Multi-Engine M achine Trandation by Recur sive Sentence Decomposition

Bart Mellebeek
School of Computing
Dublin City University
Dublin 9, Ireland
nel | ebeek@onputi ng. dcu.ie

Josef Van Genabith
School of Computing
Dublin City University
Dublin 9, Ireland
j osef @onputing.dcu.ie

Abstract

In this paper, we present a novel approach
to combine the outputs of multiple MT en-
gines into a consensus translation. In con-
trast to previous Multi-Engine Machine
Translation (MEMT) techniques, we do
not rely on word alignments of output hy-
potheses, but prepare the input sentence
for multi-engine processing. We do this
by using a recursive decomposition algo-
rithm that produces simple chunks as in-
put to the MT engines. A consensus trans-
lation is produced by combining the best
chunk translations, selected through ma-
jority voting, a trigram language model
score and a confidence score assigned
to each MT engine. We report statis-
tically significant relative improvements
of up to 9% BLEU score in experiments
(English— Spanish) carried out on an 800-
sentence test set extracted from the Penn-
Il Treebank.

1 Introduction

In this paper, we present a novel approach to com-
bine the outputs of multiple MT engines into a con-
sensus translation.

Multi-Engine Machine Translation (MEMT) is a
term coined by (Frederking and Nirenburg, 1994),

Karolina Owczar zak
School of Computing
Dublin City University
Dublin 9, Ireland
owczar zak@onputi ng. dcu.i e

Andy Way
School of Computing
Dublin City University
Dublin 9, Ireland
away @onputi ng. dcu.i e

who were the first to apply the idea of a multi-
engine approach in Natural Language Processing to
Machine Translation (MT). Researchers in other ar-
eas of language technology such as Speech Recog-
nition (Fiscus, 1997), Text Categorization (Larkey
and Croft, 1996) and POS Tagging (Roth and Ze-
lenko, 1998) have also experimented with multi-
system approaches. Since then, several researchers
in the MT community have come up with different
techniques to calculate consensus translations from
multiple MT engines (cf. section 2). All these previ-
ously proposed techniques share one important char-
acteristic: they translate the entire input sentence as
is and operate on the resulting target language sen-
tences to calculate a consensus output. Their main
difference lies in the method they use to compute
word alignments between the multiple output sen-
tences.

In contrast to previous MEMT approaches, the
technique we present does not rely on word align-
ments of target language sentences, but is based on
a recursive chunking algorithm that produces simple
constituents as input to the MT engines. The outputs
of these syntactically meaningful chunks are com-
pared to each other and the highest ranked transla-
tions are used to compose the output sentence. Our
approach, therefore, prepares the input sentence for
multi-engine processing on the input side. It draws
its strength from the simple fact that short input
strings result in better translations than longer ones.

The paper is organised as follows. In section 2, we

110

Proceedings of the 7th Conference of the Association for Machine Translation in the Americas, pages 110-118,
Cambridge, August 2006. ©2006 The Association for Machine Translation in the Americas

give a short overview of the most relevant MEMT
techniques. We explain our approach in section 3
and demonstrate it with a worked example. Section
4 contains the description, results and analysis of our
experiments. We give avenues for future research in
section 5 and summarize our findings in section 6.

2 Reated Research

(Frederking and Nirenburg, 1994) produced the first
MEMT system (Pangloss) by combining the output
sentences of three different MT engines, developed
in house. In order to calculate a consensus transla-
tion, the authors rely on their knowledge of the inner
workings of the engines.

In (Nomoto, 2004), by contrast, the MT engines
are treated as black boxes. He presents a number of
statistical confidence models, based on a large array
of language models and the IBM1 translation model
(Brown et al., 1993) to select the best output string
at sentence level.

