Handling Low Translatability in Machine Translation of
Long Sentences

Svetlana SHEREMETYEVA

LanA Consulting ApS
Mynstersvej 7A, 2
Copenhagen, Denmark, DK-1827
lanaconsult@mail.dk

Abstract. Long and complex sentences are normally “low translatable” sentences due to
high ambiguity. We describe a methodology of handling such sentences in APTrans, - a
system for machine translation of patent claims between English and other languages.
APTrans builds on patent data hard-coded in the system lexicon and grammars coached in
diverse grammatical frameworks (PSG and predicate/argument DG). We motivate a
specific partial parse, - in our analyzer parsing is reduced to a phrase level and a level of
individual simple clauses. The load of detecting a clause hierarchy in a complex sentence is
shifted to the generator. Transfer combines an interlingual and a syntactic transfer
approaches. The methodology is universal in the sense that it could be used for different
domains, languages and applications. We introduce special features of APTrans on the

example of English/ Danish language pair.

1. Introduction

Low translatability indicators, such as -
included and parallel structures, ambiguous
PP attachments, etc., (Underwood and

Jongejan, 2001) characteristic of long
sentences, are the reasons that currently no
commercial MT system can translate patent
claims adequately.

A device for producing a spray of electrically charged particles comprising

means defining a location from which the spray is generated, and

a voltage generator for producing high voltage between said location and the surroundings,
characterized in that said voltage generator comprises a large solid state array of radiation
sensitive voltage producing elements interconnected to produce high voltage...

Fig. 1. A Fragment of a US patent claim. Predicates of included clauses are bold-faced.

In many MT systems long sentences are
broken up along punctuation, and the
segments are parsed separately (Kim and
Ehara, 1994). This method can be incorrect
due to the punctuation ambiguity. The long
sentence problem is sometimes approached
by being very selective about which
sentences to parse as in (Hobbs and Bear,
1995), where statistical filter is used to pre-
process a text. In the Pattern-based English-

Korean MT (Roh et al., 2003) long
sentences are handled by using chunking
information on the phrase-level of the parse
result to which a sentence pattern is applied
directly. A patent specific research in MT
where the problem of low translatable
sentences is addressed by suggesting an
interactive analysis module has been done
for Russian to English by (Sheremetyeva
and Nirenburg, 1999). The most recent

attempt to cope with low translatability of a
patent claim is a Japanese-English patent
MT system, which merges the English claim
authoring system AutoPat (Sheremetyeva,
2003) and a Japanese PC-Transfer
application (Neumann, 2005).

The APTrans system presented in the
current paper integrates some of the transfer
and generation techniques described in the
last cited works but relies on an automatic
analyzer bypassing some of low
translatability —problems. Although the
correlation between the sentence length and
ambiguity is clear, the great portion of
ambiguities occurs in treatment the higher
(clause) nodes in the syntactic tree, on the
contrary, processing on the phrase (NP, PP,
etc.) level does not usually generate more
ambiguity as a sentence becomes longer
(Abney, 1996). The specificity of our
approach is that parsing is not required to
produce the structural information of higher
levels than a simple clause in the syntactic
tree of a complex claim structure. The parser
carries out the analysis on a phrase level and
a level of individual simple clauses, which
results in an interlingual content
representation. The load of detecting a
clause hierarchy is shifted to the generator.
The system is augmented with domain tuned
proofing tools: spelling and grammar
checkers. APTrans draws heavily on patent
data that, as our research showed, feature
great similarity across many languages, i.e.,
sublanguages of different national languages
in patent domain are much closer than these
languages as such. The linguistic knowledge
of the system currently covers English and
Danish, but the methodology, engine
programs and developer tools make
APTrans easily extendable to any other
language pair.

2. Lexicon

APTrans lexicon contains rather deep
knowledge crucial for all components of

APTrans. It includes corpus-based cross-
referenced monolingual lexicons. Every
monolingual lexicon consists of a set of
single sense entries maximally defined as a
tree of the following features:

Every entry is maximally defined as a
tree of features:

SEM-CL[Language[POS RANK
[MORPH CASE_ROLE FILLER
PATTERN]

SEM_CI - semantic class;

CASE_ROLEs, - a set of case roles
associated with a lexeme, if any;

FILLERSs - sets of most probable fillers
of case-roles in terms of types of phrases
and lexical preferences (field ‘“case-role
syntax” in Figure 2).

