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Abstract

This paper describes the NiCT-ATR statistical machine trans-
lation (SMT) system used for the IWSLT 2007 evaluation
campaign. We participated in three of the four language pair
translation tasks (CE, JE, and IE). We used a phrase-based
SMT system using log-linear feature models for all tracks.
This year we decoded from the ASRn-best lists in the JE
track and found a gain in performance. We also applied
some new techniques to facilitate the use of out-of-domain
external resources by model combination and also by uti-
lizing a huge corpus ofn-grams provided by Google Inc..
Using these resources gave mixed results that depended on
the technique also the language pair however, in some cases
we achieved consistently positive results. The results from
model-interpolation in particular were very promising.

1. Introduction

Phrase-based statistical machine translation approaches con-
tinue to dominate the field of machine translation. All of
the systems for each of the languages pairs we submitted
results for differ in important respects from other systems,
however they are all based around a fairly typical phrased-
based machine translation system built within the framework
of a feature-based exponential model containing the follow-
ing features:

• Phrase translation probability from source to target

• Inverse phrase translation probability

• Lexical weighting probability from source to target

• Inverse lexical weighting probability

• Phrase penalty

• Language model probability

• Simple distance-based distortion model

• Word penalty

The basic framework within which all the systems were
constructed is shown in Figure 1, and the corresponding

overview of the translation process is shown in Figure 1.
With the exception of the experiments where factored models
were required, the decoder used for the training and decod-
ing of the test data was the in-house multi-stack phrase-based
decoderCleopATRa.

This paper is constructed as follows, firstly for each lan-
guage pair we provide a description of the components of the
system that are specific for that language pair. This descrip-
tion includes details of any segmentation, external resources
and any specific modelling techniques that were employed.
Next, we detail those parts of the process that are common
to all systems. In particular we focus on the techniques we
used to utilize a large corpus of wordn-grams provided by
Google Inc. The next sections present and discuss our exper-
imental results, and finally we conclude and propose avenues
for future research.

2. Japanese-English

2.1. Corpora

In addition to the supplied corpus, we also drew on resources
from the following corpora:

• The Tanaka corpus (203K sentence pairs)

• The Yomiuri News corpus (202K sentence pairs)

• The SLDB corpus (72K sentence pairs)

• The Chinese Olympic corpus included in the Chinese-
LDC (Code: 2004-863-009) (104K sentence pairs)

2.2. Pre-processing

The data was segmented using the publicly available Chasen
tool.

2.3. Training data selection

Before training the MT system, we reduce the size of the ad-
ditional corpora by extracting only sentences which are ’rel-
evant’ to the task. We perform the selection using language
model perplexity with reference to the supplied corpus as fol-
lows:
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Figure 1: The training process of our translation systems
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Figure 2: The translation process of our translation systems

1. An English language model (word tri-grams) was cre-
ated using the supplied corpus.

2. The sentence perplexity with respect to the language
model of each sentence in the additional corpus
(Tanaka corpus, Yomiuri News corpus, SLDB cor-
pus, and Beijing Olympic corpus included in Chinese-
LDC) was calculated

3. Only those sentences for which the perplexity was
lower than 100 were used as training sentences.

After the selection process we were left with 40K sen-
tences from the supplied corpus and 117K additional sen-
tences from the external corpora, giving us a total of 157K
sentences for training.

2.4. Modeling Issues

Word-trigram language models were used, these were
smoothed using Knesser-Ney discounting. In addition, topic-
dependent models were constructed [1]. We built bilingual
cluster-based models from 157K bilingual training sentence
pairs. The sentence pairs were clustered into 10 sub-corpora.
These sub-corpora intutitively represent sub-domains of the
main corpus. The motivation behind this strategy was to
build models specific to these sub-domains and then pre-
dict the sub-domain of the text to be translated, and use
the appropriate model for the translation process. A strong
improvement was demonstrated using this technique for all
language pairs in the IWSLT06 evaluation campaign. In
this year’s campaign we only apply this technique to the
Japanese-English task.