Most of the other recent approaches to MEMT
rely on word alignment techniques in the transla-
tion hypotheses to infer the units for comparison be-
tween the MT systems. (Bangalore et al., 2001) pro-
duces alignments between the different hypotheses
using edit distance (Levenshtein, 1965). For each
aligned unit, a winner is calculated by majority vot-
ing and a N-gram language model. Since edit dis-
tance only focuses on insertions, deletions and sub-
stitutions, the model cannot handle translation hy-
potheses with a significantly different word order.
(Jayaraman and Lavie, 2005) try to overcome this
problem by introducing a method that can find non-
monotone alignments. They compose a consensus
from these alignments by using a language model
and confidence score specific to each MT engine.
(van Zaanen and Somers, 2005) present ‘Democrat’,
a ‘plug-and-play’ MEMT system that relies solely
on a simple edit distance-based alignment of the
translation hypotheses and does not use additional
heuristics to compute the consensus translation. Fi-
nally, (Matusov et al., 2006) use well-established
techniques from the Statistical MT community to
produce alignments of hypotheses based on pairwise
word alignments in an entire corpus instead of at the
sentence level.

To date, to the best of our knowledge, all previ-

ously known MEMT proposals operate on MT out-
put for complete input sentences. In the research
presented here, we pursue a different approach:
we decompose MT input into chunks, choose the
best chunk translation and recompose the translated
chunks in output.

3 Description of the Algorithm

Given N different MT engines (E4. .. En), the pro-
posed method recursively decomposes an input sen-
tence S into M syntactically meaningful chunks
C1...Cyy. Each chunk C; (1 < i < M) is embed-
ded in a minimal necessary context and translated
by all MT engines. For each chunk Cj, the trans-
lated output candidates C} — CY are retrieved and a
winner C?¢*t is calculated based on majority voting,
a language model trained on a large target language
corpus and a confidence score assigned to each MT
engine. In a final step, the output sentence .S’ is com-
posed by assembling all C?st (1 < i < M) in their
correct target position. A flow chart representing the
entire MEMT architecture can be found in Figure 1.

The decomposition into chunks, the tracking of
the output chunks in target and the final composition
of the output are based on the TransBooster architec-
ture presented in (Mellebeek et al., 2005).

In the following subsections, we will explain the
decomposition of the input sentence, the translation
of the input chunks, the calculation of the best out-
put chunk and the composition of the output sen-
tence. We will also demonstrate the approach with a
worked example.

3.1 Decomposition of Input

Our approach presupposes the existence of some
sort of syntactic analysis of the input sentence. We
report experiments on human parse-annotated sen-
tences (the Penn Il Treebank (Marcus et al., 1994))
and on the output of two state-of-the-art statistical
parsers (Charniak, 2000; Bikel, 2002) in section 4.

In a first step, the input sentence is decomposed
into a number of syntactically meaningful chunks as
in (1).

1) [ARG;] [ADJ;]...[ARG.] [ADJ;] pivot
[ARGL 1] [ADJi11]-- - [ARG L]
[AD‘]l-H”]

where pivot = the nucleus of the sentence, ARG =

111

Decomposition

El EN

CM_N

Selection

Composition

Figure 1: A flow chart of the entire MEMT system,
with C; the i input chunk (1 < i < M), E; the j*

MT engine (1 < j < N) and C,_; the translation of

argument, ADJ = adjunct, {l,r} = number of ADJs
to left/right of pivot, and {L,R} = number of ARGs
to left/right of pivot.

In order to determine the pivot, we compute
the head of the local tree by adapting the head-
lexicalised grammar annotation scheme of (Mager-
man, 1995). In certain cases, we derive a ‘com-
plex pivot’ consisting of the head terminal together
with some of its neighbours, e.g. phrasal verbs or
strings of auxiliaries. The procedure used for argu-
ment/adjunct identification is an adapted version of
Hockenmaier’s algorithm for CCG (Hockenmaier,

2003). The result of this first step on a worked ex-
ample can be seen in (5).

