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Abstract

We give an overview of the RWTH phrase-based statistical
machine translation system that was used in the evaluation
campaign of the International Workshop on Spoken Lan-
guage Translation (IWSLT) 2006. The system was ranked
first with respect to the BLEU measure in all language pairs
it was used

Using a two-pass aproach, we first generate theN best
translation candidates. The second pass consists of rescoring
and reranking these candidates. We will give a description
of the search algorithm as well as of the models used in each
pass.

We will also describe our method for dealing with punc-
tuation restoration, in order to overcome the difficulties of
spoken language translation.

This work also includes a brief description of the system
combination done by the partners participating in the Euro-
pean TC-Star project.

1. Introduction

We give an overview of the RWTH phrase-based statistical
machine translation system that was used in the evaluation
campaign of the International Workshop on Spoken Lan-
guage Translation (IWSLT) 2006.

We use a two pass approach. First, we generate a list of
theN best translation candidates. Then, we apply additional
models in a rescoring/reranking approach.

This work is structured as follows: first, we will review
the statistical approach to machine translation and introduce
the notation that we will use in the later sections. Then, we
will describe the models and algorithms that are used for gen-
erating theN -best list, i.e., the first pass. In Section 3, we
will describe the models that are used to rescore and rerank
this N -best list, i.e., the second pass. Afterwards, we will
give an overview of the tasks and discuss the experimen-
tal results. This paper will also include a section describing
the method used for the system combination of the TC-Star
project partners.

The overall system is similar to the one used in the 2005
IWSLT evaluation [1]. However, it contains novel features
for the first pass, as well as for the second pass. In the first

pass, we use phrase count features (cf. 2.2) to smooth the
phrase probabiliies. In the second pass, we used sentence
mixture language models 3.2 as a new model for rescoring.

1.1. Source-channel approach to SMT

In statistical machine translation, we are given a source lan-
guage sentence

fJ
1 = f1 . . . fj . . . fJ , which is to be translated into a

target language sentenceeI
1 = e1 . . . ei . . . eI .

Among all possible target language sentences, we will
choose the sentence with the highest probability:

êÎ
1 = argmax

I,eI
1

{
Pr(eI

1|fJ
1 )

}
(1)

= argmax
I,eI

1

{
Pr(eI

1) · Pr(fJ
1 |eI

1)
}

(2)

This decomposition into two knowledge sources is
known as the source-channel approach to statistical machine
translation [2]. It allows for an independent modeling of
the target language modelPr(eI

1) and the translation model
Pr(fJ

1 |eI
1)

1.
The target language model describes the well-formedness

of the target language sentence. The translation model links
the source language sentence to the target language sentence.
Theargmax operation denotes the search problem, i.e., the
generation of the output sentence in the target language.

1.2. Log-linear model

A generalization of the classical source-channel approach is
the direct modeling of the posterior probabilityPr(eI

1|fJ
1 ).

Using a log-linear model [3], we obtain:

Pr(eI
1|fJ

1 ) =
exp

(∑M
m=1 λmhm(eI

1, f
J
1 )

)

∑
e′I′1

exp
(∑M

m=1 λmhm(e′I
′

1 , fJ
1 )

) (3)

1The notational convention will be as follows: we use the symbolPr(·)
to denote general probability distributions with (nearly) no specific assump-
tions. In contrast, for model-based probability distributions, we use the
generic symbolp(·).
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The denominator represents a normalization factor that de-
pends only on the source sentencefJ

1 . Therefore, we can
omit it during the search process. As a decision rule, we ob-
tain:

êÎ
1 = argmax

I,eI
1

{
M∑

m=1

λmhm(eI
1, f

J
1 )

}
(4)

This is a generalization of the source-channel approach.
It has the advantage that additional modelsh(·) can be easily
integrated into the overall system. The model scaling factors
λM

1 are trained according to the maximum entropy principle,
e.g., using the GIS algorithm. Alternatively, one can train
them with respect to the final translation quality measured by
an error criterion [4]. For the IWSLT evaluation campaign,
we optimized the scaling factors with respect to the BLEU
measure, using the Downhill Simplex algorithm from [5].

