
The Markov Assumption in Spoken Dialogue Management

Tim Paek & David Maxwell Chickering

One Microsoft Way
Redmond, WA 98052 USA

{timpaek|dmax}@microsoft.com

Abstract

The goal of dialogue management in a spoken
dialogue system is to take actions based on
observations and inferred beliefs. To ensure
that the actions optimize the performance or
robustness of the system, researchers have
turned to reinforcement learning methods to
learn policies for action selection. To derive
an optimal policy from data, the dynamics of
the system is often represented as a Markov
Decision Process (MDP), which assumes that
the state of the dialogue depends only on the
previous state and action. In this paper, we
investigate whether constraining the state
space by the Markov assumption, especially
when the structure of the state space may be
unknown, truly affords the highest reward. In
a simulation experiment conducted in the con-
text of a dialogue system for interacting with a
speech-enabled web browser, models under
the Markov assumption did not perform as
well as an alternative model which attempts to
classify the total reward with accumulating
features. We discuss the implications of the
study as well as limitations.

1 Introduction

The goal of dialogue management in a spoken dialogue
system is to take actions based on observations and in-
ferred beliefs. Dialogue management plays a crucial
role in the overall performance of the system since
speech recognition is often quite poor, due to noisy or
unexpected input. With robust dialogue management,
the system can still take actions that maintain the task at
hand. Unfortunately, coming up with a suitable set of
dialogue management strategies is no easy task. Tradi-
tional methods typically involve authoring and tuning
complicated hand-crafted rules that require considerable

deployment time and cost. Statistical methods, on the
other hand, hold the promise of robust performance
from models that can be trained on data and optimized,
so long as the data is representative of what the dialogue
system can expect to encounter during deployment
(Young, 2000).

Among the more popular statistical methods, re-
searchers have turned to reinforcement learning meth-
ods since it is possible to derive a policy for action
selection that is guaranteed to be optimal with respect to
the data given that the dynamics of the system is repre-
sented as a Markov Decision Process (MDP), which
assumes that the state of the dialogue depends only on
the previous state and action. The Markov assumption
is made as a modeling choice for the data. Hence, an
important topic of inquiry is whether this choice is ap-
propriate and beneficial.

In this paper, we explore the Markov assumption on
both theoretical and empirical grounds. In particular,
we investigate whether constraining the state space by
the Markov assumption truly affords the highest reward,
especially when the structure of the state space may be
unknown, which is typically the case. This paper is
organized as follows. In Section 2, we provide relevant
background on reinforcement learning with specific
focus on the modeling assumptions relevant to spoken
dialogue. In Section 3, we challenge the modeling as-
sumptions by proposing alternative models to the MDP
that vary the temporal relations among features. All
competing models generate dialogue management
strategies for interacting with a speech-enabled web
browser, and we explain in detail how we built these
models from data. In Section 4, we evaluate the per-
formance of all the models in a simulation experiment.
Finally, in Section 5, we discuss the implications and
limitations of the experimental study.

2 Background

Reinforcement learning addresses the problem of how
an agent should act in dynamic environments so as to
maximize a scalar reward signal (Sutton & Barto, 1998).

This problem is manifest in spoken dialogue systems
since the system must take sequential actions based on
its observations, such as user utterances, and its beliefs.
A central debate in the literature concerns the use of
models. Model-free approaches do not explicitly repre-
sent the dynamics of the environment, but instead di-
rectly approximate a value function that measures the
desirability of each environment state. These ap-
proaches offer near-optimal solutions that depend on
systematic exploration of all actions in all states (Wat-
kins & Dayan, 1992). On the other, model-based ap-
proaches explicitly represent a model of the dynamics of
the environment to compute an estimate of the expected
value of each action. With a model, the agent can re-
duce the number of steps to learn a policy by simulating
the effects of its actions at various states (Sutton &
Barto, 1998). Perhaps for this reason, and for the fact
that it is possible to derive a policy that is guaranteed to
be optimal with respect to the data, spoken dialogue
researchers have by and large pursued model-based re-
inforcement learning methods (see e.g., Levin et al.,
1998; Singh et al., 2002).

The framework underlying model-based reinforce-
ment learning is that of the MDP, which can be charac-
terized by a tuple (S, A, P, R) with:

• A state space S with states Ss ∈ . The state space

may consist of features related to spoken utter-
ances, user and system actions, and so forth. We
discuss this further in the next section.

• An action space A with actions Aa ∈ . The action
space comprises all system actions in dialogue
management, such as confirming various slots, or
engaging in a user requested service.

• Unknown state transition probabilities
]1,0[: aSASP ×× , where),|(1 ttt ASSP + gives

the probability of a transition from a state Ss ∈
and action Aa ∈ at time slice t to another state

Ss ∈ in the next time slice. The distribution P
defines the dynamics of the environment, and con-
stitutes the basis for the Markov assumption.

• A reward function ℜ× aASR : , where

),(ttt ASRR = assigns an immediate reward at

time slice t for taking action Aa ∈ in state Ss ∈ .
R plays a critical role in the policy that is learned
for dialogue management as we discuss further be-
low.

