
An Efficient Graph Search Decoder for Phrase-Based Statistical Machine
Translation

Brian Delaney, Wade Shen

MIT Lincoln Laboratory
244 Wood St

Lexington, MA 02420
{bdelaney,swade }@ll.mit.edu

Timothy Anderson

Air Force Research Laboratory
2255 H St.

Wright-Patterson AFB, OH 45433
Timothy.Anderson@wpafb.af.mil

Abstract

In this paper we describe an efficient implementation of a
graph search algorithm for phrase-based statistical machine
translation. Our goal was to create a decoder that could be
used for both our research system and a real-time speech-
to-speech machine translation demonstration system. The
search algorithm is based on a Viterbi graph search with an
A* heuristic. We were able to increase the speed of our de-
coder substantially through the use of on-the-fly beam prun-
ing and other algorithmic enhancements. The decoder sup-
ports a variety of reordering constraints as well as arbitrary n-
gram decoding. In addition, we have implemented disk based
translation models and a messaging interface to communi-
cate with other components for use in our real-time speech
translation system.

1. Introduction

The current state-of-the-art in machine translation uses a
phrase-based approach to translate individual sentences from
the source language to the target language. This tech-
nique [1] gave significant improvement over word to word
translation originally developed at IBM [2]. However, re-
gardless of the underlying models, the search or decoding
process in statistical machine translation is computationally
demanding, particularly with regard to word or phrase re-
ordering. Effective pruning and novel reordering techniques
have helped reduce the search space to something more man-
ageable, but search still remains a difficult problem in statis-
tical machine translation.

Our goal was to create a fast and lightweight decoder that
could be used for our research system as well as for a real-
time speech-to-speech translation demonstration system.For
the research system, the decoder had to support two-pass de-
coding via n-best list re-ranking or lattice rescoring. The
decoder also had to be memory efficient enough to handle
search with very large numbers of active nodes. For the

1This work is sponsored by the United States Air Force Research Labo-
ratory under Air Force Contract FA8721-05-C-0002. Opinions, interpreta-
tions, conclusions and recommendations are those of the author and are not
necessarily endorsed by the United States Government.

real-time demonstration system, we required fast decodingas
well as a common API that would allow integration with var-
ious other components such as speech recognition and text-
to-speech systems. Real-time decoding also requires that the
translation models, which can approach several gigabytes in
size, be read efficiently from disk on demand as opposed to
the pre-filtering of models typically done during batch pro-
cessing.

2. System Overview

The decoding strategy we implemented is a Viterbi beam
search with an A* heuristic based on words not yet trans-
lated. The decoder begins by dividing the input sentence into
many overlapping word segments up to a given maximum
phrase length. Each phrase segment is then cross referenced
with the phrase table inventory and the top-N translation can-
didates for the source phrase are stored in memory. A trigram
language model is also loaded into memory, and all partial
translations are given an initial language model score. Dur-
ing search, the language model probabilities for the individ-
ual words are adjusted given the new context of previously
translated words.

For our research system, we employ a two-pass decoding
strategy. N-best lists are generated from the output phrase
lattice, and additional feature functions are added (i.e. higher
order language model, word posterior scores, etc.) The re-
sulting N-best lists are then re-ranked according to these new
features and the best scoring output is selected [3].

2.1. Translation and Language Models

The basic phrase-translation model we employ is described
in detail [4] and [5]. We use GIZA++ [2], [6] and [4] to gen-
erate alignments between foreign language and English lan-
guage words/tokens in both directions (f-to-e and e-to-f).An
expanded alignment is then computed using heuristics that
interpolate between the intersection and union of these bidi-
rectional word alignments as detailed in [4] and [5]. Then
phrases are extracted from the expanded alignments to build
the phrase model.

We extract translation models for both translation direc-

paul
 197

tions (i.e.P (f |e) andP (e|f)). In addition to these models,
we add lexical weights extracted from the expanded align-
ment process in both translation directions [5] and a fixed
phrase penalty [7].

We use the SRILM language model toolkit [8] to gen-
erate an N-gram language model for use during decoding.
These models are trained using modified Knesser-Ney inter-
polation.