1.3. Phrase-based approach

The basic idea of phrase-based translation is to segment the
given source sentence into phrases, then translate each phrase
and finally compose the target sentence from these phrase
translations. This idea is illustrated in Figure 1. Formally,
we define a segmentation of a given sentence pair(fJ

1 , eI
1)

into K blocks:

k → sk := (ik; bk, jk), for k = 1 . . . K. (5)

Here,ik denotes the last position of thekth target phrase; we
seti0 := 0. The pair(bk, jk) denotes the start and end po-
sitions of the source phrase that is aligned to thekth target
phrase; we setj0 := 0. Phrases are defined as nonempty
contiguous sequences of words. We constrain the segmenta-
tions so that all words in the source and the target sentence
are covered by exactly one phrase. Thus, there are no gaps
and there is no overlap.

For a given sentence pair(fJ
1 , eI

1) and a given segmenta-
tion sK

1 , we define the bilingual phrases as:

ẽk := eik−1+1 . . . eik
(6)

f̃k := fbk
. . . fjk

(7)

Note that the segmentationsK
1 contains the information

on the phrase-level reordering. The segmentationsK
1 is intro-

duced as a hidden variable in the translation model. There-
fore, it would be theoretically correct to sum over all possible
segmentations. In practice, we use the maximum approxi-
mation for this sum. As a result, the modelsh(·) depend not
only on the sentence pair(fJ

1 , eI
1), but also on the segmenta-

tion sK
1 , i.e., we have modelsh(fJ

1 , eI
1, s

K
1 ).

1.4. Source cardinality synchronous search

For single-word based models, this search strategy is de-
scribed in [6]. The idea is that the search proceeds syn-
chronously with the cardinality of the already translated
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Figure 1: Illustration of the phrase segmentation.

source positions. Here, we use a phrase-based version of this
idea. To make the search problem feasible, the reorderings
are constrained as in [7].

2. Models used during search

When searching for the best translation for a given input sen-
tence, we use a log-linear combination of several models
(also called feature functions) as decision criterion. In this
section, we will describe the models that are used in the first
pass, i.e., duringN best list generation. More specifically the
models are: a phrase translation model, a word-based transla-
tion model, word and phrase penalty, a target language model
and a reordering model. We will now describe the models in
detail.

2.1. Phrase-based model

The phrase-based translation model is the main component of
our translation system. The hypotheses are generated by con-
catenating target language phrases. The pairs of source and
corresponding target phrases are extracted from the word-
aligned bilingual training corpus by the phrase extraction al-
gorithm described in detail in [8]. The main idea is to ex-
tract phrase pairs that are consistent with the word alignment,
meaning that the words of the source phrase are aligned only
to words in the target phrase and vice versa. This criterion is
identical to the alignment template criterion described in [9].

We use relative frequencies to estimate the phrase trans-
lation probabilities:

p(f̃ |ẽ) =
N(f̃ , ẽ)
N(ẽ)

(8)

Here, the number of co-occurrences of a phrase pair(f̃ , ẽ)
that are consistent with the word alignment is denoted as
N(f̃ , ẽ). If one occurrence of a target phraseẽ hasN > 1
possible translations, each of them contributes toN(f̃ , ẽ)
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with 1/N . The marginal countN(ẽ) is the number of oc-
currences of the target phraseẽ in the training corpus. The
resulting feature function is:

hPhr(fJ
1 , eI

1, s
K
1 ) = log

K∏

k=1

p(f̃k|ẽk) (9)

To obtain a more symmetric model, we use the phrase-based
model in both directionsp(f̃ |ẽ) andp(ẽ|f̃).