PATTERN:S - patterns that code both the
knowledge about co-occurrences of lexemes
with their case-roles and the knowledge
about their linear order (local word order)
(linking features), e.g., the pattern (13 x 2 4)
for the predicate “connected” (see Figure 2)
means that this predicate can have case-roles
1(subject), 2(indirect-object), 3(manner) and
4(purpose) realized simultaneously and in
such a case the order of the words should be:
“1: wires 3:electrically x: connected 2:to the
lamp 4: to switch it off”

POS - part of speech out of the set of 14
POS defined for the domain. To simplify
processing we consider passive and active
predicates as belonging to different parts of
speech.

MORPH - explicitly listed domain
relevant wordforms, number, gender, etc.,
(morphological features). The beauty of the
claim domain is that verb (predicate)
paradigms are very much restricted and we
can save acquisition effort on listing only
those wordforms, which can occur in the
claim text and skip those which do not (see
more on claim sublanguage analysis in and
its representation in TransDict in
(Sheremetyeva, 2005).

Ml AutoPat Translation Dictionary (Tran:

File ‘“iew Search Tools

5| &8 A |

L‘ ﬂl > I Sem-class IConnecliun Code: |C Comments: IHerE you can bupe in comments...
| [tame [s0 [Pos [a] Language: |Enghsh Code: |EN Commerts: |Saed language
congruence FOD N
congruent a Al % I Part of Speech: IPrEdicale passive Code; IF’D Comments: IHerE you can bype in comments...
conic u] ADJ
conical o] A0 Comments: IAdded 161242003 11:43:01
conicidence PO N : 5
S 0 PG English | Danish | Swedish | French | Russian | =)
coning u] A0 D — Wword farms
conin FG N 2
wmaglwe FO N L I Vet Choose case-oles for the cument case-frame: ‘ 3
conjugal o] A0 gilF connected Pde [] condition
conjugate (il N S5 isconnected Pdcs O dgslinalipn
conjugated o] FD s i Pd [] direct-obj
conjugating u] FG - '® Connecte 153 [indirect-obj
conjunction 0 N Ahs being connected Pdca [marner
Contete o bl | beconnected Pdci Ll mesre
canjut PO N L parameter
connectable 0 A0 " Sm mustbe connected Pdcm % E{:‘;SE
connected c FD Sc canbe connected Pdco [] source
connectible 0 ADJ
[subject
cannecting C FG time ;I
cannecting 0 ADJ =
connection D N
connection u} N Frequency [rank]: 1 Cancel |
connectionless 0 ADJ
cornective] ADJ Easra-mla [F3EE] —I
connectively a] ADYV (1 subject] ;l subject (M HF) -
connechar PO [Caseframe: | (2 indirect-obj] X X
connexian a] M [3 manner] direct-obj [N MF)
r (4 purpose)
et Eg ﬁ B means) indirect-obi (I"with” M) ["with” M) [t NI NPl N)["af* M) PP nf)
= (6 place]

CORAOIEEL, ED H place (PP "in a common plane” [in the direction of" M)
cﬂnnnl:atmn ["in the direction of* MF] “therein®)
connhating u] PG
corinoting 0 ADJ LI manner [adv ["in" Adj relation’] Inf ["as" M]["as" NF]"in operation'
Dﬂmu”!‘?atfﬂg u] PG Patterns: 1&2) - ["relative to" M]["relative to" NP["in response o' MP]["in'"' MNP]
connunicating a] ADJ Mx3x2) "in lenath™ "in height'* ['in response to"* M) "through one step”
conqueror FOD N =24 ["in"* M) PP "together' "in a fised position™ [Min the Form of" M|
conauest PO] 13r24) ["in the Form of" NP by Ger)["through' K[through' KP)

4 | \ [1=6) "at an angle” [Min" Adj "direction][inta contact with'* N]

LR ["into contact with" MP)[with respect to'' N]["with respect ta** NP
<4 Previous Mest »> (=1] ["in"* A orientation™)["without"" N[withaut" KNP
Mx3] ["in accordance with'* M) [Min accordance with™ P

Shown: 938 Total: 41237 LI 1in'" i "rnsitior)in' & mad=""1"aseording o' K LI

&istart| [@& @& & [APTmultMarchi6new_Fe. .. I [E] Micrasoft PowerPaint - [...