In a next step, we replace the arguments by sim-
ilar but simpler strings, which we call “Substitution
Variables’. The purpose of Substitution Variables is:
(i) to help to reduce the complexity of the original
arguments, which often leads to an improved trans-
lation of the pivot; (ii) to help keep track of the lo-
cation of the translation of the arguments in target.
In choosing an optimal Substitution Variable for a
constituent, there exists a trade-off between accu-
racy and retrievability. “Static’ or previously defined
Substitution Variables (e.g. “cars’ to replace the NP
“fast and confidential deals’ as explained in section
3.5) are easy to track in target, since their transla-
tion by a specific MT engine is known in advance,
but they might distort the translation of the pivot
because of syntactic/semantic differences with the
original constituent. ‘Dynamic’ Substitution Vari-
ables comprise the real heads of the constituent (e.g.
*deals’ to replace the NP “fast and confidential deals’
as outlined in section 3.5) guarantee a maximum
similarity, but are more difficult to track in target.
Our algorithm employs Dynamic Substitution Vari-
ables first and automatically backs off to Static Sub-
stitution Variables if problems occur. By replacing
the arguments by their Substitution Variables and
leaving out the adjuncts in (1), we obtain the skele-
tonin (2)

(2) Varc,] ---[Varc,] pivot [Varc,]
. Varap,]

where V4grg, is the simpler string substituting
ARG;

By matching the previously established transla-
tions of the Substitution Variables Vg, (1 <=
i <= L + R) in the translation of the skeleton in
(2), we are able to (i) extract the translation of the
pivot and (ii) track the location of the translated ar-
guments in target. The result of this second step on
the worked example is shown in (6).

Adjuncts are located in target by using a similar
strategy in which adjunct Substitution Variables are
added to the skeleton in (2).

3.2 Trandation of Input Chunksin Context

Since translating individual chunks out of context is
likely to produce a deficient output or lead to bound-

112

ary friction, we need to ensure that each chunk is
translated in a simple context that mimics the origi-
nal. As in the case of the Substitution Variables, this
context can be static (a previously established tem-
plate, the translation of which is known in advance)
or dynamic (a simpler version of the original con-
text).

Our approach is based on the idea that by reducing
the complexity of the original context, the analysis
modules of the MT engines are more likely to pro-
duce a better translation of the input chunk C; than
if it were left intact in the original sentence, which
contains more syntactic and semantic ambiguities.
In other words, we try to improve on the translation
CY of chunk C; by MT engine j through input sim-
plification. (cf. section 3.5 for more details)

After obtaining the translations of all input chunks
by all MT engines (C} — C), all that remains to be
done is to select the best output translation C¢t for
each chunk C; and derive the output by composing
all CPest. This is possible since we have kept track
of the position of each C/ by the Substitution Vari-
ables.

3.3 Selection of the Best Output Chunk

The selection of the best translation C?¢** for each
input chunk C; is based on three heuristics.

1. Majority Voting. Since identical translations by
different MT systems are a good indicator of
the relative quality of the candidate translations
C} — CN | the translation that was produced by
the highest number of MT engines is consid-
ered to be the best. If no clear winner is found
at this stage, a language model score will se-
lect the best translation between the remaining
candidates.

2. Language Modeling. In case Majority Voting
produces more than 1 candidate translation, the
translation among the selected candidates with
the best language model score is considered to
be the best. This score is an approximation of
the likelihood of the hypothesis translation in
the target language and therefore rewards flu-
ency. We used the SRI Language Modeling
Toolkit (Stolcke, 2002) to train a trigram model
with modified Kneser-Ney smoothing (Chen

and Goodman, 1988), on 213M words of tar-
get language text.t

3. Confidence Score. In the rare cases that no
winner is found by either of the previous two
heuristics, the best translation is the one pro-
duced by the MT engine that obtained the high-
est BLEU score on the entire development cor-
pus.