2.5. ASRn-Best Decoding

For the Japanese-English data track, the decoding was per-
formed directly from the ASRn-best lists (for all experi-
ments a value ofn=20 was used) rather than from the 1-
best ASR hypothesis. To do this, the ASR scores were
added to the machine translation scores in a log-linear fash-
ion with weights. The translation scores ofn-best hypotheses
from the machine translation were then combined with the
weighted ASR scores and then-best translation hypotheses
re-ranked. The weights for the ASR scores were trained inde-
pendently from the weights of the translation model, on de-
velopment data and were optimized with respect to the same
BLEU score used to optimize the MT decoder’s parameters
during minimum error rate training. Decoding directly from
the confusion network was also tried out on the development
data. This gave approximately the same level of improve-
ment as decoding from then-best list and the latter approach
was selected because of its simplicity an also because of it’s
flexibility. For example it, permitted the data to be segmented
before being decoded. If the confusion network is decoded
directly we must accept the segmentation provided by the
ASR system, or devise a method for re-segmenting the to-
kens in the confusion network.

3. Chinese-English

3.1. Corpora

We used the supplied corpus in combination with the Beijing
Olympic Corpus, and other corpora provided by the LDC.
These corpora and their respective sizes are shown in Table 1.

3.2. Lemmatization

Data sparseness is one of the key factors that degrade sta-
tistical machine translation (SMT). Especially for a transla-
tion task like IWSLT, where collecting a large amount of in-
domain data is very expensive. One method to reduce the
translation degradation caused by this approach is by using
lemmatization [2]. Lemmatization is shallow morphologi-
cal analysis, which uses single a lexical entry to replace a
whole range of derived inflected words. For example, the
three words: “doing”, “did” and “done”, can be replaced by
one word: “do”. In fact, they should all be mapped to the
same Chinese target word during alignment. It is easy to see
that as a result, the process reduces the number of types ob-
served in the data, thereby easing the problems associate with
sparse data, and in Chinese at least we expect the process to
preserve as much of the semantic information as possible.

We used Moses to implement the method. Moses is a
publicly-available state-of-the-art decoder for SMT. It is an
extension of Pharaoh (Koehn et al., 2003), and supports fac-
tored training and decoding. Our idea can be easily imple-
mented with the functionality offered by Moses. We feed
Moses English words with two factors: the surface word
from and the lemma. The only difference in training with

lemmatization from that without is the alignment factor. The
former uses Chinese surface words and English lemmas as
the alignment factor, but the latter uses Chinese surface
words and English surface words. Therefore, the lemma-
tized English is only used in the word alignment stage of the
training. All the other aspects of the training process are the
same for both the lemmatized translation training and non-
lemmatized training.

3.3. Translation model combination

Linear interpolation of translation models has been shown
to be effective in machine translation [2, 3]. In this cam-
paign we apply this approach as the main means of integrat-
ing models built from the external resources with the primary
models built from the supplied corpus. More formally, we
use the following equation for model combination:

p(e|f) = α1p1(e|f) + α2p2(e|f)

wherep1 andp2 are two models to be integrated, and the
weightα1 andα2 must sum to unity.

We did not use automatic optimization methods to select
theα1 andα2. Instead, we hand-selected the values by eval-
uating the performance of multiple runs on the development
data. We consider this approach reasonable since the sys-
tem’s performance was fairly insensitive to changes in these
parameters.

3.3.1. Translation models used

All of the bilingual data that was used for training the trans-
lation model is shown in Table 1. The first corpus listed,
“IWSLT07 supplied corpus”, is the organizer-provided train-
ing data for IWSLT 2007. Since the Chinese Olympic data
has been drawn from travel domain, we treated it as if from
the same source as the IWSLT 2007 data. This data was
treated differently from the other LDC data, the last resource
in the table, which we considered to be out-of-domain with
respect to the IWSLT07 supplied corpus.

The final translation models were obtained by the follow-
ing steps:

• Merge the IWSLT07 supplied corpus and the Olympic
corpus

• Train a translation model,m1, using the above data

• Lemmatize the above data

• Train a translation model,m2, using the lemmatized
data

• Linearly interpolate modelsm1 and m2 to yield a
model,m3.

• Train a translation model,m4, using the LDC data.

• Linearly interpolate modelsm3 andm4 to yield the
final model,m5.