I [Transdict

« ™ gi54pM

Figure 2. A screenshot of the developer TransDict interface with a typical maximal entry for the predicate.
Clicking on language bookmarks over the “Word forms” field will open entries equivalent to “connected” in
different languages. Every word form is associated with a supertag (shown on the right of the word form field),
which will be assigned to the word during text tagging.

Figure 2 shows a self-explanatory
screenshot of the TransDict developer
interface with the (maximal) entry for the
predicate “connected”. All seven domain
relevant wordforms of the lexeme is
associated with a specific supertag! coding
deep linguistic knowledge.

For example, the supertag “Pdcs” of the
wordform “is connected” in Figure 2 means
that this wordform is a verb from the

! Joshi and Srinivas (1994) who seem to coin
the term «supertag» use elementary trees of
Lexicalized Tree-Adjoining Grammar for
supertagging lexical items. We use the term
«supertag » in a different meaning to just
indicate that it codes the knowledge richer than a
POS, namely a set of features defined in our
lexicon.

semantic class “connection” in a finite form,
present, singular, passive voice. In general, a
supertag in our system is a typed feature
structure; the set of features assigned by
every supertag is application and domain
dependent. This allows us both to provide
for the adequate disambiguation power of
the analyzer, and to avoid a situation when
too fine grain size of features in tags as well
as a large number of tags may lead to
computational problems (see e.g., Church,
1988). We currently use 23 supertags that
are combinations of 1 to 4 features out of a
set of 19 semantic, morphological and
syntactic features for 14 parts of speech.

All monolingual entries are cross-
referenced with equivalent entries in other
languages.

3. Grammar

The grammar in our system is a mixture of
context free strongly lexicalized Phrase
Structure Grammar (PG) and Dependency
Grammar (DG) formalisms. The PG
component covers only those linguistic
entities that are neither predicates, nor
clauses in a complex sentence. The second
component of our grammar is a Case-Role
Dependency Grammar (Fillmore, 1970). All
knowledge within this grammar is anchored
to one type of lexemes, namely predicates
(normally verbs). This grammar component
is specified over the space of phrases and
predicates as specified in the lexicon.

The grammars assign clauses a
representation as shown in Figure 3, where
label is a unique identifier of the elementary

predicate-argument structure (by
convention, marked by the number of its
predicate as it appears in the claim sentence,
predicate-class is a label of an ontological
concept, predicate is a string corresponding
to a predicate from the system lexicon, case-
roles are ranked according to the frequency
of their cooccurrence with each predicate in
the training corpus, sfatus is a semantic
status of a case-role, such as agent, theme,
place, instrument, etc., and value is a string
which fills a case-role. Supertag is a tag,
which conveys both morphological
information and semantic knowledge as
specified in the lexicon. Word and phrase
are a word and phrase (NPs, PPs, etc.) as
specified by PG grammar.

Sentence::={ proposition){proposition}*
proposition::={label predicate-class predicate ((case-role)(case-role))*}

case-role::= (rank status value)

value::= phrase{(phrase(word supertag)*)}*

Figure 3. An interlingual representation of a claim sentence.

The APTrans parser, as mentioned
above, is not required to produce a full parse
of a complex claim sentence, which could
have been too ambiguous. The parser
assigns syntactic structures to clause
constituent phrases and skipping a complete
syntactic parse of a clause represents the
clause structure in terms of
predicate/argument dependencies. The
output of the parser is a set of interlingual
predicate/argument structures representing
separate claim clauses with no information
about their hierarchy in the claim sentence.

Parsing is done bottom up. The parse is
pursued “best first” decision according to a
set of heuristics compiled through lots of
experience parsing. We assume that parse
trees are not built by the grammar, but rather
are the responsibility of the parser. The
result of the parser will thus be the best of
all possible parse trees rather than an
enumeration of all parse trees.

The parsing module includes a
tokenizer, a supertagger, a bottom-up
heuristic parser, and a deep semantico-
syntactic parser.

Tokenization detects tabulation and
punctuation assigning them different types
of “boundary” tags. Unlike many other
parsers our component does not process
segments between the boundary tags. These
tags are used to augment the resolution
power of disambiguation rules.

Supertagging generates all possible
supertags for a word. As it is crucial for our
system to have multiple supertags correctly
disambiguated supertagger includes a
powerful disambiguation module with
constraint-based domain specific rules.
Rules discarding faulty readings of
ambiguously tagged words rely on the
knowledge in the lexicon, lexical and tag
preferences, 5 step context of “supertags”
and “boundary” tags.

