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Abstract

The lack of suitable training and testing data
is currently a major roadblock in applying
machine-learning techniques to dialogue man-
agement. Stochastic modelling of real users has
been suggested as a solution to this problem,
but to date few of the proposed models have
been quantitatively evaluated on real data. In-
deed, there are no established criteria for such
an evaluation. This paper presents a systematic
approach to testing user simulations and as-
sesses the most prominent domain-independent
techniques using a large DARPA Communica-
tor corpus of human-computer dialogues. We
show that while recent advances have led to
significant improvements in simulation quality,
simple statistical metrics are still sufficient to
discern synthetic from real dialogues.

1 Introduction

Within the broad field of research on spoken dialogue
systems (SDS), the application of machine-learning ap-
proaches to dialogue management is currently attracting
interest (Levin et al., 2000) (Young, 2002). The major
motivation driving research in this area is the hope of
learning optimal strategies from data. Yet, it is rarely
the case that enough training data is available to suffi-
ciently explore the vast space of possible dialogue states
and strategies. Ironically, the best strategy may often not
even be present in the given dataset. It may thus be ar-
gued that an optimal strategy cannot be learned from a
fixed corpus, regardless of the size of the training corpus.

An interesting approach to solving this problem is to
use small corpora to train stochastic models for simulat-
ing real user behavior. Once such a model is available,
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any number of dialogues can be generated through inter-
action between the simulated user and the dialogue sys-
tem. The simulated user also enables us to explore dia-
logue strategies that are not present in the given corpus.
This way the learning dialogue manager can deviate from
the known strategies and learn new and potentially better
ones. Figure 1 illustrates the learning setup.
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Figure 1: Strategy learning using a simulated user

Previous research has demonstrated the success of the
learning setup (Levin et al., 2000), (Scheffler, 2002) and
also examined the use of user simulation for system eval-
uation (Eckert et al., 1997). The quality of the user
model, however, has not been thoroughly investigated.
It is indeed unclear, how we can quantitatively evaluate
whether the simulated user responses are realistic, gener-
alise well to unseen dialogue situations and resemble the
variety of the user population.

This paper assesses the most prominent domain-
independent simulation techniques using a large DARPA
Communicator corpus of human-computer dialogues.
‘We describe what modifications are necessary to train and
test the models presented in the literature on real data.
We further present a systematic approach to evaluating
user simulations. Our analysis shows that none of the cur-
rently available techniques can realistically reproduce the
variety of human user behaviour and that simple statisti-
cal measures are sufficient to distinguish synthetic from
real dialogues. We investigate these shortcomings and
outline suggestions for future research.



2 User Simulation in SDS

2.1 Intention-based dialogue

Approaches to user simulation can be classified in a num-
ber of ways. Most commonly, one distinguishes systems
with regard to the level of abstraction at which they model
dialogue. This can be at either the acoustic-, word-, or
intention-level. The latter is a particularly useful repre-
sentation of the interaction, since it avoids the need to re-
produce the enormous variety of human language on the
level of speech signals or word sequences.

Hence, simulation on the intention level has been most
popular in recent years. This approach was first taken by
(Eckertetal., 1997) and has been adopted in later work by
most other research groups (Levin et al., 2000), (Schef-
fler, 2002), (Pietquin, 2004), (Georgila et al., 2005a). Ex-
amples of user simulation on the word or acoustic level
are rare, but can be found in (Watanabe et al., 1998) and
(Lopez-Cozar et al., 2003). Naturally, their portability
and scalability is limited.

2.2 Probabilistic vs. Deterministic Simulation

One may further distinguish between probabilistic and
deterministic user models. Whereas probabilistic mod-
els can be trained on data and allow for some “lifelike”
randomness in user behaviour, deterministic models are
driven by handcrafted rules. For a given dialogue state
and system action, a deterministic user model will always
produce the same user response.

Deterministic models have been used to evaluate which
dialogue strategies work well for different types of user
response pattern (Lin and Lee, 2001). While they may be
suitable for observing general correlations between dia-
logue strategy, user behaviour and system performance, a
probabilistic model is clearly preferable for modelling re-
alistic user behaviour. The following sections will review
some of the most prominent work in this area. Very re-
cent work by (Georgila et al., 2005a) is not covered here.