2.2. Distortion Modeling

The distortion model we use is still rather weak and is based
on the model used in the Pharaoh decoder [9]. It is simply
a distance penalty based on the overall movement of source
words:

Dp = −
∑

i

|last wordi−1 + 1 − first wordi| (1)

That is, the distortion measure between two phrases is the
number of words between the last word of the previously
translated phrase and the first word of the new phrase. In
practice, we place limits on the allowed reordering patterns
to limit the search space and improve accuracy. This can be
through a fixed distance limit or other linguistically inspired
constraints.

2.3. Minimum Error Rate Training

Table 1: Translation model parameters.

Parameter Description

p(f |e) Forward phrase translation probability
p(e|f) Backward phrase translation probability
LexW (f |e) Forward lexical weighting
LexW (e|f) Backward lexical weighting
Wp Number of output words
Pp Fixed penalty for each source phrase
plbo(e|f) Lexical backoff penalty
Dp Distortion penalty
p(e) N-gram language model

Our translation model employs a log-linear combination
of many different model parameters. The model parameters
used are shown in Table 1. The models are tuned using a de-
velopment corpus using an algorithm similar to the one de-
scribed in [10]. The error criterion minimized is1−BLEU .
N-best lists are generated after decoding on the development
corpus and the weights for the model parameters shown in
Table 1 are set to minimize the overall error rate. Additional
features, such as higher-order language models, can also be
added at this stage and their weights adjusted as well.

3. Decoder Implementation

The decoder uses a Viterbi beam search with an A* heuris-
tic. Pseudocode for the algorithm is shown in Figure 1. First,

the various data structures are initialized and the models are
loaded. The initial node list contains a single node with the
begin sentence marker,<s> . The input source sentence is di-
vided into individual phrases up to a maximum phrase length.
Each input phrase is looked up in the phrase inventory. For
smaller translation tasks with limited training data, the entire
phrase inventory is loaded into memory and a chained hash
table based on the input phrase is created. This hash table
structure allows fast access to the phrase inventory. The hash
table entry for a particular source phrase contains a pointer to
all possible translations of that phrase sorted by the weighted
model parameter scores. This allows for a selection of the
top-N best scoring phrases for efficient search.

Larger translation tasks have phrase inventories that are
too large to be stored in memory during decoding. When
the input sentences are known prior to the decoding process,
as in batch processing of evaluation corpora, it is reasonable
to produce smaller sets of models specific to particular input
sentences. However, for real-time speech translation, this is
not practical nor desireable. We do not have prior knowledge
of the spoken input and cannot filter the phrase inventory in
advance. Instead, we pre-index the phrase table inventory
using Berkeley DB software, and we simply treat the model
as a disk based hash table. Since Berkeley DB is designed
for very fast access to large amounts of data, there is almost
no performance penalty with this approach.

The search proceeds according to the number of source
words covered at a given time (line 2). For each source
phrase in the phrase inventory, possible translation candi-
dates can be linked to previous nodes according to the num-
ber of source words in the currently selected phrase. That is,
a phrase covering three input words, will link back to nodes
from three iterations prior. The distortion is calculated ac-
cording to equation (1). In addition, the coverage vectors
from the left node and this new candidate phrase are checked
to make sure they cover different words. The same word can-
not be covered more than once on a single path.

For the A* heuristic (line 9), we use the highest proba-
bility translation options for the remaining words as in the
Pharaoh decoder [9]. This includes the translation and lan-
guage model probabilities for the remaining phrase scores
in isolation of one another (i.e. no distortion or language
models scores across phrases). These costs can be computed
up front with a simple dynamic programming algorithm and
stored in a table for later use. We experimented with several
extensions to the future cost estimate. We tried augmenting
this heuristic with a language model lookahead as well as a
best case distortion cost. While both of these were admissi-
ble heuristics, we observed no consistent gain in performance
across all our experiments.