3.4 Composition of Output

The input decomposition procedure is recursively
applied to each constituent until a certain threshold
is reached. Constituents below this threshold are
sent to the MT engines for translation, the best of
which is selected as described in section 3.3. Cur-
rently, the threshold is related to the number of lexi-
cal items that each node dominates. Its optimal value
depends on the syntactic environment of the con-
stituent and is empirically established. After all con-
stituents have been decomposed and a best output
translation has been selected, they are recombined
to yield the target string output to the user.

This recombination is performed by recursively
substituting the retrieved translation of the con-
stituents (cf. section 3.2) for the translated Substi-
tution Variables in (2). In case the baseline MT en-
gines use a different reordering of Substitution Vari-
ables, we select the reordering of the MT engine that
obtained the highest BLEU score on the entire devel-
opment corpus.

3.5 A Worked Example

Consider the following input sentence:

3) The chairman, a long-time rival of Bill
Gates, likes fast and confidential deals.

The parsed output by (Charniak, 2000)

1The entire training section of the Spanish Europarl Cor-
pus augmented with a corpus of a Spanish newspaper (‘LaVan-
guardia).

113

fast and confidential deals.

@ The chairman fl\ a long-time rival of Bill Gates @
&/

%

likes f\
"3

Figure 2: Decomposition of Input.

El presidente una largo - vez rival de Bill Gates(-33.77)

le gustan(-10.94)
tiene gisto de(-16.41)

los los tratos rapidos y confidenciales(-28.13)

repartos rapidos y confidencialés(-22.16)

Figure 3: Selection of best output chunk. The optimal combination follows the arcs in full.

(G))] (S (NP (NP (DT the) (NN chairman)) (,
,) (NP (NP (DT a) (JJ long-time) (NN ri-
val)) (PP (IN of) (NP (NNP Bill) (NNP
Gates)))) (,) (VP (VBZ likes) (NP
(ADJP (JJ fast) (CC and) (JJ confidential))
(NNS deals))) (. .))

is used as input to the decomposition module. Ina
first step, the pivot, arguments and adjuncts are cal-
culated.

(5) [The chairman, a long-time rival of Bill
Gates,] arc1 [likes]pivor [fast and confi-
dential deals] 4rao.

In a second step, the arguments are replaced by
syntactically simpler Substitution Variables.

(6) [The chairman]y arct
[deals]y arca2-

[Iikes]pivot

The resulting string is translated by the MT en-
gines. For example, the translation produced by Sys-
tran is

@) El presidente tiene gusto de repartos.

This translation allows us (i) to extract the transla-
tion of the pivot (ii) to determine the location of the
translated arguments. This is possible because we
determine the translations of the Substitution Vari-
ables (the chairman, deals) at runtime. If these
translations are not found in (7), we replace the argu-
ments by previously defined Static Substitution Vari-
ables. For example, in (5), we replace ‘The chair-
man, a long-time rival of Bill Gates’ by ‘The man’

and ‘fast and confidential deals’ by “cars’. In case
the translations of the Static Substitution Variables
are not found (7), we interrupt the decomposition
and have the entire input string (3) translated by the
MT engine.

We now apply the procedure recursively to the
identified chunks ‘The chairman, a long-time rival
of Bill Gates’ and ‘fast and confidential deals’.

Since the chunk “fast and confidential deals’ con-
tains fewer words than a previously set threshold -
this threshold depends on the number of leaf nodes
and the syntactic nature of the input - it is ready to
be translated by the MT engines. As explained in
subsection 3.2, the chunk has to be embedded in an
appropriate context. Again, we can determine the
context dynamically (e.g. The chairman likes) or
use a static predefined context template (e.g. The
man sees). As mentioned in section 3.2, static con-
text templates are previously established templates
that mimick the original context of the chunk to be
translated. Their exact nature depends on the syn-
tactic environment of the candidate chunk. For ex-
ample, the previously mentioned template ‘“The man
sees’ mimicks a direct object context for an NP.