IGEIaim Analisys (English}) - Apparatus

File Configure Show Help

=101 x|

Tagaing I Tu:ukenisatiu:unl Disaml:uiguatiu:unl MPs I Complex NPSI PPz I als I GER INF |F'hrase 1 I "I

Test with GER found

{1 Dreta)
Pawlcomprizing] >
{ Detd[the] Mrmfzpray] Inp Pdtslis) [generated)]

< { Detla] M[voltage] [generator) np { Prepffor]
Glpraducing)

[{Detis) M[device] Imp { Prepf(for) Glproducing)

Mrmfzpray] inp 1 Preplof) { { Advalelectically) tap Adjolcharged] Mplparticles] inp Ypp inp }op

< { Mimeanz] Inp Pod(defining) { Det(a) Maollocation) np £ Prepsrfrom] [which) fpp
. Conjland] »

-
LIS H | P 9 TP [N [PSS) m FESTS | SUSN PP NI T 7 | PO | R) PN | ISR ey I RPN o e || _I

REFRESH

Text with IMF found

% 1 LCold] HvULdye] [Qerieidii] ;i riepiion)
G[producing]

{ Detplithe) Mop(zuroundings] np tpp np dop

ipp Inp
Pdc[interconnected]

NEXT STEP (MAIN PREDS) =>> I

i1 &djalhigh) M[valtage] inp §{ Preplbetween] { Detd(zaid] Mallocation] tnp Conjfand)

[Chilcharacterized] [in] [that]

{ Detd(zaid] M[volage) [generator) dnp Pows(comprises] {5 Det(a) Adjollarge]

M[zalid) [state] [array] dnp § Preplof] { Adjolradiation] [sensitive) Adjolvoltage] [producing) Mplelements] hp

{ Infrajta) Pgifproduce) § Adjolhigh) Mivaltage] np hp]

Figure 4. A screenshot of the developer interface showing the traces of bottom-up heuristic parsing based on PG
grammar formalism.

Bottom-up heuristic parsing is a
recursive pattern matching of supertag
strings against the right hand sides of the
rules in the PG component of our grammar.
This procedure is a succession of processing
steps which starts with the detection of
simple NPs, followed by the detection of
complex NPs, which integrates simple noun
phrases into more complex structures (those
including prepositions and conjunctions).
Due to the rich feature set the parser can
disambiguate such complex NPs as
“coupling locations of reference and support
means”. After complex NPs boundaries are
placed other types of phrases (PPs, AdvPs,
GerPs, InfPs) are identified in turn.

For example, the rule used to identify
the Gerundial phrase:

{ Prepf(for) G(producing) {{ Det(a)
Nm(spray) }np { Prep(of) { {

Advo(electrically) }ap Adjo(charged)
Np(particles) jnp }pp }np }gp

looks like:

IFT =
~PR{1;ListGer}~Ger{1}~Bnp{1;ListOpen}
~ANY {+}~Bnp{1;ListClose}
THEN

BRACKETS
"Bgp0O(open)”,"Bgp0(close)"

This rule reads, “If a phrase starts with a
preposition from a list of prepositions
specified for Gerunds (“for”, “by” in our
specification) or one Gerund followed by
one NP opening border tag followed by one
or more supertags specified in the set ANY,
which, in turn, is followed by the NP
closing border tag, then put the Gerund
phrase opening border tag at the beginning

of this phrase and the Gerund closing border
tag at the end”.

The set of rules are ordered based on a
set of heuristics. As can be seen from
examples, our parser does not only identify
coherent word sequences as most typical
chunkers but also detects the internal
structure of chunks. A screenshot of the
developer interface showing the traces of
bottom-up heuristic parsing based on PG
grammar formalism is given in Figure 3.

Identifying predicates procedure
searches for all possible proposition
predicates over the “residue” of “free”
supertagged words in a chunked sentence
and returns predicates of the nascent
predicate/case-role structures. At this step in
addition to PG we start using our DG
mechanism and predicate/argument
knowledge stored in the lexicon.

The parser is capable to extract distantly
located parts of one predicate, e.g., the
predicate “being different” from the
fragment, “coupling locations of reference
and support means being basically
different”. We postpone the disambiguation
of polysemantic predicates till later.

Assigning case-roles procedure
retrieves semantic dependencies (case-roles
of predicates). It detects the governing
predicate for every chunked phrase and
assigns it a certain case-role status. The rules
can use a 5-phrase context with the phrase
in question in the middle.