2.3 The Bigram Model

Stochastic modelling of users on the intention level is first
suggested as a means of SDS evaluation by Eckert, Levin
and Pieraccini (Eckert et al., 1997). Their work intro-
duces a Bigram model for predicting the user action a,,
in response to a given system action a

b= P(au|as)- (1)

The Bigram model has the advantage of being purely
probabilistic and fully domain-independent. Its weakness
is that it does not place enough constraints on the user
to simulate realistic behaviour. The generated responses
may correspond well to the previous system action, but
they often do not make sense in the wider context of the

dialogue. The authors note that the model can be ex-
tended to a general n-gram model but due to data sparsity,
it is usually impossible to train n-grams with n > 2.

Eckert et al. do not train the Bigram model on real data
or evaluate the quality of the simulated output.

2.4 The Levin Model

Levin, Eckert and Pieraccini describe how the pure Bi-
gram model can be modified to limit the number of model
parameters and to account for some degree of conven-
tional structure in dialogues (Eckert et al., 1997), (Levin
et al., 2000). Instead of allowing any user response, only
the probabilities for anticipated types of user responses
are calculated for each type of system action. A system
request for attribute A, for instance, is parameterised us-
ing the probability that the user actually specifies A, and
that he specifies n additional attributes

P(provide A;|request Ay) 2)
P(n|request A;). 3)

This set of probabilities implicitly characterises the level
of cooperativeness and the degree of initiative taken by
the user model. The Levin model places stronger con-
straints on the user actions than the pure Bigram model,
but it also makes assumptions concerning the format of
the dialogue. If the dialogue manager or the antici-
pated dialogue format changes, a new set of parameters
is needed.

Like the Bigram model, the Levin model does not en-
sure consistency between different user actions over the
course of a dialogue. The assumption that every user
response depends only on the previous system turn is
flawed. The user actions can violate logical constraints
and the synthetic dialogues often continue for a long time,
with the user continuously changing his goal or repeating
information.

Levin et al. use the ATIS corpus to train a small sub-
set of their model parameters, all other probabilities are
handcrafted using common sense. The authors also do
not evaluate how realistically simulated the responses are.
However, the authors demonstrate that the simulated user
can be used to reveal errors in the dialogue management
strategy (Eckert et al., 1997) and that it can be used for
reinforcement-learning of strategies (Levin et al., 2000).

2.5 The Scheffler Model

Scheffler and Young (Scheffler and Young, 2001) (Schef-
fler, 2002) attempt to overcome the lack of goal con-
sistency that the Levin model suffers from. Their ap-
proach uses deterministic rules for goal-dependent ac-
tions and probabilistic modelling to cover conversational
behaviour.

To model the user goal, Scheffler and Young introduce
fixed goal structures. These consist of attribute-value



pairs with associated status variables. All of the possi-
ble ”paths” that a user may take during a dialogue are
mapped out in advance in the form of a network. The
probability of each route through the network is learned
from training data and the explicit representation of the
user goal ensures that the simulated user always selects
routes in accordance with his goal. Scheffler and Young’s
approach produces promising results, but it is highly task-
dependent and ideally requires an existing prototype sys-
tem.

The authors address the problem of evaluating the sim-
ulated user by comparing statistical properties of the sim-
ulated dialogues with those of the training data dialogues.
More precisely, they show that the goal-completion time
and goal-achievement rate for different tasks are compa-
rable in the simulated and real dialogues.

2.6 The Pietquin Model

Pietquin (Pietquin, 2004) combines features from Schef-
fler and Young’s work with the Levin model. The core
idea is to condition the probabilities used by Levin et al
on an explicit representation of the user goal

P(provide A|request A,, goal). O

This enables Pietquin to explicitly model the dependen-
cies between a user’s actions and his goal. Pietquin hand-
selects the probability values so as to ensure that the user
acts are in accordance with his goal throughout the dia-
logue.

Like Scheffler and Young, Pietquin represents the user
goal using a simple table of attribute-value pairs. The ap-
propriate values are randomly selected from a database.

Pietquin introduces interesting dependencies between
the user’s goal and his conversational behaviour. This
is done by adding new status variables to each attribute-
value pair. The priority variable for instance, governs
how likely the user is to drop the corresponding attribute-
value pair from his goal. This enables Pietquin to model
how likely a user is to relax a certain constraint, such
as “Preferred airline is British Airways”. Pietquin also
attaches a simple counter to each attribute-value pair to
record how often a piece of information has been trans-
mitted to the system. The likelihood of the user hanging
up before completing the task can be modelled as a func-
tion of this variable.