The inner loop of the search (line 10) cycles through
all possible translations (up to a predefined limit) for each
phrase that meets the distortion criteria. The language model
scores are updated only at phrase boundaries. Node expan-
sion is controlled by indexing all created nodes into a hash

paul
 198

1. Initialize data structures
2. for cw from 0 to number of words
3. for each src_phrase in src_phrase_list
4. l_index = cw - len(src_phrase)
5. for l_node in node_list[l_index]
6. calculate distortion between l_node and src_phrase
7. if (dist > dlimit) or (l_node and src_phrase cover the same word)
8. continue
9. get future_cost of remaining words

10. for each translation in src_phrase
11. update lm scores at phrase boundary using l_node context
12. find or create curr_node with current coverage and lm con text
13. link curr_node to l_node with current translation
14. if current_score > curr_node.best_score
15. set current translation to best path of curr_node
16. beam and histogram pruning
17. back-trace and output best translation

Figure 1: Pseudocode for the decoding algorithm.

table. The hash function is computed using a data structure
that contains the word coverage vector and the right most
words or language model context for the node. For example,
the hash table index might be ”00110 would like”, indicating
that the third and fourth input source words were covered and
the language model context is ”would like.” If a node already
containing the current coverage vector and language model
context exists in the hash table (line 12), then the current
translation is added to this node and the node is linked back
to the left node in the graph. If a proper node does not exist,
a new one is created and added to the hash table. The back-
off structure of the N-gram language model is also used here
to eliminate unnecessary node expansion for language model
contexts that have no possible n-gram expansion. This sig-
nificantly reduces the number of nodes created during search.

The final step in the inner loop is to update the best path
for the current node if the current score is better (line 14).
This is the Viterbi approximation step. It is important to note
that the score used here is the total log probability plus thefu-
ture cost estimate computed earlier. This total path score plus
future cost is also used during beam and histogram pruning.
After the main search is complete, all remaining nodes are
joined with the end of sentence marker,</s> , and language
model scores are updated across phrase boundaries. The re-
maining search graph can be traced back along the highest
scoring path to get the best path and thus the best candidate
translation.

3.1. OOV Words

The problem of out-of-vocabulary (OOV) words requires
some small changes to the above algorithm. We chose to
handle the issue with an open vocabulary language model.
The SRILM toolkit allows for unknown words by assign-
ing a non-zero probability to word sequences containing the

<unk> tag. In the case of a single unknown word, we simply
pass the word through with translation model probabilitiesof
1.0 and language model probability according to the open vo-
cabulary language model. OOV words are required to remain
adjacent to their previously translated source phrases. Their
distortion cost must be zero. Since the nodes associated with
these OOV input words now have probabilities that are arti-
ficially higher than the remaining nodes. As such, we do not
use nodes containing OOV words in order to set our beam
threshold during pruning.

3.2. On-the-fly Beam Pruning

During some initial profiling of the code, we found that a
significant amount of time was spent looking up various n-
grams in the memory-based language model. Individual N-
grams are also stored in a hash table for fast access, but many
of these language model lookups are unnecessary as the paths
are eventually pruned out. Additionally, there is significant
node expansion for these unpromising paths, which slows the
sorting that takes place prior to pruning. In order to lessen
the impact of frivolous language model lookup and node ex-
pansion, we employed an active or on-the-fly beam pruning
approach.

We start by keeping track of the best path score during
each iteration of the main outer loop. When a translation op-
tion with higher probability occurs, we update the best path
score. Then we apply beam pruning right after steps 9 and
10. If the partial score does not fall within the currently se-
lected beam, the translation option is ignored and the loop
continues with the next translation option. By checking the
score after step 9, we eliminate the inner loop for transla-
tions options whose combined partial path costs, distortion,
and future cost estimates do not fall within the beam. If at
this stage, the probability falls outside the beam, then any

paul
 199

further reduction from the application of translation model
scores in the inner loop will also be outside the beam. Af-
ter step 10, we include the translation model scores, which
further lowers the probability. Once again, if the hypotheses
is outside the beam at this point, then there is no reason for
further analysis, and we can skip the costly language model
lookup.

Table 2: Results from beam pruning enhancements on the
IWSLT06-dev4 data set.

Description Chars/sec BLEU

No on-the-fly pruning 1.06 20.13
prune after step 9 1.08 20.08
prune after step 9,10 2.29 20.08
Sort phrase list 2.99 20.19

Table 3: Beam width comparison for different pruning tech-
niques on the IWSLT06-dev4 data set.