(8) shows how the chunk ‘fast and confidential
deals’ is embedded in a Dynamic Context.

(8) [The chairman likes] pynamicContest [fast
and confidential deals]arc, -

This string is sent to the MT engines for translation.
For example, the translation produced by Systran is

114

9 El presidente tiene gusto de repartos
rapidos y confidenciales.

Like Dynamic Substitution Variables, the transla-
tions of Dynamic Contexts are determined at run-
time. If we find the translation of the Dynamic Con-
text in (9), it is easy to deduce the translation of
the chunk ‘fast and confidential deals’. If, on the
contrary, the translation of the Dynamic Context is
not found in (9), we back off to a previously defined
Static Context template (e.g. The man sees). In case
the translation of this context is not found either, we
back off to translating the input chunk ‘fast and con-
fidential deals’ without context.

Since the remaining chunk ‘The chairman, a
long-time rival of Bill Gates’ contains more words
than a previously set threshold, it is judged too com-
plex for direct translation. The decomposition and
translation procedure is now recursively applied to
this chunk: it is decomposed into smaller chunks,
which may or may not be suited for direct transla-
tion, and so forth.

The recursive decomposition algorithm splits the
initial input string into a number of optimal chunks,
which are translated by all MT engines as described
above. A simple graph representation of the full de-
composition of the input sentence is shown in Figure
2. The recovered translations with logprob language
model scores are shown in Figure 3. From these, the
best translations (in italics) are selected as described
in subsection 3.3.

Table 1 shows that the MEMT combination out-
performs the outputs produced by Systran and Lo-
goMedia and is similar in quality to the output pro-
duced by SDL. Note that our approach is not limited
to a blind combination of previously produced out-
put chunks. In the case of Systran, the complexity
reduction of the input leads the system to improve on
its own translation. In the complete translation (Ta-
ble 1), Systran erroneously analyses the verb ‘likes’
as a noun (—‘gustos’) and identifies the adjective
‘fast’ as a verb (—*ayuna’). By contrast, examples
(8) and (9) show that submitting the chunk ‘fast and
confidential deals’ in a simplified context improves
the translation of the adjective ‘fast’ from the erro-
neous ‘ayuna’ in the original translation of the entire
sentence by Systran to the correct ‘rapidos’. Also,
the translation of the verb ‘likes’ improves to ‘tiene

Original The chairman, a long-time rival
of Bill Gates, likes fast and con-
fidential deals.

Al presidente, un rival de mucho
tiempo de Bill Gates, les gustan
los los tratos rapidos y confiden-
ciales

El presidente, rival de largo plazo
de Bill Gates, gustos ayuna y los
repartos confidenciales.

El presidente, un rival antiguo
de Bill Gates, quiere los tratos
rapidos y confidenciales.

El presidente, un rival antiguo de
Bill Gates, quiere repartos rapidos
y confidenciales.

LogoMedia

Systran

SDL

MEMT

Table 1: Example sentence 1: MEMT result vs. the
original MT engines

gustos de’, which can only contribute to a better
overall MEMT score.

Original Mr. Pierce said Elcotel should
realize a minimum of $10 of re-
curring net earnings for each ma-
chine each month.

El Sr. Pierce dijo que Elcotel
debe ganar a minimum of $10 de
ganancias netas se repitiendo para
cada maquina todos los meses.
Sr. Elcotel dicho Pierce debe re-
alizar un minimo de $10 de las
ganancias netas que se repiten
para cada maquina cada mes.

Sr. Perfora dijo que Elcotel debe
darse cuenta de un minimo de $10
de ganancias netas peridicas para
cada maquina cada mes.

El Sr. Pierce dijo Elcotel debe
realizar un minimo de $10 de
las ganancias netas que se repiten
para cada maquina cada mes.