While these models of user goal, memory and satisfac-
tion are rather coarse, they illustrate the various aspects of
the user state which influence behaviour. It is also impor-
tant to note that Pietquin’s model is domain-independent
- a definite advantage over Scheffler and Young’s work.

A major weakness of Pietquin’s work however is that it
is not trained or tested on any real dialogue data. All the
probabilities in his model are hand-selected using com-
mon sense, and no attempt is made to evaluate how real-

istic the user simulation is. Pietquin shows that an equiv-
alent representation of his user model can be found in the
form of a Bayesian Network, but the parameter values
for this network are also copied from the original model
rather than learned.

3 Evaluating User Simulation

3.1 Overview

The previous section has reviewed a number of different
user simulation techniques. To date, few of these have
been evaluated on real data. In part this is due to the
lack of a suitable evaluation methodology. It is indeed
not clear what constitutes a “realistic”” simulation.

In our view, evaluation must cover two aspects. First,
we need to assess if the user model can generate human-
like output. Does it produce responses that a real user
might have given in the same dialogue context? Sec-
ondly, we need to assess if the simulation can reproduce
the variety of real user behaviour. This ensures that the
model represents the whole user population - not just an
average user.

3.2 Comparing Simulated and Real User Responses

For the first part of the evaluation, the dataset is split into
a training and a test set. The dialogues are assumed to be
annotated as a sequence of turns ¢, with each turn con-
sisting of a variable number of actions a, as shown in the
sample dialogue in Table 1.

Evaluation is done on a turn by turn basis. Each of the
system turns in the test set is separately fed into the sim-
ulation, together with the corresponding dialogue history
and the current user goal. The response turn generated by
the simulated user is then compared to the real response
given by the user in the test set.

We propose the use of Precision and Recall to quan-
tify how closely the synthetic turn resembles the real
user turn. These metrics have not yet been used for user
model evaluation in SDS development but they are a com-
mon measure of goodness in user modelling outside SDS.
(Zukerman and Albrecht, 2001). Recall (R) measures
how many of the actions in the real reponse are predicted
correctly. Precision (P) measures the proportion of cor-
rect actions among all the predicted actions. An action is
considered correct if it matches at least one of the actions
in the real user response.

P =100 « Cor?"ectl?/ pr.edz'cted actions )
All actions in simulated response

B — 100 C’orrecﬂy pfedicted actions ©)
All actions in real response

It is of course not possible to specify what levels of
Precision and Recall need to be reached in order to claim
that a simulated user is realistic. Nevertheless, Precision



and Recall offer a reliable method for comparing simu-
lated and real user responses.

3.3 Comparing Simulated and Real Datasets

Precision and Recall deliver a rough indication of how
realistic the best response is that the simulated user can
generate. On its own however, this form of evaluation is
not sufficient. Our goal is not to build a simulated user
for producing the single most likely response to a given
system action. A dialogue strategy must perform well for
all kinds of possible user response, not just the one with
the highest probability. Hence we need to produce a large
number of dialogues with a variety of user behaviour. We
then need to assess if the synthetic dataset has the same
statistical properties as the training data set.

The difficult question is: “What statistical properties
are reliable indicators of realistic dialogues?”. In pre-
vious research, dialogue length, goal achievement rate
and goal completion length have been used (Scheffler
and Young, 2001). These metrics can only be consid-
ered rough indicators of how realistic the dialogues are. It
would be possible to optimise a user model according to
these criteria and still produce non-sense dialogues. For
instance, given that the average dialogue length found in
the training data was n turns, the simulated user could be
forced to hang up after exactly n turns, thus achieving a
perfect evaluation score.

We argue that a large set of measures is needed to cover
a variety of dialogue properties. For our evaluation, we
divide these into three groups:

1. The first group of experiments investigates high-
level features of the dialogue. How long do the dia-
logues last and how much information is transmitted
in individual turns? How active are the dialogue par-
ticipants?