On-the-fly pruning Normal pruning
Beam width Chars/sec BLEU Chars/sec BLEU

0.0003 2.99 20.19 1.06 20.13
0.001 7.31 19.44 1.97 19.77
0.005 28.21 19.36 7.29 19.74
0.01 50.75 18.84 13.1 18.91

While this technique works reasonably well, it operates
under the assumption that the actual best partial path score
is found early on. In the worst case, the best score is found
last, and there is no benefit. To increase the chances that the
highest probability score is found early, we use a best-first
approach with respect to the source phrase list. In particu-
lar, the source phrases are initially sorted according to their
future cost estimate. This helps reduce the average length
of time until the best score is found, and even if the best
scoring path is not found, there is some benefit to having an
active beam width that is at least close to optimal. Using the
training and development sets from the 2006 International
Workshop on Spoken Language Translation (IWSLT06), we
show the BLEU scores decoding times, expressed as charac-
ters per second, in Table 2 for a Chinese to English transla-
tion. (Our Chinese system uses a combination of word and
character segmented alignments to produce a final phrase ta-
ble based on individual Chinese characters.) The IWSLT06
training data consists of approximately 40,000 parallel sen-
tences in the travel expression domain. Supplied with the
training data were three development sets of approximately
500 sentences each, with 2 containing 16 references and
another with only 7 references. We optimized the model
weights on the CSTAR03 development set and decoded on
the IWSLT06-dev4 set. The lower cased output was post-
processed to restore mixed-case information, and the result
was scored against the mixed-case references.

The biggest reduction in runtime came from removing
unnecessary language model lookup after step 10. In the fi-
nal configuration, using a sorted phrase list to quickly arrive
at the best scoring hypothesis yields a runtime that is almost
3 times faster than without on-the-fly pruning. The small
changes in BLEU scores are due to borderline hypotheses
that are pruned out before complete language model expan-
sion. Additionally, we varied the beam width to compare
the optimized vs. non-optimized versions. The results are in
Table 3. We observe some small reduction in BLEU score
when comparing the optimized vs. un-optimized version as
the beam becomes tighter. However, the optimized version is
still much faster, even if slightly sub-optimal with respect to
accuracy.

3.3. Reordering Constraints

In this section, we explore the performance of our decoder
under different word reordering constraints, including the so-
called ITG constraints, IBM constraints, free ordering with a
distance limit, as well as an additional approach that pro-
vides good accuracy with definite speed advantages. Addi-
tional reordering constraints are implemented in place of or
in addition to lines 6,7 in the algorithm shown in Figure 1.
In the case of free word order, any source word can follow
any other word with respect to the construction of the search
graph. Often a hard limit is placed on the maximum distance
allowed. A comparison of different word reordering con-
straints was made in [11], and a simple algorithm for impos-
ing constraints derived from Inversion Transduction Gram-
mars (ITG) [12] during search was introduced. If we assume
a simple, 4-word, input sequence of (1,2,3,4), the ITG con-
straints do not allow certain reordering patterns (i.e. 3,1,4,2
and 2,4,1,3). These “inside-out” patterns are not likely tofol-
low reordering patterns of language. The number of permu-
tations with ITG constraints grows much slower than with
free word reordering [13]. Under the IBM constraints, in-
put source words can be chosen out of order so long as they
fill one of the firstk uncovered words [11]. By increasing
k, more reordering patterns are possible. This can provide
fast decoding whenk is small for closely related language
pairs, but it can be quite slow whenk is large, as for Chinese-
English.

One issue we found when analyzing the performance of
our decoder with respect to word reordering was the issue of
incomplete paths in the graph. Using a free word order with
a hard limit on word movement resulted in graphs with in-
complete translation paths, resulting in wasted search effort.
For example, consider the translation of 4 input source words
using a distortion limit of 2. If we build the graph from left
to right using only the distortion limit as a guide, the result
is shown in Figure 2. If we initially choose the reordering
sequence 2,4,3, we have not violated the constraints placed
on the distortion (Using equation (1) the distortion penalty
from 2 to 4 isDp = |2 + 1 − 4| = 1, and from 4 to 3 it is
Dp = |4 + 1 − 3| = 2). However, the remaining word, 1,

paul
 200

Figure 2: Reordering graph for four input words with a dis-
tortion limit of 2.