The conditioning knowledge is very rich
at this stage. It includes syntactic and lexical
knowledge about phrase constituents,
knowledge about supertags and “boundary”
tags, and all the knowledge from the
lexicon. This rich feature space allows for
quite a good performance in solving most of
the difficult analysis problems such as,
recovery of empty syntactic nodes, long
distance dependencies, disambiguation of
parallel structures and PP attachment
without yet disambiguating polysemantic
predicates. We do not only try to resolve
between noun and verb attachments of PPs,
but also between different case-role statuses
of PPs within the verb attachment.

The relevance of this finer
disambiguation for such applications as,
e.g., MT is evident; it can affect, for
example, the order of realization of PPs in
the translation. We attempt to disambiguate
case-role statuses that can be assigned to
PPs by using heuristics based on lexical and
syntactic information from the lexicon.

In general, at this stage there can
sometimes be several matches between a set
of case-roles associated with a particular
phrase within one predicate structure and
other problems, which to a great extend can
be corrected with data driven heuristics, e.g.,
the probabilistic knowledge about case-role
weights from the lexicon given the meaning
of a predicate.

Predicate disambiguation runs using
all the static and dynamic knowledge
collected so far. It starts with matching the
set of case-roles of a polysemantic predicate
identified in the claim sentence against those
present in all homonymous predicate entries.
A special metrics is developed to make
disambiguation decisions.

Correct case-role procedure attempts to
correct a case-role status of a phrase if it
does not fit the predicate description in the
lexicon.

A fragment of the analyzer parse for our
example (see Figure 1) is shown in the left
pane of Figure 5.

4. Transfer

The input to the transfer module is a
set of SL (English in our case)
predicate/argument structures with
syntactically parsed case-role fillers as
shown in the left pane in Figure 4.

The APTrans transfer procedure is based
on a combination of interlingual and
syntactic transfer approaches and is in fact
reduced to the translation of phrases, - case-
role fillers. The first step is to substitute
every SL predicate with its TL equivalent
from the lexicon, the set of SL case-roles is
considered to be semantic invariant with
respect to transfer. The results of this step
(called “base transfer” in shown in the right
pane of Figure 4). The second transfer step,

translation of case-role fillers, is done by
means rule-based syntactic transfer. We
bypass the problems of morphological
generation by retrieving a rule specified
wordform from the morphological field of
the lexicon where all the relevant wordforms

JlLTTransfer j

File Configure

Commaon Baze Transter | Heoldelingl

j Refrezh |

From language: IEninsh

for a lexeme are listed explicitly. The
output of the transfer module is a set of TL
(Danish) predicate templates with fully
translated Danish case-role fillers as shown
in the right pane of Figure 5 and in the left
pane of Figure 6.

=10l x|

Tolanguage: |Danish

AdPredicate structure

Generic

[P1 Pgw "comprising "
1 Hdz0EnpODetiHdz0M12H dz0B np0Hds0E gpOFrepi16G 32Hds 0B r
2 HdsOEnpOHdsON21Hds0BnpOHd=0 "open| open| open| mean
2 Hdz0ErnpODet2Hdz0M41Hd«0B npOH dz0B gpDPrept1BG 32Hd:0Br

1

[F2 Pgd "defining "
1 Hdz0ErpOHd:0NZ21Hdz0EnpOHds] "open| open| open| mean
2 Hdz0BrplDet2Hd:0MoZ0Hd:0BnpOHd:0 “"open| open| &l ope

]
[F3 Pdtz "iz generated "
1 Hdz0EnpOD etd38Hdz0NmM3EHds0BnpOHdz] "open| open| the
4 BppOPreps17Bppl "open| from which | close" Adcsourcer
4 Hd:z0ErnpODet2Hdz0Mo20Hds0BnpOHd:0 "open| open| a| ope
]
Difference
[P4 Pgws "comprises "
1 Hds0EnpOD etd34Hdz0M4THd:0BnpOHd:0 "open | open| said |
2 Hds0EnpOH ds0Bnp0D et24djol 3HdsOM 35H ds0B npOHdz0Bpp0P:

[F5 Pdz "interconnected '

1 Hds0EnpOHds0Bnp0D et2ddjol SHdsOM 35Hds0B npOHdz0B ppl0P:
5 BipOinfrmd0Pgii31 Hds0Bnpladiol8Hds0MN43H dsDBnpDHds0BipD

e

]