Table 1: Training data for the CE translation model

source # of sentence pairs Description
IWSLT07 supplied corpus 40K provided by IWSLT 2007
Chinese Olympic corpus 50K part of the CLDC Corpus 2004-863-009

LDC 2.5 M LDC corpus (LDC2002T01, LDC2003T17
LDC2004T07 LDC2004T08

LDC2005T06 and LDC2005T10)

Table 2: Experiments
TM BLEU

provided data 46.65
provided+LDC 49.70

provided+lemmatized+LDC 50.48
provided+Olympic+lemmatized+LDC 51.78

provided+Olympic+lemmatized+LDC+MERT 57.32

We used equal weights for interpolating the all of the
models, with the exception of the modelm3 built from the
LDC corpus which was weighted with a weight of 0.3 (and
therefore 0.7 form4).

3.4. Experiments

The results shown in Table 3.4 were from experiments made
on the development data; the test data of IWSLT 2006.
The results proved the effectiveness of both of our methods:
model interpolation and lemmatization. In the table, the first
column describes the training data and the details of inter-
polated models and lemmatization used. The second col-
umn gives the corresponding BLEU scores. We found that
in every case where we used lemmatization and model in-
terpolation, the BLEU scores were higher than without. We
used minimum-error rate training MERT in the last experi-
ment only, shown by the last line. The development data and
test data that was used for this were from those used in the
IWSLT2004 campaign.

4. Italian-English

4.1. Corpora

We made use of all supplied IE CSTAR data (20k sentence
pairs), and of EUROPARL data (940k sentence pairs). Pre-
liminary experiments on the EUROPARL data showed best
results by retaining only sentences pairs with a length ratio
greater than 0.85 (around 940,000 pairs in total). These pi-
lot experiments showed that interpolating phrase tables cre-
ated using the supplied corpus with those created from EU-
ROPARL data gave respectable improvements on the dev5a
development set. Unfortunately these improvements did not
transfer to dev5b. Therefore only data from the supplied cor-
pus was used for phrase table estimation of the primary sys-

tem. However, the EUROPARL data proved useful for lan-
guage modelling purposes. We interpolated LM’s built on
the supplied corpus with language models built on the EU-
ROPARL data, used the resulting model for translation. As
data in the source language of the supplied corpus is lower-
cased and without punctuation, the source data of the EU-
ROPARL corpus was transformed to match this. The target
data was also lowercased, and punctuation was removed.

4.2. Methodology

Alignments were obtained by using GIZA++, and minimum
error rate training with respect to the BLEU metric was per-
formed by using the provided development set dev5b (995
sentences with 1 reference translation for each source sen-
tence). Language models (built with modified Kneser-Ney
discounting and lower-order interpolation) were made using
the SRILM toolkit. The decoding was performed using a
tri-gram language model with no limit on the maximum dis-
tortion distance.

5. Punctuation, Case and Tokenization

The format of the official submission of the data for evalu-
ation is case-sensitive and with punctuation. Based on the
results of a series of preliminary experiments on Italian-
English data that showed slightly higher performance from
re-punctuated/re-capitalized test data, we elected to recover
the capitalizion and punctuation in a separate post-processing
step. This efficacy of this approach could depend on the par-
ticular language involved, our experiments only addressed
one language pair, and it is our intention to investigate this
in further research. The experiments also showed that rea-
sonably large differences in BLEU score can arise from dif-
fering punctuation/capitalization schemes indicating that this
part of the task is an important component. Differing tok-
enization schemes were adopted depending on the language
involved these are described in the respective section for the
language pair.

5.1. Pre-processing

All of the training and development data was converted to
lowercase and punctuation stripped before training began.
Punctuation characters that were part of works (for example
apostrophes) were left in the data. The English data was also



tokenized using an in-house tokenizer that tokenized the text
in a very similar form to the UPENN tree-bank tokenization
scheme.

5.2. Post-processing

Since the models were trained on unpunctuated lowercase
data, the system’s output required this information to be re-
stored for evaluation.

We experimented with two approaches for this purpose.
In the first method we used two of the tools provided in the
SRI Language Modelling Toolkit1, “disambig” and hidden-
ngram”. The second method employed in-house tools based
on discriminative training methods. We found that the in-
house tool capitalization tool achieved a higher F-score result
than the SRI tools, but for punctuation the in-house tool’s
performance was less promising.