Figure 3: IBM constraints for 4-word input sequence with
k = 2.

cannot be selected within the distortion limit constraints(in
this case,Dp = |3 + 1 − 1| = 3). Even in this simple exam-
ple, there are many instances of incomplete paths and thus
wasted search effort. While this graph could be trimmed us-
ing a forward-backward pass, this is not practical for longer
sentences with greater limits on distortion. In the future,we
would like to address this problem with a better implementa-
tion that would detect the incomplete paths in advance.

In practice, a hard distortion limit is often placed on the
ITG constraints as a way to limit the search time, but this too
suffers from the problem of incomplete paths in the search
graph. However, the IBM constraints, by design, do not have
this problem. Figure 3 shows the same reordering graph un-
der the IBM constraints withk = 2. The IBM style con-
straints still produce larger numbers of permutations and thus
decoding times somewhere between free word order and ITG
constraints.

0

1

1:1

2
2:2

3

3:3

4

2:2

5
3:3

64:4

7
1:1

8

2:2

9

3:3
10

4:4

11
2:2

12
3:3

3:3

4:4

131:1

14
4:4

3:3

4:4

2:2

4:4

Figure 4: Reordering graph for four input words with distor-
tion limit of 2 using proposed reordering constraints.

During development of our decoder, we implemented an
additional set of constraints, which is similar to the IBM style
constraints but produces fewer possible permutations. These
produced accurate results with shorter decoding times. Our
proposed algorithm limits reordering patterns in the follow-
ing way. Let lmin be the left-most uncovered source sen-
tence position inS, and letcw be the total number of covered
words in bothC andS. We wish to join candidate phraseC
with an existing path covering source wordsS. C and S

must not cover the same source words and they must satisfy
the distortion constraint in (1). Donot allow expansion along
this path if each of the following conditions are true:

1. distortion > dlimit

2. lmin < cw

3. cw < Cfirst

4. |Clast − lmin| ≥ dlimit

whereCfirst and Clast are the first and last word indices
of candidate phraseC, anddlimit is the maximum allowed
distortion.

That is,C must fill the first available gap in source cov-
erage when expanding from the current coverage, and new
gaps in source coverage must be less than the distortion limit.
(The IBM constraints allow the firstk empty source positions
to be filled.) SinceC can be shorter than the gap, this is not
strictly an adjacent swap constraint. After applying this al-
gorithm, the resulting reordering graph for our toy example
is shown in Figure 4. In this example, the compressed re-
ordering graph contains all of the permutations available in
Figure 2 but without the incomplete paths. However, this is
not generally the case; the above algorithm limits the total
number of reordering permutations. For example, consider
the same four word input sentence, (1,2,3,4), with a distor-
tion limit of three. The above algorithm does not allow the
sequences (2,4,3,1) and (3,4,2,1).

3.4. Phrase Lattice Generation

Since we use a graph search algorithm, we are able to very
quickly produce an output lattice suitable for second pass

paul
 201

TTS
(en)

TTS
(en)

TTS
(fr)

TTS
(fr)

Audio
Server

Audio
Server

MT
(fr�en)

MT
(fr�en)

Control GUIControl GUI

ASR
(fr)

ASR
(fr)

ASR
(en)

ASR
(en)

Hub

1
{ from_gui

: unmute "true"}

2
{ from_audio

: target_lang "fr"
: source_lang "en"
: binary_proxy "[broker proxy:

call ID localhost:6875:0, …]"}

3
{ from_recognizer

: target_lang "fr"
: source_lang "en"
: source_text "find the

cheapest flight..."}

4
{ from_mt

: source_text "find the
cheapest flight..."

: target_text "trouver les
émanations..."