2.2. Phrase Count Features

The reliability of the phrase probability estimation is largely
dependent on the amount and quality of the training data.
Generally, the probability of rare phrases tends to be over-
estimated, but as they do not occur often, it might be as well
errors originating from mistranslations in the training data
or erroneous word alignments. Therefore, we also included
features based on the actual count of the bilingual phrase pair.

hC,τ (fJ
1 , eI

1, s
K
1 ) =

K∑

k=1

[N(f̃k, ẽk) ≤ τ ]

We use[·] to denote a true or false statement [10], i.e.,
the result is1 if the statement is true, and0 otherwise. In
general, we use the following convention:

[ C ] =
{

1, if conditionC is true
0, if conditionC is false

(10)

The valueτ determines the threshold for the phrase count
feature. In the evaluation system, we used three phrase count
features withτ manually chosen and ranging from1.0 to 3.0.
As that actual phrase count values are fractional, also frac-
tional thresholds can be used.

2.3. Word-based lexicon model

We are using relative frequencies to estimate the phrase
translation probabilities. Most of the longer phrases occur
only once in the training corpus. Therefore, pure relative fre-
quencies overestimate the probability of those phrases. To
overcome this problem, we use a word-based lexicon model
to smooth the phrase translation probabilities.

The score of a phrase pair is computed similar to the IBM
model 1, but here, we are summing only within a phrase pair
and not over the whole target language sentence:

hLex(fJ
1 , eI

1, s
K
1 ) = log

K∏

k=1

jk∏

j=bk

ik∑

i=ik−1+1

p(fj |ei) (11)

The word translation probabilitiesp(f |e) are estimated as
relative frequencies from the word-aligned training corpus.
The word-based lexicon model is also used in both directions
p(f |e) andp(e|f).

2.4. Word and phrase penalty model

In addition, we use two simple heuristics, namely word
penalty and phrase penalty:

hWP(fJ
1 , eI

1, s
K
1 ) = I (12)

hPP(fJ
1 , eI

1, s
K
1 ) = K (13)

These two models affect the average sentence and phrase
lengths. The model scaling factors can be adjusted to pre-
fer longer sentences and longer phrases.

2.5. Target language model

We use the SRI language modeling toolkit [11] to train a stan-
dardn-gram language model. The resulting feature function
is:

hLM (fJ
1 , eI

1, s
K
1 ) = log

I∏

i=1

p(ei|ei−1
i−n+1) (14)

The smoothing technique we apply is the modified Kneser-
Ney discounting with interpolation. We used a 6-gram lan-
guage model for all tasks.

2.6. Reordering model

We use a very simple reordering model that is also used in,
for instance, [9, 12]. It assigns costs based on the jump width:

hRM(fJ
1 , eI

1, s
K
1 ) =

K∑

k=1

|bk − jk−1 − 1|+ J − jK (15)

3. Rescoring models

In this section, we describe the second pass of our system,
the rescoring ofN -best lists. N -best lists are suitable for
easily applying several rescoring techniques because the hy-
potheses are already fully generated. In comparison, word
graph rescoring techniques need specialized tools which tra-
verse the graph appropriately. Additionally, because a node
within a word graph allows for many histories, one can only
apply local rescoring techniques, whereas forN -best lists,
techniques can be used that consider properties of the whole
target sentence.

In the next sections, we will present several rescoring
models.

3.1. Clustered language models

One of the first ideas in rescoring is to use additional lan-
guage models that were not used in the generation proce-
dure. In our system, we use clustered language models based
on regular expressions [13]. Each hypothesis is classified by
matching it to regular expressions that identify the type of the
sentence. Then, a cluster-specific (or sentence-type-specific)
language model is interpolated into a global language model
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Chinese Japanese English

Train: Sentences 40 000
Running Words 295 579 348 103 377 355

Vocabulary 11 170 12 533 9 570
Singletons 4 348 5 572 3 904

IWSLT’05 Sentences 506
Running Words 3 208 3 601 3 767

Vocabulary 928 950 843
OOVs (running words) 67 (2.1%) 46 (1.3%) 179 (4.7%)

DEV’06 Sentences 489
Running Words 5 214 5 874 6 362

Vocabulary 1 137 1 189 1 012
OOVs (running words) 126 (2.4%) 119 (2.0%) 296 (4.7%)

EVAL’06 Sentences 500
Running Words 5 550 6 489

Vocabulary 1 328 1 330
OOVs (running words) 172 (3.1%) 170 (2.6%)