4|

AfPredicate stucture after tranfer stage

Generic

[P1 % Pogw "omfattende
1 Hds0BnpODetc1Hdz0M1 2H dz0B np0Hds0E gpOPTepi1 BMig32Hds(
2 Hds0BnpOHdsOMnp21Hdz0BnpOHds0 "open | open | open | argan
2 HdsDBnplDetc2Hdz0M41Hdz0B npOHd=0B gpOPrepf1 EMig32H dsl

]

[F2 D Pad "algreensende”
1 Hd:0BnpOHdzOMnp21Hds0Brhp0Hd:z0 "open | open | open | orgal
2 Hd:0BnplCetc2Hd:0Mo20Hd:0B npOH s “open | open | en | op

]
[F3 T Pdt "dannet"
1 Hds:0BnplD etde38HdzOMnm3EHd=0EnpOHd:0 "open | open | de
4 BppOPrepsr1 7EBppd "open | hvorfra | close” "Bppl | Prepsr] 7
4 HdsDBnplDetc2Hds0Mo20Hdz0BnpOHds] "open | open | en | op
]
Difference
[P4 % Pogw "omfattende
1 Hds0BnpODetde34Hd:OM4THd:0Bnp0Hd:0 "open | open | den |
2 Hds0BnpOHds0Bnp0D etc24diol IHdsOMns35Hds0B npOHds0B pp

]
[F& CPdc "indbyrdes forbundet”
1 Hds0BnpOHds0Bnp0D etc24diol IHdsOMns35Hd:0B nplHds0B pp
5 BipQinfmd0Pgi31Hdz0Bnpladio18Hds0M 4 3Hds0B npHds0BipD
]

-

Kl B

Figure 5. A screenshot of the developer interface showing traces of the English parser output (on the left) and
the results of the first transfer stage (on the right). Predicate structures are invariant, English lexemes are
substituted by the base forms of equivalent Danish lexemes from the lexicon. Danish strings filling predicate
case-roles are then matched against syntactic transfer patterns to provide for complete translation of case-roles

as shown in the left pane of Figure 5.

5. Generation

APTrans generator takes the output of
the transfer module as input and produces a
TL (currently Danish) translation of an
English claim, as illustrated in Figure 6.

APTrans generation module to a large
extent reuses fully operational English
generator from a different patent related
application, AutoPat, a computer system for
authoring patent claims (Sheremetyeva,
2003).

Generation process consists of several
stages with different inner representations of
a patent claim at every stage, each
generation stage fulfilling a special task.
Like the parse the generation is pursued
“best first” decision according to a set of

heuristics compiled through lots of
experience generation.

The generator first creates an
hierarchical structure of TL predicate

templates in the form of a root tree or a
forest of root trees out of individual
templates. This is done by clustering the

templates describing the same elements of
invention (case-roles) and ordering them
according to the three weighted parameters:
the order of predicates in the SL text,
rhetorical ~ requirements and stylistic
requirements to the claim text. The tree
building algorithm is hard-coded into the
program and is language-independent. It to a

large extent relies on the legal knowledge
about patent claims coded in the lexicon. At
the second stage of generation the forest of
predicate trees is linearised by top-bottom
depth-first bypassing algorithm, which
results in a bracketed string of characters
(see left bottom pane in Figure 6).