: source_lang "en"
: target_lang "fr"}

5
{ synthesis

: session_id "Default"
: synth_host “localhost"
: synth_port 15050
: call_id “localhost:6870:0"
: encoding_format "linear16"
: sample_rate 16000}

0
Initialization: All servers
contacted and set to defaults.

MT
(en�fr)

MT
(en�fr)

Figure 6: Speech Translation with Galaxy Communicator.

rescoring or minimum error rate training. We simply tra-
verse the remaining graph structure after the search is com-
plete. A forward-backward pass is used to trim any uncon-
nected nodes that may have not been expanded due to prun-
ing. Nodes are given a unique number and links between
nodes contain phrases with individual model scores from Ta-
ble 1. This data structure allows for fast nbest list gener-
ation without an additional pass to retrieve model compo-
nents. We use the HTK lattice format which can then be pro-
cessed by the SRILM toolkit’slattice-tool. Output phrases
are joined as amulti-word by the underscore, ””, character
(i.e. ”i would like”.) An example of an output phrase lattice
is shown in Figure 5. The bit vectors in the node names indi-
cate source word coverage. This information is contained in
the comments of the HTK lattice output if needed.

3.5. Galaxy Communicator Interface

For the real-time speech translation system, we used the
Galaxy Communicator architecture [14] to provide a com-
mon API between the speech recognition, machine transla-
tion, and speech synthesis components. A simple GUI is
used for microphone control and to present recognition and
translation results to the user. Although somewhat dated, the
Communicator architecture provides a simple interface to try
a variety of different technology components and can be used
in overall system evaluation and testing. Communicator uses
a hub and spoke architecture where all interaction is sent
through the hub and routed appropriately, see Figure 6. In
our case, the data is routed to the appropriate recognition,
translation, and speech synthesis servers via the language
attributes attached to each frame. The servers can be dis-
tributed across a network or run locally on one machine. We
have integrated a variety of technology components into this
architecture, both research and commercial quality systems.
Our decoder supports this interface and allows for translation
of individual spoken sentences on large vocabulary tasks via
disk-based translation models. A version of the system, in-
cluding speech recognition and synthesis, runs on a single

Linux-based laptop.

4. Results

In this section we outline some results from our decoder un-
der various configurations using the IWSLT06 training and
development data. In the 2006 evaluation, both the Chinese-
English (CE) and Japanese-English (JE) language pairs had
approximately 40,000 sentence pairs, all of which were used
for both translation and target language model training. The
Italian-English (IE) language pair was only supplied with
20,000 sentence pairs. For the IE direction, we chose to use
only the 20,000 English sentences for language model train-
ing. Supplied with the IWSLT06 evaluation were 4 devel-
opment sets, with the final set,devset4, approximating that
of a speech transcript. There are only 7 references for this
last development set. For each of our test conditions, we op-
timized model weights usingdevset1 and tested ondevset4.
This devset4 did not contain punctuation, so punctuation was
automatically added with the SRILMhidden-ngram tool us-
ing models derived from the training set. The target language
case information was restored using a statistical model and
the SRILM disambig tool. Pruning parameters were kept
fixed for all tests. For scoring, we used BLEU4 with case
and punctuation information in the references. For both the
IE and CE directions, we used alignments from GIZA and
the competitive linking algorithm [15]. In the CE case, the
phrase table was generated using both character and word
segmented alignments, and all source words were character
segmented prior to counting. No rescoring was performed
on the output. The results are from the 1-best output directly
from the decoder.

The results for some of the experiments are shown in
Table 4. The first column describes the evaluation config-
uration. The distortion limit ork value for IBM constraints
was set to 10 for CE and JE and 3 for IE. We performed ex-
periments using free word order, IBM and ITG reordering
constraints as well as the constraints outlined in section 3.3,
labeled as NEW in the table. In addition, we varied the lan-
guage model order from 3-gram to 5-gram, which is indi-
cated by 3g, 4g, and 5g in the test configuration column. The
average number of words (or characters in the CE direction)
processed per second and the BLEU score are reported. The
best scoring configuration is in bold. Given the relatively
small test set, 489 sentences, we should be cautious in the
analysis and recognize that there is some “noise” in the au-
tomatic evaluation measures. We can, however, notice some
general trends from the data.