Table 1: Corpus Statistics of the IWSLT 2006 training data and development, test and eval corpora after preprocessing

to compute the score of the sentence:

hCLM(fJ
1 , eI

1) = (16)

log
∑

c

[Rc(eI
1)

] (
αcpc(eI

1) + (1− αc)pg(eI
1)

)
,

where pg(eI
1) is the global language model,pc(eI

1) the
cluster-specific language model, and

[Rc(eI
1)

]
denotes the

true-or-false statement (cf. Equation 10) which is1 if the cth

regular expressionRc(·) matches the target sentenceeI
1 and

0 otherwise.2 Typical examples for clusters are questions and
exclamations, which can usually be detected by punctuation
marks and/or specific words (i.e. “what”, “when”, “how”, ...
at the beginning of a question sentence. Furthermore, when
looking at the training data, specific sentences and expres-
sions can be spotted occur quite frequently and can be joined
into a cluster.

3.2. Sentence-level Mixtures

As an additional language model in rescoring, we use sen-
tence level mixture language models, as presented in [14].
The goal is to represent topic dependencies combiningM
different language models with a global one, corresponding
to the indexm = 0 in the following equation (for the case of
trigram language models)

p(eI
1) =

M∑
m=0

λm

[
I∏

i=1

pm(ei|ei−1, ei−2)

]
. (17)

The training sentences are automatically divided into a fixed
numberM of clusters (representing different topics) using

2The clusters are disjunct, thus only one regular expression matches.

a maximum likelihood approach and the weightsλm are
trained on the development data. We used 5-grams for this
rescoring model.

3.3. IBM model 1

IBM model 1 rescoring rates the quality of a sentence by
using the probabilities of one of the easiest single-word based
translation models:

hIBM1(fJ
1 , eI

1) = log


 1

(I + 1)J

J∏

j=1

I∑

i=0

p(fj |ei)


 (18)

Despite its simplicity, this model achieves good improve-
ments [15].

3.4. IBM1 deletion model

During the IBM model 1 rescoring step, we make use of an-
other rescoring technique that benefits from the IBM model 1
lexical probabilities:

hDel(fJ
1 , eI

1) =
J∑

j=1

I∏

i=0

[ p(fj |ei) < τ ] (19)

We call this the IBM1 deletion model. It counts all source
words whose lexical probability given each target word is be-
low a thresholdτ . In the experiments,τ was chosen between
10−1 and10−4.

3.5. Sentence length model

Sentence length is crucial for the evaluation of machine
translation output, especially when using automatic evalua-
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tion measures. Therefore we explicitly modeled the target
sentence lengthI using the method described in [16]:

hSL(fJ
1 , eI

1) = log
∑

eI
1

p(eI
1|fJ

1 )

The sum is carried out only over those target hypotheses
that have lengthI.

4. Tasks and corpora

The experiments were carried out on theBasic Travel Ex-
pression Corpus(BTEC) task [17]. This is a multilingual
speech corpus which contains tourism-related sentences sim-
ilar to those that are found in phrase books. The corpus statis-
tics are shown in Table 1. For the open data track a 40 000
sentences training corpus and four test sets were made avail-
able for each language pair. Other resources, despite propri-
etary data were permitted, but were not used in this system.

As the BTEC is a rather clean corpus, the preprocessing
consisted mainly of tokenization, i.e., separating punctuation
marks from words. Additionally, we expanded contractions
such asit’s or I’m in the English corpus and we removed the
case information. There was no special preprocessing for the
Chinese and the Japanese training corpora.

We used the provided IWSLT 2006 development set to
optimize the system, for instance, the model scaling factors
and the GIZA++ [18] parameter settings. The IWSLT’05 test
set was used as a blind test corpus. After the optimization,
we added the development sets to the training corpus and
retrained the whole system.

5. Experimental results

The automatic evaluation criteria are computed using the
IWSLT 2006 evaluation server. For all the experiments, we
report the two accuracy measures BLEU [19] and NIST [20]
as well as the two error rates WER and PER. For the pri-
mary submissions, we also report the two accuracy measure
Meteor [21]. All those criteria are computed with respect to
multiple references.

5.1. Primary submissions

The translation results of the RWTH primary submissions are
summarized in Table 4.