LogoMedia

Systran

SDL

MEMT

Table 2: Example sentence 2: MEMT result vs. the
original MT engines

115

Table 2 contains the output of a second exam-
ple sentence, where the MEMT combination clearly
outperforms the individual MT engine contribu-
tions. LogoMedia leaves ‘a minimum of’ untrans-
lated and uses a grammatically incorrect gerund ‘se
repitiendo’. Systran switches the target positions of
‘Pierce’ and ‘Elcotel’, which severely distorts the
accuracy of the translation. SDL interprets ‘Pierce’
as a verb, which makes the translation unintelligi-
ble. The MEMT combination, however, combines
the best parts of each engine and is both accurate
and relatively fluent.

4 Evaluation

4.1 Experimental Setup

To test the performance of our algorithm, we trans-
lated an 800-sentence test set (min. 1 word, max. 54
words, ave. 19.75 words), randomly extracted from
Section 23 of the Penn-I1l Treebank, by three online
MT systems (LogoMedia?, Systran3, SDL*) from
English—Spanish. Groups of 200 sentences from
the test set were translated by four native speakers
of Spanish, each of whom was a certified translator,
in order to obtain a set of reference translations for
use with automatic evaluation metrics.

We used three different syntactic analyses of the
test set as input to our algorithm.

1. The original human parse-annotated Penn-II
Treebank structure.

2. The output parse of the test set by (Charniak,
2000).

3. The output parse of the test set by (Bikel,
2002).

In each of these three cases, our algorithm decom-
posed the input into chunks and combined the chunk
outputs of the MT engines as described in section 3.

4.2 Reaults

In Tables 3-6, we compare automatic evaluation re-
sults (BLEU (Papineni et al., 2002), NIST (Dod-
dington, 2002) and F-Score (Turian et al., 2003)) of

Zywww.lec.com
Swww.systransoft.co.uk
“www.freetrans ation.com

the MEMT output against the original output of the
3 MT systems.

MEMT1 refers to the results of the MEMT algo-
rithm on original Penn-Il Treebank trees. MEMT?2
and MEMT3 refer to the MEMT results based on the
input parsed by (Charniak, 2000) and (Bikel, 2002),
respectively.

BLEU | NIST | F-Score
LogoMedia | 0.3140 | 7.3272 | 0.5627
Systran 0.3003 | 7.1674 | 0.5553
SDL 0.3037 | 7.2792 | 0.5663
MEMT1 0.3295 | 7.6822 | 0.5802
MEMT2 0.3209 | 7.5865 | 0.5744
MEMT3 0.3178 | 7.5658 | 0.5731

Table 3: MEMT results vs.
- absolute scores

the original MT engines

BLEU | NIST | F-Score
LogoMedia | 104.9 | 104.8 | 103.1
Systran 109.7 | 107.1 | 104.4
SDL 108.4 | 1055 | 1024

Table 4: MEMT1 vs. the original MT engines - rel-
ative scores %

BLEU | NIST | F-Score
LogoMedia | 102.1 | 103.5 | 102.0
Systran 106.8 | 105.8 | 103.4
SDL 105.6 | 104.2 | 1014

Table 5: MEMT2 vs. the original MT engines - rel-
ative scores %

BLEU | NIST | F-Score
LogoMedia | 101.2 | 103.2 | 101.8
Systran 105.8 | 105.5 | 103.2
SDL 1046 | 103.9 | 101.2

Table 6: MEMT3 vs. the original MT engines - rel-
ative scores %

Table 3 contains the absolute scores of all three
baseline MT systems and the MEMT combinations
on original Penn-11 Treebank trees and the output of

116

the two statistical parsers. Tables 4-6 contain the
relative scores of the three MEMT runs against the
baseline MT systems.