2. The second group of experiments analyses the style
of the dialogue. This aims to produce a more fine
grained picture of the system and user behaviour.
We investigate the frequency of different speech
acts and analyse what proportion of actions is goal-
directed, what part is taken up by dialogue formali-
ties etc. We also examine the user’s degree of coop-
erativeness.

3. The third and last group of experiments investigates
the success rate and efficiency of the dialogues. In
particular, we look at goal achievement rates and
goal completion times. This helps us to evaluate if
misunderstandings are modelled well.

In closing this section, it should be remarked that all of
the statistical measures suggested here are only indicators
of how good a simulation technique is. It is not possible
to specify what range of values a synthetic corpus needs

to satisfy in order to be sufficiently realistic. Moreover,
no guarantee can be given that a simulated dialogue is
realistic even if all of its properties are identical to the
training data.

Yet, the set of measures forms a helpful toolkit for
comparing simulation techniques and identifying possi-
ble weaknesses. The tests cover dialogue length, style
and efficiency. In addition, the variety of measures is suf-
ficiently large to ensure that a user model cannot be easily
trained so as to achieve perfect scores on each of them.

4 Experimental Setup
4.1 Training and Testing Data

Data from the DARPA Communicator project is used for
all of of the experiments presented in this paper. The
full corpus consists of 4 datasets, recorded using systems
from ATT, BBN, CMU and SRI. The 4 sets add up to a
total of 697 dialogues. Each of the four sets is split into
training and testing data, with a ratio of 90:10. Further
information regarding the content and annotation of data
can be found in (Georgila et al., 2005b).

All of the datasets contain slot-filling dialogues from
the travel booking domain, covering flight-, hotel- and
rental car-reservations. The dialogue systems differ
slightly in the wording of their prompts and in their
choice of dialogue strategy and the language understand-
ing components are not equally powerful. On the inten-
tion level however, the general structure of the dialogues
is very similar. The systems cover roughly the same
booking details and they are all almost entirely driven by
system-initiative.

User model training is done on the recognised user out-
put rather than the reference transcriptions. The simu-
lation thus effectively combines the user and the com-
munication channel. No separate error modelling is per-
formed.

4.2 Dialogue Annotation

The dialogue data is automatically converted to the fol-
lowing format: Each dialogue is a sequence of alternating
user and system turns. Each turn ¢ contains one or more
actions. Each action a consists of a speech act (compul-
sory), an attribute (optional) and a value (optional). A
snippet of a sample dialogue is shown in Table 1.

We also add “hangup” actions to the end of each dia-
logue. Considering the act of “hanging up” as an action,
helps us to train user model parameters concerning the
likelihood of a user hanging up in a given dialogue situa-
tion.

4.3 Predicting Attribute Values

For the purpose of our evaluation, we implement and train
the Bigram, Levin and Pietquin models. None of these



Turn Spkr. Actn. Speech act, Attribute, Value

11 Sys ai greeting
as request_info orig_city

Corpus i
Domain Model

2 User as provide_info orig_city boston

t3 Sys a4 implicit_confirm orig_city oslo
as request_info dest_city

lcnnstruct

User Model of
Conversational

User Goal

Behaviour

i i

tq User ag no_answer
a7 provide_info orig_city boston
143 Sys as apology

ag explicit_confirm orig_city boston

Select speech act

and attribute Selectvalue

te User alo yes_answer

Table 1: Sample dialogue

models has been fully applied to real data before and we
found that a number of modifications were necessary to
be able to actually train the models. The Bigram model
and the Levin model, for example, include the prediction
of attribute values in the user model. This means that
different probabilities are estimated for user actions with
different values, say, provide_info orig_city london
and provide_info orig_city boston.

We found that this approach led to severe data sparsity
problems when applied to a real corpus. Datasets such
as the Communicator corpus contain a large number of
possible values for each attribute. The number of possible
combinations of user action, attribute and value prohibits
us from reliably estimating a probability for each one.

It is thus not possible to implement the Bigram model
and the Levin model in their original form. For this eval-
uation we choose to adapt both models in the following
way: The speech act and attribute are modelled proba-
bilistically, as suggested by the respective authors. The
attribute-value is determined by the user goal, as sug-
gested by Scheffler and Young. This ensures that suffi-
cient training data is available to train all model parame-
ters. It further improves the model as it ensures that the
same value is provided if the user is asked multiple times
for the same attribute. See Figure 2 for an illustration.