5.2. Analysis of the results for text input

In Table 2, we show the progress of the RWTH machine
translation over the past two years. The evaluation is done
on the IWSLT 2005 test set for the supplied data track. For
the 2006 system, we provide two variants. First, a system,
that is only trained on 20k sentence pairs, as the systems
from 2004 and 2005. Second, a system, that uses the full
40k sentence pairs that were used in the 2006 evaluation sys-
tem. This makes the 2006 system comparable to the previous
systems and also shows the effect of the additional data.

Table 2: Progress over time: comparison of the RWTH sys-
tems of the years 2004 to 2006 for the supplied data track on
the IWSLT 2005 test set.

Translation System BLEU NIST WER PER
Direction [%] [%] [%]

Chin.-Engl. 2004 40.4 8.59 52.4 42.2
2005 46.3 8.73 47.4 39.7
2006 48.8 8.56 47.3 39.2
2006 (40k) 51.4 9.00 40.0 33.2

Jap.-Engl. 2004 44.8 9.41 50.0 37.7
2005 49.8 9.52 46.5 36.8
2006 56.5 8.72 41.9 32.8
2006 (40k) 57.1 8.69 41.8 33.6

Table 3: Rescoring: effect of successively adding models for
the Chinese-English IWSLT 2006 development set.

System BLEU NIST WER PER
[%] [%] [%]

Baseline 21.9 6.31 66.4 50.8
+CLM 22.5 6.09 63.7 49.7
+Len 23.0 6.36 66.7 51.3
+MIX 23.2 6.30 65.6 50.4
+Del 23.4 6.37 66.1 50.4
+IBM1 23.5 6.33 64.8 49.4

Even without the additional data, the systems improve
in all scores except the NIST measure. Interestingly, using
the double ammount of training data only slightly improves
translation quality. This can be attributed to the fact, that the
coverage of the IWSLT ’04 test data is already high for the
20k sentences and the 16 references allow for a large toler-
ance in the MT output.

The effects of theN -best list rescoring for the IWSLT
2006 development set are summarized in Table 3. Improve-
ments on the developmenet set were also verified on the
IWSLT ’04 to avoid overfitting.

6. Punctuation prediction and case restoration

When translating speech, the input of the translation sys-
tem usually does not contain punctuation marks or case in-
formation. The human user of an MT system however ex-
pects readable output in the target language, including proper
punctuation and capitalization. The IWSLT 2006 evaluation
reflects these conditions. The input to the translation system
was provided without punctuation and punctuation had to be
generated by the MT system.
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Table 4: Official results for the RWTH primary submissions on the IWSLT 2006 test set.

Translation Input Accuracy Measures Error Rates
Direction BLEU [%] NIST Meteor [%] WER [%] PER [%]

Chinese-English Correct 24.2 6.10 50.3 66.7 50.9
Read 21.1 5.40 44.3 69.5 55.3
Spont 19.0 5.05 42.0 71.2 57.1

Japanese-English Correct 23.7 5.92 48.9 68.5 51.5
Read 21.4 5.65 45.7 70.7 53.8

6.1. Punctuation prediction

When predicting punctuation in speech translation, we can
follow three different paths:

1. Predicting punctuation onsource sidei.e. in the ASR
output. In general, this strategy has the advantage, that
prosodic cues from speech recognition can be used to
help punctuation prediction. Furthermore, the MT sys-
tem trained for regular text translation can be used,
as it expects punctuation in the input. A disadvan-
tage is that falsely inserted punctuation marks can de-
teriorate translation performance, especially of phrase-
based MT systems, as long phrases might not match
anymore.

2. Predicting punctuation on thetarget side(i.e. the MT
output). Usually punctuation rules differ between lan-
guages. This strategy has the advantage, that punc-
tuation is learned on the target language and thus ex-
pected to better reflect the corresponding punctuation
rules. The disadvantage is, that the decision about in-
serting punctuation is based on MT output. This out-
put is likely to contain errors which might lower the
quality of punctuation prediction.