In each case, the statistical significance® of BLEU
and NIST was established by using the BLEU/NIST
resampling toolkit described in (Zhang and Vogel,
2004). In all three experiments, the MEMT com-
bination significantly outperforms each of the con-
tributing MT engines. There are two main factors
that explain the improvements over the baseline sys-
tems:

1. The selection procedure (cf. subsection 3.3)
eliminates bad chunk translations. This is a
characteristic shared by all MEMT approaches.
To use the words of (Frederking and Nirenburg,
1994): “three heads are better than one”.

2. The decomposition of the input sentence into
syntactically simpler chunks allows the indi-
vidual MT systems to improve on their own
translations. This is the main novelty of our
approach in comparison with previous MEMT
techniques. Since short input chunks contain
fewer ambiguities than the original longer sen-
tences, the MT systems are more likely to anal-
yse the input correctly, which can lead to an in-
proved output. When this is not the case, the se-
lection procedure is a safe guarantee that a rea-
sonable consensus translation will be produced.

As expected, the scores based on parser output are
slightly lower than the scores based on human parse-
annotated sentences, but the differences are minimal
and even the worst MEMT experiment obtains a rel-
ative rise of 1.2%-5.8% BLEU score with respect to
the baseline systems.

5 Futureresearch

Proposals for future research include the following:

e Experiment with a variety of language models.
(Nomoto, 2004).

e Replace the similarity measure used in the se-
lection procedure (cf. subsection 3.3) by an edit
distance metric.

®measured on 2000 resampled test setsin a 95% confidence
interval

e It would be interesting to see whether a word
graph-based MEMT consensus at the level of
the output chunks has the potential of improv-
ing our approach. Instead of simply selecting
the best output chunk based on the previously
described heuristics (cf. subsection 3.3), an ex-
isting MEMT approach could be used to form
a word-graph consensus translation at chunk
level.

6 Conclusions

We have presented a novel approach to Multi-
Engine Machine Translation that, in contrast to pre-
vious proposals in this area, does not exclusively
rely on target sentence combination. Our approach
is based on a recursive decomposition of the in-
put sentence into smaller chunks which are more
likely to be correctly translated than the longer in-
put sentence. A selection procedure based on ma-
jority voting, a language model score and a confi-
dence score assigned to each MT engine finds the
best translation hypothesis for each input chunk.
The best chunk translations are then recomposed
into target language sentences. In experiments
(English—Spanish) carried out on an 800-sentence
test set extracted from the Penn-I1 Treebank, we re-
port statistically significant relative improvements of
up to 9% BLEU score.

Aknowledgements

This work was made possible by Enterprise Ire-
land grant #5C/2003/0282. We would like to thank
the reviewers for their insightful comments which
served to improve this paper.

References

S. Bangalore, G. Bordel, and G. Riccardi. 2001. Com-
puting consensus translation from multiple machine
translation systems. In Proceedings of | EEE Workshop
on Automatic Speech Recognition and Under standing,
pages 351-354, Trento, Italy.

D. M. Bikel. 2002. Design of a multi-lingual, parallel-
processing statistical parsing engine. In Proceedings
of Human Language Technology Conference (HLT
2002), pages 24-27, San Diego, CA.

P. F. Brown, S. Della Pietra, V. Della Pietra, and R. Mer-
cer. 1993. The mathematics of statistical machine

117

translation: parameter estimation. Computational Lin-
guistics, pages 263-311.

E. Charniak. 2000. A maximum entropy inspired parser.
In Proceedings of the First Annual Meeting of the
North American Chapter of the Association for Com-
putational Linguistics (NAACL 2000), pages 132-139,
Seattle, WA.

S.F. Chen and J. Goodman. 1988. An empirical study of
smoothing techniques for language modeling. Techni-
cal report tr-10-98, Center for Research in Computing
Technology (Harvard University).

G. Doddington. 2002. Automatic evaluation of MT qual-
ity using N-gram co-occurrence statistics. pages 128—
132, San Diego.