To allow for “lifelike” randomness in the user goal, we
use a probabilistic domain model. At the start of each di-
alogue, a user goal is randomly constructed according to
the probability distribution over all the attributes and val-
ues found in the training data. We use this domain model
for all of our simulated users. Testing is not done on the
attribute-value, only on the speech act and the attribute.

4.4 Bigram Model Implementation

The original Bigram model as described by Eckert et al.
assumes that dialogue is a sequence of alternating user
and system actions. Under this assumption, the next user
action is predicted based on the previous system action.
In real dialogues, dialogue turns can include several

request_info attr=x
Incoming system action

provide_irfo attr=x val=y
Outgoing user action

Figure 2: Response generation

actions. The assumption that action a; can be predicted
from a;_1 is hence no longer valid. The sample dialogue
in Table 1 illustrates this well: action a4 triggers action
ag, which in turn triggers action ag.

However, it is also not possible to estimate ’turn bi-
grams”, i.e. estimate P(t;|t;—1) instead of P(a;|a;—1).
Since the number of actions per turn is variable, the num-
ber of possible turn combinations will inevitably cause
data sparsity problems.

For our implementation, we choose the following
workaround: Bigrams are still estimated on an action”
basis, but the probability P(a,|as) is interpreted as the
probability that the user response contains a,, when the
previous system turn contains action a.

We further implement a simple back-off mechanism
to account for system actions that appear in the test data
but have not appeared in the training data. For these ac-
tions, no bigram is trained during parameter estimation.
In these cases, we back off to the unigram probability of
each user action.

4.5 Levin Model Implementation

The Levin model has to be adapted to the dialogue format
present in the Communicator data. Relaxing questions
(”’Would you also consider another airline?”’), for exam-
ple, were anticipated by Levin et al. but do not exist in
the Communicator data. Instead the dialogue managers
spend a considerable amount of time on grounding (im-
plicitly or explicitly confirming pieces of information).

To account for these differences in the system action
set, we parameterise the Levin user model using a slightly
modified set of probabilities. A positive response to an
explicit confirmation of attribute A, for instance, is pa-
rameterised as

P(yes_answer|explicit_confirm Ag). @)



Similar modifications are made for the other user and sys-
tem actions that were not present in the dialogue data
available to Levin et al.

4.6 Pietquin Model Implementation

As described in Section 2.6, the Pietquin model is an ex-
tension of the Levin model. The core idea of Pietquin’s
work is to condition the user model parameters on the
user goal. In a real dataset, however, it is not possible
to estimate a probability for every conceivable configura-
tion of user goal. The number of possible combinations
of user actions and user goals is far too large to obtain
reliable probability estimates.

Our workaround for this problem is to condition the
probabilities on selected properties of the user goal,
rather than its full state. For instance, we check if an
attribute is present in the goal or not, or if it has been pro-
vided before or not. This geatly reduces the number of
parameters and avoids data sparsity problems.

4.7 User Goal Inference

The data available to us did not contain annotations re-
garding the specifics of the user goals. We were able
to automatically infer these by scanning the parsed ref-
erence transcriptions of the user utterances. For ev-
ery provide_in f o action, the corresponding attribute and
value were added to the user goal. When two actions
contradicted each other (i.e. same attribute, but different
value) the later one was assumed to overwrite the earlier
one. Counts were recorded to track how often each piece
of information had been transmitted to the system over
the course of the dialogue.

As explained by (Scheffler and Young, 2001), the au-
tomatic inference of user goals from dialogues is not un-
problematic. The true user goal can never be known since
the achieved goal may not be the one that the user started
out with. It is impossible to ascertain which goals are in-
deed completed correctly and which are flawed by recog-
nition errors. User goals may also change as users be-
come aware of system limitations.

4.8 Dialogue Manager Implementation

To generate dialogues, the simulated user needs “a dia-
logue partner” to interact with. The straightforward strat-
egy would be to take one of the original dialogue man-
agers from ATT, BBN, CMU or SRI. Since none of these
was available to us, the only alternative was to implement
a new dialogue manager (DM). To make full use of the 4
training datasets, we chose to build a DM which is an
average” of the four original dialogue managers.