sl
Lang: Tree #1-G
o DA ad T:Z #2-031:2;1:5 [~ Betterwiew [Internal contest
Appatatus b ¥ Saiting
2 Tree #1 E [Figure: the tree Iﬂ
Generic
(= Pgws ‘omiatter” DettM13PrepON 32Prep0D etON 36Pep22adi1 44di5Mp30
b DEI1N13F'reDUN32F|epUDe 0N 36Prep22di1 44diaMp3at Predicates:
2"Np21" "organ P1 7ok
2"Det2N41 PrepUNEEF‘lepDAdﬂ BM43PrepdN20Coni3Np3? || P2 fok
) F3 /ak
[P2 Paods “ataraenser
1 "Npa1" "organer”
2 DEZNET "en | befggenhed” Np2l DetZN41PrepOM 32PrepDAd]T 8N 43P repdh 20Con|3Np37
) -
Patteins and ke =101 x|
[RAFdaaes. P11 % 2); e = | P2
N “Prep1??'p"‘ﬁlvzma” P2 - (1% 2): rule : En indretning til frembringelse af et Splﬁ]t af Blektrlsk
4 "Det220" "en | beliggenhed”' P3- (1w] e ladede partikler omfa de organer afgree
] DetZh20 en beliggenhed hvorfra spréjtet dannes,
] o0g en spﬂandlngsgenerﬂlm il frembnngelse af hgj
1 o b I
7 Tree #2 : Spa 99 og omgr ne.
Ditference E3
[P4 Paws “omfatter” kendetegnet ved,
1N "s_paend\ngsgenala_toran'_‘
] 2" Det2ddi 9N 35PrepZ24di33adi42NpTE" et | stort | armay WG Pronl? ht spﬂandlngsgenermmen omiatter et stort ﬂ"ay I
fast form af stralingsfglsomme speendi
[P5 Pdes "er indbyrdes fobundet* elementer indbyrdes forbundet for at irembnnge th
1 "Det2idi1 N3EPrep22adi334di42Np15" et | stort | array speending.
5 "Prep0infrmd0Pgii31Adi BM43" "for | at | frembrings | haj | 5
)
Save As Close
b
< | | i | [ET S G|
Linearized tree: Lineariz nles || Contest Grammar iles || Cohesion, predicate generation Atticles es |

[1:Np21 F2[3685) 2:Det2N20
1
[1:N36 P3(3395) 4:Prepl 7 4:Det2N20

[1:Deti N1 3Prep0N32Prep0D etON 36Prep224 i1 44diENp30 P (41238 0: 1:DetiN13Prep0N 32Prep0D etON 36Prep2 2401 44diGNp30 F1(4135) 2:N921;l 1:Dal1N13F’reDDN32F’lepDDetDN35F’lep22}-\di‘l4A;|
1 TNp21 P2(3685) ZDetzN20

4 1:N3E P3(3395] 4Prepl? 4Det2M20

0. 2:Det2N41PrepON 32Prepladi1 BM43PepdN20Con3Mp37

P2[PgdF=afgreensende] ZDetZNz0
T:M3E P3[PdislS=dannes] 4:FPrepl? .
og 2Det2N41PrepOM 32Prepadi] 8N 43Prepdh 200

2:DetZ2M41PrepDN32Prepladil BN43PrepdN 20Con3Np3T
1

il | _I'I
Close

G LOGBED s

| | L3 | KX

| Al tet... I Load... | C:_ APTmultFeb_123TES Tgeneratart_TestEnd Transter. bt

i start “ & eE Hll-ngﬁeneratur

Current text..

Figure 6. A screenshot of the developer generator interface showing traces of the generation procedure. The
output of the transfer stage (a set of predicate structures with fully translated and tagged Danish case-role
fillers) is shown in the left pane. A tree of the “glued” input structures built by the generator to specify the
hierarchy of the claim clauses is displayed in the right background pane. Three bottom windows show the traces
of successive stages of the generation procedure as described in (Sheremetyeva, cf). The resulting Danish
translation of the English claim in Figure 1 is given in the pop-up window on the right.

The brackets specify the hierarchy of
predicate templates (i.e., constituent claim
clauses), thus making up for the incomplete
parse of the analyzer. At this linearization
stage two decisions are made, - the first
specifies the linear order of a predicate and
its case-roles for each predicate template,
and the second determines the location of a
newly linearised predicate template in the

already existing string of predicate
structures. For example, of one of the rules
making the first decision can be:

IF NOT (CP=PP)
THEN
CP=MOSTFREQ

The rule reads, “If the predicate of the
currently bypassed template in the tree is not
a preposition then linearise the current
template following the linear pattern
containing corresponding case-roles from
the predicate entry of the lexicon”.

Linear patterns selected for the
predicate templates in our example are given
in the middle pane in Figure 6.

A new segment can be either inserted
into the existing linearised structure at a
certain point or simply concatenated to it at
the end. For example, one of the
linearization rules responsible for the second
decision is:

IF CLASS="A"
THEN
IF ISLEFTMOST
THEN
INSERT NEXTCR
ELSE
INSERT NEXTPRED

This rule reads as follows: “If the
predicate of the current (bypassed) template
in the tree of templates belongs to the
semantic class “ meronymy” (comprising,
having, including, etc.) and if this predicate
template is leftmost in the bush of siblings
then insert a linearised segment of the
current template into the linearised segment
of the parent predicate template next to the
case-role by which the current template was
linked to the parent template. If the current
predicate template is not left most then
insert its linearised segment into the existing
string next to the linearised segment of the
parent predicate”.