The first line of the table shows the results for the Pharaoh
decoder [9] after optimization and testing on the same devel-
opment set and with the same pruning thresholds as our de-
coder. The Pharaoh results are comparable to the second row
of the table (free-3g). In general, our decoder produces out-
put with similar BLEU scores in 1/2 to 1/4 of the time in its
base configuration. However, we present the Pharaoh results
to help ground the performance of our decoder with some-

paul
 202

Figure 5: Output phrase lattice example.

Table 4: Decoding times and BLEU scores on IWSLT06 development set 4 using different reordering constraints and language
model order. Limits on distortion are 10 for CE and JE and 3 forIE.

Configuration
Language Pair

CE JE IE
BLEU Chars/sec BLEU Words/sec BLEU Words/sec

Pharaoh 20.41 0.85 23.07 1.39 35.63 55.48

free-3g 20.19 2.99 22.79 5.39 35.90 113.36
free-4g 20.73 1.45 21.76 2.26 35.64 63.06
free-5g 20.39 1.23 21.99 1.65 36.92 42.93

IBM-3g 20.31 3.70 22.55 6.14 36.60 201.05
IBM-4g 20.15 0.92 21.64 2.04 36.77 124.09
IBM-5g 20.29 0.66 23.04 2.05 36.56 81.15

ITG-3g 20.18 4.36 21.99 7.01 35.70 162.99
ITG-4g 18.89 1.04 22.56 3.50 36.81 60.99
ITG-5g 20.31 1.11 22.39 2.38 36.78 48.45

NEW-3g 19.10 8.52 23.23 12.72 36.56 305.29
NEW-4g 20.38 1.70 22.03 5.29 36.96 216.92
NEW-5g 20.90 1.54 22.81 4.36 36.66 142.47

thing familiar, rather than to perform a head-to-head com-
parison.

The data sparseness issue makes it difficult to infer im-
provement with increasing N-gram order while the decoding
times clearly increase from 1.5 to 4 times with each increase
in order. Trigram decoding works quite well in some cases,
including the NEW-3g/JE case and the free-3g/JE case. In
general, reordering constraints had only slight impact on
BLEU score but a much larger effect on decoding times.
The proposed reordering constraints (NEW) generally ran 2-
3 times faster than other techniques and produced scores that
were adequate and sometimes better than other reordering
constraints. Therefore, the proposed reordering constraints
are a good candidate for real-time 1-best speech translation,
subject to tuning of other parameters such as pruning thresh-
olds. The proposed constraints seemed to work particularly
well in the JE case, offering both fast decoding and high
BLEU scores. As the method is not linguistically inspired,
it is not clear why this is the case.

To provide some additional data points, we tried using a
distortion limit of 5 for all language pairs in Table 5. We also
configured the decoder to use all patterns allowed by the ITG

constraints (i.e. with no limits on distortion). When the dis-
tortion limit was set to 5, as in free-3g-d5, the changes due
to reordering constraints are not as clear but the proposed
method (NEW) does still show some speed advantage, par-
ticularly in the JE and CE directions. As the true value of
the ITG constraints is to reduce the total number of permuta-
tions for longer input sentences, we ran some additional ex-
periments with all patterns allowed by ITG. The results are in
the last 3 lines of Table 5. Decoding times were the same or
slightly longer than with ITG with a fixed distortion limit of
10 or 3 and in most cases the scores were slightly better. The
exception was the IE language pair, where word movement
of more than a few words is usually unnecessary.

5. Conclusion

We have presented a decoding algorithm for phrase based
statistical machine translation based on a Viterbi graph
search. The decoder includes some simple speed optimiza-
tions, including an active or on-the-fly beam pruning ap-
proach as well as several different reordering constraints, in-
cluding a more constrained, fast, approach that can be used

paul
 203

Table 5: Timing and BLEU scores for additional distortion limits for IWSLT06 development set 4.