As a consequence, for the punctuation step, we used the
SRI tools’, “hidden-ngram” application which is based on
n-gram language modelling techniques. The in-house punc-
tuation tool punctuation tool based on a maximum entropy
(ME) tagging method, where we view a punctuation behind
a word as the label of the previous word. We incorporated
a considerable number of features into the ME-based model,
however in our experiments this model was outperformed in
terms of F-score by the SRI tool.

The main differences from the approach taken in last
year’s evaluation campaign [4] were:

• Usage of out-of-domain resources (the English part of
the EUROPARL corpus)

• Usage of a linear combination of in- and out-of-
domain models (see Figure 5.2). We used the
following interpolation weights for all experiments:

0.1*LMeuroparl + 0.9*LMsupplied corpus

• The post-processing was applied after rescoring, based
on the results of experiments conducted on the devel-
opment sets (see Table 4).

5.3. CRF-based Capitalization

Our capitalizer is modeled by conditional random fields
(CRF). We view the problem of capitalizing lowercase words
as labeling the words with one of four tags:AL, IU, AU, MX,
that stand for all lowercase, initial uppercase, all uppercase
and mixed case.

For example, the sentence,McAdam is CEO of a British
company, is labeled as,mcadam/MX is/AL CEO/AU of/AL
a/AL British/IU company/AL.

The CRF tagging model is expressed by the following
equation:

1http://www.speech.sri.com/projects/srilm
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Figure 3: The effect of integrating models built from external
resources for case and punctuation restoration
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WhereT is a tag sequence andW is a word sequence for
tagging.fk andgk are unigram and bigram features.λ and
µk are feature values.

We used lexical features only. An example of the use
of model 1 is given in [5]. We used the publicly available
CRF++2 toolkit to train the CRF tagger.

Our model achieved higher accuracy than the SRI tools:
for the IWSLT task, the improvement in accuracy was about
10% using this year’s development (devset4 reference) data.
The BLEU score increased from 0.81 using SRI tools to
0.827 using our in-house capitalizer. Therefore we used the
in-house capitalization tool for all of the experiments in this
year’s evaluation.

6. Hit-rate-based Skipn-gram Rescoring

This section describes the re-scoring of the statistical MT
decoder hypotheses based on skipn-gram counts extracted
from a large-scale corpus consisting of collections of web-
pages.

In order to handle very large amounts of training data
to build language models, recent research focuses ondis-
tributed language modelingthat use a two-pass approach to
store corpora in suffix arrays and serve raw counts [6, 7] or
a single-pass approach that provides smoothed probabilities

2http://www.chasen.org/t̃aku/software/CRF++



using simple smoothing techniques [8]. Although such ap-
proaches are to be preferred when available, the computa-
tional and hardware requirements are still immense and not
always practicable.

In order to make use of very large training corpora with
fewer resources, we use a method based onn-gram occur-
rence counts . Thehit-rate of a word sequence is defined to
be:

HitRate(wL
1 ) =

∑
i,j;i<j

δ(wj
i ) (2)

δ(wj
i ) =

{
1 : f(wj

i ) > 0
0 : f(wj

i ) = 0

Thehit-ratecounts can be easily calculated, even for very
large training corpora like theWeb-Corpusintroduced in Sec-
tion 6.1. For the IWSLT experiments, we calculated thehit-
rate feature forskip-n-grams(cf. Section 6.2) and applied
it to the re-scoring ofn-best translation hypotheses produced
by the statistical decoder as described in Section 6.3.

6.1. Corpus

For the experiments described in Section 6.4, we used “Web
1T 5-gram Version 1” corpus provided by LDC [9]. This data
set, contributed by Google Inc., consists of 1 trillion word to-
kens of text from publicly accessible Web pages. It contains
English wordn-grams and their observed frequency counts
where the length of then-grams ranges from unigrams (sin-
gle words) to five-grams. For the experiments described in
Section 6.4, we used only the5-gram and4-gram counts.

6.2. Skipn-grams

Skip n-gramsare sequences ofn words with one or more
holes at any location except for the first word.