Linearization is based a set of rules that
strictly speaking should be language-
dependent but in practice (due to interlingual
sublanguage similarity) are almost universal.

At the third generation stage, -
realization, the linearised bracketed string
of characters is passed from left to right, and
based on a special set of heuristic rules
procedures taking care of ellipsis, conjoint
structures, punctuation and morphological
forms of predicates are executed. The result

is a claim text in a TL meeting all legal
requirements.

6. Conclusions and future work

We presented a grammar-based data-
intensive MT system, APTrans, capable of
handling low translatable sentences, such as
patent claims. The specificity of our
approach is that parsing is not required to
produce the structural information of higher
levels than a simple clause in the syntactic
tree of a complex claim structure. The parser
carries out the analysis on a phrase level and
a level of individual simple clauses, which
results in an interlingual content
representation. The load of detecting a
clause hierarchy is shifted to the generator.
The system is augmented with domain tuned
proofing tools: spelling and grammar
checkers.

APTrans is now implemented in its
demo version for the English/Danish
language pair. Due to high cross-language
similarity of patent claims and the design of
our software we could simply update
English generation rules from a different
patent related application, AutoPat (a
computer system for authoring patent
claims) for the target Danish language. Most
of the rules were reused, thus saving a lot of
development effort and time.

We have not yet made a large-scale
evaluation of our system. This leaves the
comparison between other MT systems and
our APTrans as a future work. Preliminary
results show a reasonably small number of
failures, mainly due to the incompleteness of
rules and lexicon. We are currently
concentrated on increasing the coverage of
the system and intend to include more
languages.

In general, our methodology and
experience in developing patent related
applications for Russian, English, Danish
and Japanese (Neumann, 2005) lets us
believe that covering every new pair of
languages by APTrans will take much less
development effort and time than the first
pair of languages.

7. References

ABNEY, S (1996). Part-of-speech Tagging and
Partial Parsing. In: Corpus-Based methods in
Language and Speech. Klue Academic Publishes

FILLMORE Charles J. (1970). Subjects,
speakers and roles. Synthese.21/3/4

CHURCH K.W. (1988). A stochastic parts
program and noun phrase parser for unrestricted
text. Second Conference on applied Natural
Language Processing, Austin, Texas.

HOBBS J. R., and BEAR J. (1995). Two
Principles of Parse Preference. In: Linguistica
Computazionale Current Issues in Computational
Linguistics: In Honour of Don Walker, Vol.9

JOSHI A., and SRINIVAS B. (1994).
Disambiguation of Super Parts of Speech (or
Supertags): Almost Parsing.

http://acl.ldc.upenn.edu/C/C94/C94-1024.pdf.

KIM Y., EHARA T. (1994). A Method for
Partitioning of Long Japanese Sentences with
Subject Resolution in J/E Machine Translation.
In: Proceedings of the 1994 ICCPOL

NEUMANN Ch.(2005). A Human-Aided
Machine Translation System for Japanese-
English Patent Translation. Proceedings of the
Workshop on Patent Translation in Conjunction
with MT Summit, Phuket, Thailand, September
16.

ROH Y., HONG M., CHOI S,, LEE K., PARK
S. (2003). For the Proper Treatment of Long
Sentences in a Sentence Pattern-based English-
Korean MT System. In; Proceedings of MT
Summit IX. New Orleans

SHEREMETYEVA, S. and S. NIRENBURG.
(1999). Interactive MT As Support For Non-
Native Language Authoring. Proceedings of the
MT Summit VII. September 13-17, 1999,
Singapore.

SHEREMETYEVA S. (2003). Towards
Designing Natural Language Interfaces.
Proceedings of the 4th International Conference
“Computational Linguistics and Intelligent Text
Processing” Mexico City, Mexico, February 16-
22.

SHEREMETYEVA S. (2005). “Less, Easier and
Quicker” in Language Acquisition for Patent
MT. Proceedings of the Workshop on Patent
Translation in conjunction with the MT Summit
X, September. Phluket, Thailand

UNDERWOOD N. L and JONGEJAN B.
(2001). Translatability Checker: A Tool to Help
Decide Whether to Use MT. Proceedings of MT
Summit VIII, Santiago de Compostela, Spain.