J. G. Fiscus. 1997. A post-processing system to yield re-
duced word error rates: recognizer output voting error
reduction (rover). In Proceedings of |EEE Workshop
on Automatic Speech Recognition and Under standing,
pages 238-245, Santa Barbara, CA.

R. Frederking and S. Nirenburg. 1994. Three heads are
better than one. In Proceedings of the Fourth Confer-
ence on Applied Natural Language Processing, pages
95-100, Stuttgart, Germany.

J. Hockenmaier. 2003. Parsing with Generative models
of Predicate-Argument Structure. In Proceedings of
the ACL 2003, pages 359-366, Sapporo, Japan.

S. Jayaraman and A. Lavie. 2005. Multi-Engine ma-
chine translation guided by explicit word matching. In
Proceedings of the 10th Conference of the European
Association for Machine Translation, pages 143-152,
Budapest, Hungary.

L. Larkey and B. Croft. 1996. Combining classifiers
in text categorization. In Proceedings of the 19th An-
nual International Conference on Research and Devel-
opment in Information Retrieval (S GIR), pages 289—
297, Zurich, Switzerland.

Levenshtein. 1965. Binary codes capable of correcting
deletions, insertions and reversals. Doklady Akademii
Nauk SSR, 163(4), pages 845-848.

D. Magerman. 1995. Statistical Decision-Tree Models
for Parsing. In Proceedings of the 33rd Annual Meet-
ing of the Association for Computational Linguistics,
pages 276-283, Cambridge, MA.

M. Marcus, G. Kim, M.A. Marcinkiewicz, R. Maclntyre,
A. Bies, M. Ferguson, K. Katz, and B. Schasberger.
1994. The Penn Treebank: Annotating Predicate Ar-
gument Structure. In Proceedings of the ARPA Hu-
man Language Technology workshop, pages 114-119,
Plainsboro, NJ.

E. Matusov, N. Ueffing, and Hermann Ney. 2006. Com-
puting consensus translation from multiple machine
translation systems using enhanced hypotheses align-
ment. In 11th Conference of the European Chapter
of the Asociation for Computational Lingustics, pages
33-40, Trento, Italy.

B. Mellebeek, A. Khasin, K. Owczarzak, J. Van Gen-
abith, and A. Way. 2005. Improving online machine
translation systems. In Proceedings of MT Summit X,
pages 290-297, Phuket, Thailand.

T. Nomoto. 2004. Multi-Engine machine translation
with voted language model. In Proceedings of the
42nd Conference of the Association for Computational
Linguistics (ACL), pages 494-501, Barcelona, Spain.

K. Papineni, S. Roukos, T. Ward, and W-J. Zhu. 2002.
BLEU: a method for automatic evaluation of machine
translation. pages 311-318, Philadelphia, PA.

D. Roth and D. Zelenko. 1998. Part of speech tagging us-
ing a network of linear separators. In Proceedings of
the 17th International Conference on Computational
Linguistics (COLING) and 36th Annual Meeting of
the Association of Computational Linguistics (ACL),
pages 1136-1142, Montreal, Canada.

A. Stolcke. 2002. SRILM - an extensible language mod-
eling toolkit. In Proceedings of the International Con-
ference on Spoken Language Processing, pages 901-
904, Denver, Co.

J. Turian, L. Shen, and D. Melamed. 2003. Evaluation of
machine translation and its evaluation. In Proceedings
of MT Summit X, pages 386-393, New Orleans, LO.

M. van Zaanen and H. Somers. 2005. DEMOCRAT: de-
ciding between multiple outputs created by automatic
translation. In Proceedings of the 10th Machine Trans-
lation Summit, pages 173-180, Phuket, Thailand.

Y. Zhang and S. Vogel. 2004. Measuring confidence in-
tervals for the machine translation evaluation metrics.
In Proceedings of the Tenth Conference on Theoret-
ical and Methodological Issues in Machine Tranda-
tion, pages 85-94, Baltimore, MD.

118