ωL
1 = (w1, . . . , wL);wi =′ ∗′, i ∈ {2, . . . , L} (3)

For example, given a5-gramω = (w1,w2,w3,w4,w5), the fol-
lowing skipn-grams can be extracted:

skip-4grams (w1,*,w3,w4,w5)
(w1,w2,*,w4,w5)
(w1,w2,w3,*,w5)
(w1,w2,w3,w4,*)

skip-3grams (w1,*,*,w4,w5)
(w1,*,w3,*,w5)
(w1,*,w3,w4,*)
(w1,w2,*,*,w5)
(w1,w2,*,w4,*)
(w1,w2,w3,*,*)

skip-2grams (w1,w2,*,*,*)
(w1,*,w3,*,*)
(w1,*,*,w4,*)
(w1,*,*,*, w5)

In order to obtain the hit-rate of a skipn-gram in a se-
quence of words, these holes are treated as wildcards (that

match any single word), and the skipn-gram is matched even
if the respective parts of the word sequence differ.

6.3. Hit-rate-based Re-scoring

The algorithm to re-score translation hypotheses based on the
hit-rate of skip n-grams is given in Figure 4. For each input
sentence, then-best translation hypotheses are generated by
a statistical decoder and a scoreSD based on various statis-
tical models is assigned. The re-scoring algorithm calculates
the hit-rate for all skipn-grams contained in each hypothesis
and linearly combines the decoder score with the respective
hit-rates obtaining a new scoreSR.

SR(hyp) = αD ∗ SD (4)

+
∑

i=k,...,l

αi ∗ HitRatei(hyp)

The respective weightsαi can be optimized on a given
development set. For eachn-best list, the translation hypoth-
esis with the highestSR is selected as the translation output.

(1) proc RESCORE( NbestF ile, NgramFile, αD, αk,...,l ) ;
(2) begin
(3) (∗ read translation hypotheses from file∗)
(4) NbestList← read-file(NbestF ile) ;
(5) for each hyp in NbestList do
(6) SD(hyp)← getDecoderScore(hyp) ;
(7) for each HypSkipNgram in getSkipNgram(hyp) do
(8) HitRateHypSkipNgram ← 0 ;
(9) od ;
(10) od ;
(11) (∗ read NGRAM counts from file∗)
(12) for each ngram in read-file(NgramFile) do
(13) for each SkipNgram in getSkipNgram(ngram) do
(14) HitRateSkipNgram ← HitRateSkipNgram + 1 ;
(15) od ;
(16) od ;
(17) (∗ rescore hypotheses∗)
(18) for each hyp in NbestList do
(19) SR(hyp)← αD ∗ SD(hyp)
(20) +

P
i=k,...,l αi ∗ getHitRate(hyp, i) ;

(21) od ;
(22) BestHyp← max arghyp(SR(hyp)) ;

(23) return ( BestHyp ) ;
(24) end ;

Figure 4: RESCORE algorithm

6.4. Experiments

The hit-rate-based re-scoring using skipn-grams was applied
to the Italian-English translation task. The decoder translated
the 1-best recognition result and the 1000-best translation hy-
potheses were produced for each sentence. These hypotheses
were re-scored using the method described above and the hy-
pothesis with the highest score after re-scoring was selected
as the final translation. The translation quality was evaluated
for the development setsIE dev5aand IE dev5busing the



BLEU, NIST, and METEOR metrics3.
In the first step, we investigated the dependencies of the

proposed method concerning the sizeN of the N -best list
and the weightW for the linear interpolation of 5-gram and
skip 4-gram hit-rate counts. Figure 6.4 illustrates the effects
of varying N and W for both, IE dev5a and IE dev5b,
development sets where the evaluation is carried out with-
out case and punctuation information. The results show that
for the BLEU metric anN -best list of size 40 matching
only 5-grams (W=1.0) performed best for both development
sets. For NIST, the largest improvement was achieved for
IE dev5a with N=30 andW=1.0, but almost no improve-
ment was achieved forIE dev5b. For METEOR, larger
improvements could be achieved when taking into account
the skip-4grams gaining 1.7 points forN=20 andW=0.3
for IE dev5a and 0.9 points forN=1000 andW=0.7 for
IE dev5b.

Table 3 compares the results of the proposed method to
the baseline method that selects the translation hypothesis
with the highest decoder score. The re-scoring method out-
performs the baseline method for all evaluation metrics gain-
ing 1.5 / 0.4 points in BLEU, 13.6 / 0.2 points in NIST, and
1.6 / 0.9 points in METEOR for theIE dev5a/ IE dev5bdata
sets, respectively.