The new DM includes the features which are common
to all of the original dialogue managers and it structures
the dialogue in a similar way. Like all the original man-
agers, the new DM covers flight bookings (origin and

destination city, departing date and time, return flight)
and ground arrangements (hotel location, hotel chain, car
rental).

The new DM can process any of the user speech
acts present in the data. This includes yes_answer and
no_answer actions, which need to be correctly resolved
according to the dialogue context. The DM can also han-
dle user-initiative, i.e. process multiple pieces of incom-
ing information. To resemble the dialogue managers in
the training data, however, it does not encourage user ini-
tiative. Each DM turn contains at most one request_in fo
action.

For each slot, the DM uses a simple state machine. The
state of the slot informs the dialogue manager what action
to take next to fill and confirm the slot. As can be seen
in Figure 3, the DM can reject, implicitly confirm or ex-
plicitly confirm incoming information, based on the con-
fidence score of the incoming action. Confidence scores
for each user action are randomly selected from a flat dis-
tribution. The threshold levels for rejection, implicit or
explicit confirmation can be set so that their relative pro-
portion resembles that found in the training data. The be-

receive provide_info

receive with high o

provide_info confidence send implicit
i v confirmation

with very low

confidence

receive no_answer
or provide_info
with different value

receive yes_answer
of provide_info with
same value

receive provide_info
with low confidence

send explicit
confirmation

Figure 3: Dialogue manager agenda

haviour of the dialogue manager involves no actual access
to flight, hotel or car booking systems. Since all interac-
tion occurs on the intention level, no database retrieval
needs to be implemented.

With regards to evaluation, it is difficult to quantify the
effect of using a new DM on the quality of the simulated
dialogues. Quite clearly, if the new DM behaves very dif-
ferently from the original DM that was used for collecting
the training data for the simulated user, then the synthetic
data can never match the real data exactly - no matter
how good the simulated user is. Since the training data
is recorded with many different dialogue managers, it is
also questionable if a single DM can generate the same
variety of dialogues.

The fact that the training data is recorded using 4 dif-
ferent DMs is a great advantage for us. It enables us to
quantify how much user behaviour can vary due to dif-
ferences in experimental setup and dialogue strategy. By



comparing the four original DMs, we can sketch out a
target range for our simulated dialogues.

5 Evaluation Results

As explained in section 3, the evaluation is split into two
main parts. The first part compares simulated user re-
sponses to real user responses in an unseen test set. This
assesses how realistic the best response is that the sim-
ulated user can predict. The second part compares cor-
pora of simulated dialogues to real corpora. This eval-
uates how well the simulation covers the variety of user
behaviour in the training data.

5.1 Evaluation of the Best Response

As described in Section 3.2, we use Precision and Recall
to measure the similarity between simulated and real user
responses. The results (Table 2) show that the scores sig-
nificantly improve from the Bigram to the Levin model.
It is interesting to note that the jump in precision clearly
exceeds the jump in recall. This is due to the fact that
the Bigram model outputs a much greater number of user
actions than the Levin model. We will confirm and dis-
cuss this problem in more detail later. The Pietquin model

Train Test
Precision Recall Precision Recall
BIG 19.74 24.11 17.83 21.66
LEV 43.11 35.07 37.98 31.57
PTQ 45.00 36.35 40.16 33.38

Table 2: Precision and recall scores

outperforms both the Bigram and the Levin model. Its
improvement over the Levin model is notable, but not as
dramatic as the gap between the Bigram and the Levin
model. This is natural, considering that the Pietquin
model may be viewed as an extension of the Levin model.

The relative ranking of the three models is as expected:
As the level of sophistication rises, the performance im-
proves. Also as expected, the training data performance
is slightly better than the test data performance.

5.2 Evaluation of the Generated Corpus

In the second part of the evaluation, we test how well the
user models cover the variety of the user population in
the training data. A corpus of 150 dialogues is generated
with each of the user models through interaction with the
dialogue manager (DM). The statistical distribution of the
synthetic corpus is then compared to the training data, as
described in Section 3.3.

As described in Section 4.8, our evaluation experi-
ments are run with a DM that is different from the one
used to collect the training data for the simulated user. It

is interesting to investigate what effect the dialogue man-
ager has on user behaviour. We therefore show individual
measurements for each of the four datasets as well as the
full training corpus (denoted by "ALL”). The range of
values spanned by the four DMs is the target range for
the simulated dialogues. Variations within this range can
be attributed to the dialogue manager and the experimen-
tal setup.

