics. 
At this moment, we use the corpus in a black box 
evaluation but if it is intended to be used in glass box 
evaluation, other methods could be used to reduce the 
amount of text to evaluate. For example, the method 
proposed in (Eck et al. 2005), which consists in extracting  
from the corpus only the unduplicated n-grams, i.e. it 
eliminates redundancy. 
We plan to apply our method to other experimental setup, 
such as different corpora or language pairs. Special cases 
of study are the human based metrics, since the average of 
two human judgments was used for the adequacy and 
fluency metrics in the EN/FR first CESTA campaign. 
These metrics are limited by the loss of information about 
the difference between judgments. So far, it was not so 
easy to find a method of human weighted scores. Indeed, 
having (at least) three evaluations by segments would 
allow us to weight the scores according to similar 
judgments (i.e. if one judgment is strongly different from 
the two others, it would have lower weight for the 
scoring). 
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