Table 3: Rescoring Effects

data rescoring BLEU NIST METEOR

IE dev5a no 0.4288 9.1800 0.6944
yes 0.4434 9.3165 0.7110

IE dev5b no 0.2056 5.4001 0.5265
yes 0.2089 5.4023 0.5351

The n-gram-count corpus used for re-scoring also con-
tains case and punctuation information. Using the IWSLT
development setsIE dev5aand IE dev5b, we investigated
empirically which of the following combinations of the re-
scoring and the post-process steps is most effective.

RPC re-scoring before punctuation/case post-processing:
all skip n-grams were lower-cased and punctuation
marks were treated as wildcards. for calculating the
n-gram-hit-rate for each case/punc-insensitive transla-
tion hypothesis.

PRC re-scoring after punctuation, but before case inser-
tion:
In the first step, punctuation was inserted and case-
insensitive skipn-grams were matched against the
translation hypotheses. Case information was added
after the re-scoring step.

PCR re-scoring after punctuation/case post-processing:
Punctuation and case information were added to the
translation hypotheses before the re-scoring step and

3For the automatic evaluation, 7 reference translations were available for
IE dev5aand 1 reference translation was available forIE dev5b.

hit-rate was calculated using case/punctuation sensi-
tive skipn-grams.

The results summarized in Table 4 show that the re-
scoring method also outperforms the baseline method for
all evaluation metrics when the evaluation is carried out
case/punctuation-sensitive. In total, our method produced a
1.0 / 0.9 points gain in BLEU, 8.6 / 13 points in NIST, and
1.9 / 0.6 points in METEOR for theIE dev5a/ IE dev5bdata
sets, respectively. Based on these results, we selected the
RPC method for the final run submissions, because the test
set of IWSLT 2007 was drawn from the same corpus as the
IE dev5bdata set.

Table 4: Re-scoring vs. Post-processing

data rescoring BLEU NIST METEOR

IE dev5a (none) 0.3643 8.1823 0.6887
RPC 0.3739 8.2392 0.7056
PRC 0.3663 8.1029 0.6911
PCR 0.3746 8.2680 0.6994

IE dev5b (none) 0.1569 4.6345 0.5121
RPC 0.1660 4.7671 0.5181
PRC 0.1621 4.5340 0.4936
PCR 0.1641 4.6310 0.5172

6.5. Translation Task Dependency

In addition to the Italian-English translation task, we also
verified the effectiveness of the re-scoring method for the
Japanese-English and Chinese-English translation tasks and
the case/punctuation-sensitive evaluation results are summa-
rized in Table 5.

Table 5: Rescoring Effects on JE and CE

data rescoring BLEU NIST METEOR

JE dev3 no 0.5793 9.5847 0.7437
yes 0.5643 9.7990 0.7437

CE dev5 no 0.2310 5.9020 0.4945
yes 0.2388 6.2854 0.5146

For Japanese-English, the baseline system results for
most of the automatic evaluation metrics couldn’t be im-
proved. Moreover, due to the unavailability of the Chinese
challenge task test data, the Chinese test set was changed by
the organizers at short notice. Unfortunately, there was not
enough time to validate the effects of the re-scoring method
on theCE dev3devset which was taken from the same do-
main as the new test set. For the above reasons, we decided
to submit the runswithoutre-scoring as the primary runs for
the Japanese-English and Chinese-English translation tasks.

7. Conclusions

The work for this year’s evaluation campaign has focussed
on the task of effectively utilizing external out-of-domain re-
sources to support the supplied in-domain corpus. Overall
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Figure 5:n-best and Weight Dependency

our experiments show that these corpora combined with the
techniques we have applied are very useful, although in some
cases the addition of out-of-domain data degraded system
performance. It is therefore clear that we need to develop and
refine the techniques further in order to exploit the external
resources to the full. We also observed that the pre- and post-
procesing tasks related to handing case, punctuation and seg-
mentation can have a large impact on the automatic evalua-
tion scoring, and it is important to improve these components
alongside the machine translation component for future eval-
uations. Furthermore, improvements along these lines would
have had a knock-on effect on the re-scoring process since
moren-gram hits could be obtained thereby increasing the
reliability of the selection process.
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