5.2.1 High-level Dialogue Features

The first group of experiments covers the following
statistical dialogue properties:

e Dialogue length, measured in the number of turns
per task: mean, variance and shape of distribution

e Turn length, measured in the number of actions per
turn: mean, variance and shape of distribution

e Participant activity as a ratio of system and user ac-
tions per dialogue

Figure 4 shows the mean values for dialogue length (=
task length) and turn length. The Pietquin model achieves
a very good result for dialogue length, missing the mean
length of the training data by less than 2 turns. The Levin
model is further away from the training data result, but
it is still within the target range. The Bigram model
performs very badly - the dialogues finish far too early.
Analysis of the simulated dialogues shows that the user
is very uncooperative, causing the system to finish the di-
alogue before completing any booking. This will also be
confirmed by very low goal completion rates later in the
evaluation.
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Figure 4: Mean task and turn length

We found that the standard deviation of the task length
is too small in all of the simulated datasets. The shape of
the distributions (Figure 5) confirms this. The curves for
the Levin model and the Pietquin model look better than
for the Bigram model, but their tails are still too flat.

Interestingly, the results for turn length look better. As
shown in Figure 4 the means of the simulated datasets
and the training data are nicely aligned. Only the Bigram
model produces far too many actions per turn. The flaw
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leading to this problem is the assumption that each sys-
tem action triggers exactly one user action. In real dia-
logues the relationship is not necessarily 1 to 1. An open
question such as "How may I help you?”, for instance,
can lead the user to respond with several pieces of infor-
mation. An implicit confirmation or an apology, on the
other hand, may trigger no user response at all. The latter
case is very common in real dialogues, leading to a lower
average number of actions per turn.

The Levin model and the Pietquin model achieve al-
most perfect results for the standard deviation of the turn
length. Looking at the shape of their distributions (Figure
6), we can see that they closely resemble the shape of the
training data distribution.
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Figure 6: Turn length distribution

The next experiment investigates dialogue participant
activity. Figure 7 shows the ratio of user vs. system ac-
tions. The lower part of the bar indicates the percentage
of user actions while the upper part represents system ac-
tions.

Once again, the Bigram model is far outside the target
range. As confirmed by the previous experiment, the user
is "talking too much”. The Levin and the Pietquin model
achieve almost identical scores. Both models are inside
the target range and not far from the training data result.

5.2.2 Dialogue Style and Cooperativeness

The next group of experiments covers the following
statistical properties:

Figure 7: Ratio of user vs. system actions

e Frequency of different user and system speech-acts
(average number of occurrences per dialogue)

e Proportion of goal-directed actions (request and pro-
vide information) vs. grounding actions (explicit
and implicit confirmations) vs. dialogue formalities
(greetings, apologies, instructions) vs. unrecognised
actions (unknown).

e Number of times a piece of information is requested,
provided, re-requested and re-provided in each dia-
logue

The histogram in Figure 8 shows the frequency of
the most dominant user and system speech acts. The
first three bins cover user actions: “provide_info”,
”yes/mo_answer” and “unknown”. The last two bins
are for system actions: “request.info” and “ex-
plicit/implicit_confirm”.
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Figure 8: Histogram of speech acts

Secondly, we group all user and system actions into
categories, as shown in Figure 9. This allows us to inves-
tigate what proportion of the dialogue is spent on goal-
directed actions, grounding actions and dialogue formal-
ities. Since the number of unrecognised actions is high,
a separate category is created for these actions. Hang-
up actions are not included in this analysis, since every
dialogue contains exactly one hang-up action.



Our analysis shows that the relative ordering of actions
is fairly similar for the four real systems. In the simulated
datasets, the number of “unknown” user actions is clearly
too low. This indicates that misunderstandings are not
simulated well. At the same time, the proportion of goal-
directed actions is too low compared to grounding actions
and dialogue formalities.
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Figure 9: Proportion of dialogue spent on goal-directed
actions, grounding actions, dialogue formalities, un-
recognised actions. All bars show the percentage of ac-
tions in the corresponding class, i.e. the four bars add up
to 100%
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Figure 10: Dialogue efficiency (thin lines show std. devi-
ation)

To evaluate the cooperativeness of the simulated user,
we examine how often attributes are requested, provided,
re-requested and re-provided per dialogue (Figure 10).
The results confirm that the simulated user in the Bigram
model is too active: The ratio between provide_in fo and
request_in fo actions is tilted towards the user actions.
The Levin and the Pietquin models show a rather large
number of provide_in fo and request_in f o actions. The
ratio between system requests and corresponding user re-
sponses, however, is very similar to the training data.
This shows that the degree of user cooperativeness is
modelled fairly well.