3. Predicting punctuationimplicitly during the translation
process. The MT system is trained without punctua-
tion on the source side and with punctuation on the tar-
get side. This way, both the translation and the target
language model are used to predict punctuation. The
advantage is that the full predictive power of the MT
system is used not only for the generation of words,
but also for the generation of punctuation. Optimiza-
tion of the scaling factors of the model can easily be
done with respect to references with punctuation. The
disadvantage is, that a separate MT system needs to be
trained for this condition.

We decided to used method 3 as it required neither prepro-
cessing nor postprocessing and lead to the best translation
results.

6.2. Case restoration

The 2006 evaluation conditions required the translation out-
put to be in correct case (“truecasing”). As we lowercased

the training corpus during the preprocessing in order to re-
duce the vocabulary size and improve the training, we needed
to restore the correct case information. Therefore, we used
the method described by the organizers of the evaluation and
created a disambiguation language model. The model was
based solely on the provided training data. Truecasing was
done as a postprocessing step after the second pass of the
translation using the disambiguation tool from the SRI lan-
guage modeling toolkit [11]. Compared to the correct case of
the DEV’06 references, truecasing had an error rate of 2%.

7. System combination

The system combination approach follows the description in
[22]. For each input test sentence, the single-best translations
of the partner systems are word-aligned with each other, al-
lowing for word reordering. The alignment procedure is sta-
tistical and iterative. This procedure makes use of the fact
that identical words should align to each other. The whole
test corpus of translations is taken into account when deter-
mining the alignment.

When the mutual word alignment of all the hypotheses
for one sentence is obtained, a primary hypothesis is selected.
All other hypotheses are then reordered to match the word
order of the primary hypothesis based on the alignment. Us-
ing the monotonic alignments of secondary hypotheses with
the primary one, a confusion network is constructed. The
consensus translation is then computed by “voting” on the
confusion network, as in the ROVER approach of [23].

All arcs in the path through the confusion network repre-
senting a hypothesis of a particular MT system are weighted
with a system-specific factor. The factors for the individual
systems are optimized manually on the IWSLT 2006 Devel-
opment set.

Since it is not known which hypothesis has the best word
order, we let each hypothesis play the role of the primary
translation once, and thus constructM confusion networks
(M = 4 is the number of systems used) and unite them in a
single lattice. Form the resulting lattice, the best hypothesis
is extracted as the result of the system combination.

For the IWSLT 2006 evaluation, the system combination
was performed on the output of the translation engines of the
partners within the European TC-Star project: University of
Karlsruhe, ITC-irst, RWTH Aachen University and Univer-
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Table 5: Official results for the TC-Star submissions on the IWSLT 2006 Chinese-English test set.

Input Accuracy Measures Error Rates
BLEU [%] NIST Meteor [%] WER [%] PER [%]

Correct 24.1 6.40 51.8 65.4 49.8
Read 20.0 5.59 46.0 69.1 54.7

sitat Polytechnica de Catalunya (UPC). The submissions of
the partners to the Chinese-to-English open data track were
combined for text and read-speech input.

Table 5 shows the results of the TC-Star system combi-
nation submission. Compared to the best performing system
within the combination (cf. 4), all measures except BLEU
are improved by system combination, especially METEOR
and PER. This can be explained by the fact, that the method
used for system combination focuses primarily on improving
the word choice rather than finding the correct reordering.

8. Conclusions

We have described the RWTH phrase-based statistical ma-
chine translation system that was used in the evaluation cam-
paign of the IWSLT 2006. We use a two pass approach. In
the first pass, we use a dynamic programming beam search
algorithm to generate anN -best list. The second pass con-
sists of rescoring and reranking of thisN -best list.

One important advantage of our data-driven machine
translation systems is that virtually the same system can
be used for the different translation directions. Only a
marginal portion of the overall performance can be attributed
to language-specific methods.

We have shown significant improvements compared to
the RWTH system of 2005 [1] and have introduced new fea-
ture functions based on phrase counts. New rescoring models
were added in the second search path, the sentence mixture
models and a sentence length model.

We also introduced a new method for punctuation predi-
tion that uses the translation and language models to implic-
itly predict punctuation marks in the translation process.
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