Configuration
Language Pair

CE JE IE
BLEU Chars/sec BLEU Words/sec BLEU Words/sec

free-3g-d5 19.87 6.27 22.36 7.84 35.64 56.74
IBM-3g-d5 19.23 9.22 22.27 14.82 34.89 140.05
ITG-3g-d5 19.91 7.41 21.94 8.55 35.55 55.48
NEW-3g-d5 19.81 21.03 21.93 48.04 34.95 198.97

ITG-3g-unlim 20.13 3.39 22.64 4.63 35.38 83.26
ITG-4g-unlim 20.74 0.89 21.96 2.29 34.95 22.46
ITG-5g-unlim 20.50 0.66 22.33 1.63 33.62 13.38

for real-time translation. In addition to speed enhancements,
the decoder supports fast access to disk based models for
large vocabulary translation as well as a common interface
to other speech technology components via a Galaxy Com-
municator interface. In the future, we would like to incorpo-
rate more complex reordering models through either factored
or lexical models of word movement. Such a model should
help increase both speed and accuracy. In many cases, free
word order or ITG reordering constraints with a hard limit on
distortion can provide good translation results. However,we
would like to better address the problem of incomplete trans-
lation paths (Figure 2) to improve both speed and accuracy.
We would also like to investigate decoding of confusion net-
works or other compact representations of automatic speech
recognition output.

6. References
[1] F. Och, C. Tillmann, and H. Ney, “Improved alignment

models for statistical machine translation,” inProc. of
EMNLP/WVLC, 1999.

[2] P. Brown, J. Cocke, S. Pietra, V. Pietra, F. Jelinek, R. Mer-
cer, and P. Roossin, “A statistical approach to machine trans-
lation,” Computational Linguistics, vol. 16, no. 2, 1990.

[3] W. Shen, B. Delaney, and T. Anderson, “The MIT-LL/AFRL
MT system,” inInternational Workshop on Spoken Language
Translation, 2005.

[4] F. J. Och and N. Hermann, “Improved statistical alignment
models,” inProc. of the 38th Annual Meeting of the Associ-
ation for Computational Linguistics, October 2000, pp. 440–
447.

[5] P. Koehn, F. J. Och, and D. Marcu, “Statistical phrase-based
translation,” inProceedings of the Human Language Technol-
ogy Conference, May 2003.

[6] Y. Al-Onaizan, J. Curin, M. Jahr, K. Knight, J. Lafferty,I. D.
Melamed, F. J. Och, D. Purdy, N. A. Smith, and D. Yarowsky,
“Statistical machine translation: Final report,”Summer Work-
shop on Language Engineering. John Hopkins University
Center for Language and Speech Processing, 1999.

[7] I. Thayer, E. Ettelaie, K. Knight, D. Marcu, D. S. Munteanu,
F. J. Och, and Q. Tipu, “The ISI/USC MT system,” inProc. of
the International Workshop on Spoken Language Translation,
2004.

[8] A. Stolcke, “SRILM - an extensible language modeling
toolkit,” in Proc. Intl. Conf. Spoken Language Processing,
September 2002.

[9] P. Koehn, “Pharaoh: A beam search decoder for phrase-based
statistical machine translation models,” inProceedings of the
Association of Machine Translation in the Americas (AMTA-
2004), October 2004.

[10] F. J. Och, “Minimum error rate training for statisticalmachine
translation,” inProc. of the 41st Annual Meeting of the Asso-
ciation for Computational Linguistics, July 2003.

[11] R. Zens, H. Ney, T. Watanabe, and E. Sumita, “Reordering
constraints for phrase-based statistical machine translation,”
in Proceedings of Coling 2004. Geneva, Switzerland: COL-
ING, Aug 23–Aug 27 2004, pp. 205–211.

[12] D. Wu, “Stochastic inversion transduction grammars and
bilingual parsing of parallel corpora,”Computational Linguis-
tics, vol. 23, no. 3, pp. 377–403, September 1997.

[13] R. Zens and H. Ney, “A comparative study on reordering con-
straints in statistical machine translation,” inProceedings of
the 41st Annual Meeting of the Association for Computational
Linguistics, 2003.

[14] S. Seneff, E. Hurley, R. Lau, C. Pao, P. Schmid, and V. Zue,
“Galaxy-II: A reference architecture for conversational system
development,” inProc. of ICSLP 98, November 1998.

[15] I. Melamed, “A Word-to-Word Model of Translational Equiv-
alence,”Proc. of the ACL97, pp. 490–497, 1997.

paul
 204