5.2.3 Dialogue Success Rate and Efficiency

The final group of experiments covers the following
statistical properties:

e average goal / subgoal achievement rate
e mean and variance of the goal completion time

Figure 11 shows the goal achievement rates and goal
completion times for the four real systems and the three
simulated systems. We are only showing the results for
flight-bookings here, but a similar analysis can be done
for hotel-reservations and rental-car bookings. We have
assumed that a subgoal is completed when the system ac-
knowledges the corresponding booking.
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Figure 11: Flight goal completion rates (percentage of di-
alogues with successfully completed subgoal) and com-
pletion times (in dialogue turns, thin lines indicate stan-
dard deviation).

As expected, the Bigram model produces very poor
results. The performance of the Levin and the Pietquin
model is more interesting. Our analysis shows that the
simulated users more frequently achieve their goals, but
that the average completion time is longer. A possible
explanation for this may be that the user’s level of per-
sistence and patience is not modelled well. Real user’s
seem to be more likely to hangup if the dialogue progress
is slow.

Another plausible explanation is that real users can be
roughly divided into a large group of novices and a small
group of experts. The latter group is aware of system
limitations and completes the dialogue successfully and
quickly. The novices, on the other hand, tend to engage
in long, error-prone dialogues that do not lead to success-
ful completion. This dependency between user expertise
and user behaviour is not accounted for in our implemen-
tations.

Analysis of the dialogue transcriptions shows that
many real users produce special requests, such as ”a win-
dow seat on the plane” or “rental car-insurance”. This
group of novice users appears to be underrepresented in
the simulated datasets. Our experiments confirm this:
“special requests” are usually parsed as “unknown” and



this type of action is significantly less frequent in simu-
lated datasets.

Interestingly, the Pietquin model performs worse than
the Levin model for the goal completion metrics, al-
though it explicitly takes the user goal into consideration.
It appears that the model in its current form is too con-
straining. The assumption that the user goal stays fixed
over the course of a dialogue is not correct. Secondly,
the Pietquin model encourages the user not to mention
attributes which are not part of his goal. While this is
conceptually correct, it seems to have negative effects on
user behaviour when the goal representation cannot cap-
ture the complexity of real user goals.

Manual analysis of the simulated dialogues also shows
that the first phase of the dialogue (greeting, instruc-
tion, exchange of flight booking details) is fairly realis-
tic, presumably because it follows dialogue conventions
which are modelled well by Levin and Pietquin. The sec-
ond phase (modification of booking details, re-retrieval
of suitable flights, etc.) is less realistic, possibly because
it is more strongly driven by the user goal.

6 Discussion and Future Work

This paper has presented a detailed evaluation of the most
prominent domain-independent approaches to stochastic
user simulation based on a large corpus of real human-
computer dialogues. The nature of the simulation prob-
lem is such that no single measure of goodness exists, but
we have demonstrated that a set of metrics can be used to
identify the strength and weaknesses of each method.

Our results show that the works of Levin and Pietquin
have led to good improvements in user simulation quality.
Both approaches clearly outperform the Bigram baseline.
However, the results also show that the simulated datasets
can still be distinguished from real datasets using simple
statistical metrics. Our analysis indicates that it may ben-
eficial to distinguish between different user groups, for
instance by training multiple user models with (say) dif-
ferent levels of expertise. Further research is also needed
on modelling user goals and on modelling dialogue mis-
understandings. We hope to address these problems in
future work.

We believe that it may be particularly beneficial to de-
velop a better representation of the user goal. To cover
realistic dialogues, we must acknowledge that user goals
can have hierarchical structures - and that these structures
can evolve over time. The Hidden Vector State Model
(Young, 2002) has recently been introduced as a method
for learning hierarchical dependencies and we intend to
investigate its use for user modelling.
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