In order for a dialogue system to take actions ac-

cording to the MDP, it is necessary to be able to derive
a policy AS a:π mapping states to actions so that it
maximizes some specified objective function for the
long term reward. How much of the future the system

takes into account in making its decisions at any given
moment depends upon the specified horizon for the ob-
jective function. Perhaps the simplest objective func-
tion is the total reward over a finite horizon, which
specifies that at any given time t, the system should op-
timize its expected reward for the next h steps:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑

+

=

ht

tq
qRE (1)

Alternatively, the system can take the infinite long

term reward into account with future rewards geometri-
cally discounted by a discount factor γ so as to motivate
the dialogue system to complete the interaction as soon
as possible:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑

∞

=tq
q

q RE γ (2)

where 0 ≤ γ < 1 for computability purposes. While it is
theoretically possible for a spoken dialogue to continue
ad infinitum, most systems are designed to avoid infi-
nite regressions where, for example, the system engages
in the same repair over and over (e.g., “I’m sorry, can
you repeat that?”). In practice, most dialogues are finite
horizon, given that oftentimes growing user frustration
ultimately leads to the termination of the interaction.

In place of (1) and (2) above, the objective function
can also be based on post-hoc measures such as usabil-
ity scores (Singh et al., 2002; Walker et al., 2001b), and
construed to reflect whatever qualities a dialogue de-
signer may want the system to possess, such as the abil-
ity to re-tool the system for future use (Walker et al.,
2001a). In short, the assignment of the reward function
reflects the desired behavior of the system.

For the rest of this paper, we confine our discussion
to the finite horizon MDP where we assume for simplic-
ity that all variables in the state space can be fully ob-
served by the system. When state variables are included
that are not fully observable, such as the user’s intention
in producing an utterance, the dialogue constitutes a
Partially Observable MDP (see e.g., Paek & Horvitz,
2000; Roy et al., 2000; Zhang et al., 2001). The
POMDP also employs the Markov assumption.

Building on (1), an optimal policy can be learned
through various algorithms that involve finding the op-
timal value function:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

+

=

ht

tq
qtt REsV

π
max)(* (3)

where the optimal value of a state s is the expected re-
ward for the next h steps, if the system starts in s at time

t and executes the optimal policy π. The optimal value
function (3) is unique and can be defined recursively
using the Bellman equations:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= ∑

∈
+++

Ss
tttttt

a
tt

t
t

sVassPRsV)(),|(max)(1
*

11
* (4)

where the value of a state s at time t is the expected im-
mediate reward plus the expected value of the next state
at time t+1 using the best possible action. The simulta-
neous equations engendered by (4) can be solved effi-
ciently with dynamic programming. Given the optimal
value function, the optimal policy is simply:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= ∑

∈
+++

Ss
tttttttt

t

sVassPRs)(),|(maxarg)(1
*

11
*π (5)

2.1 Influence Diagram

The finite horizon MDP can be viewed as a special case
of an influence diagram, a more general framework for
graphical modeling that facilitates decision-theoretic
optimization. An influence diagram is a directed
acyclic graph composed of three types of nodes: chance
nodes, decision nodes and value nodes. The influence
diagram also contains a single utility node that is a de-
terministic function of all the value nodes. Connecting
the nodes are two types of arcs: probabilistic arcs and
informational arcs. Arcs pointing into chance or value
nodes specify a probabilistic dependency between a
child and its parents. Arcs pointing into a decision node
are “informational” in that the parents of the decision
node are assumed to be known or observed before a
decision is made. Although the traditional definition of
an influence diagram (Howard & Matheson, 1981) per-
mits only one value or utility node, our use of multiple
value nodes is simply a way of factoring the utility func-
tion and has been used by other researchers (Tatman &
Shachter, 1990; Lauritzen & Nilsson, 2001).

Figure 1 displays an influence diagram for a finite
horizon MDP where all states Ss ∈ have been mapped
to chance nodes, all actions Aa ∈ to decision nodes,
and all R to value nodes expressing the immediate re-
ward for taking action a in state s at time t. A utility
node at the bottom of the Figure sums all the immediate
rewards as in (3). Technically, since the MDP is fully
observable at any given time slice, informational arcs
point into each decision node from the previous time
slice, though we have left them out to reduce clutter.
The influence diagram also contains a set of parameters
Θ that characterize the conditional distributions of the
non-decision nodes, defined as:

∏
∪∈

Θ=Θ
RSX

XXPaXPARSP)),(|(),|,((6)

where Pa(X) denotes the set of parents for node X, and
Θx denotes the subset of parameters in Θ that define the
local probability distribution of X. The transition prob-
abilities P for the MDP are clearly subsumed by (6) and
reside in the node St+1, as shown in the Figure.

We discuss influence diagrams for two reasons.
First, influence diagrams allow us to understand what
kinds of alternative models we could experiment with in
competition to the MDP, since the transition probabili-
ties P could easily depend on state variables other than
just those in the previous time, as we demonstrate in the
next section. And second, influence diagrams provide a
framework in which to address what state variables
should be included in S at all if a dialogue designer is
unsure about what variables may be important for re-
ceiving an immediate reward.

2.2 MDP Assumptions

Before discussing the assumptions underlying the MDP,
it is important to consider the basic units of dialogue
modeling; that is, what basic units form a dialogue
process. Since all dialogue systems respond to user
utterances, perhaps the simplest way to model the dy-
namics of the interaction is to divide the temporal proc-
ess by user utterances. In other words, a dialogue “turn”
begins at the start of each new user utterance. While
alternative ways of measuring time exist, such as ques-
tion-answer pairs or contributions (Clark, 1996), they
typically require knowledge about the type of utterance
or action that was produced; for example, that an utter-
ance was an “uptake.” For simplicity, we take the user
utterance as most basic unit of dialogue progression.
Given an utterance then, the most basic features that a
system can observe before taking an action are those
that pertain to the utterance itself. As such, we consider
that at every turn, a dialogue system can observe at least

Rt

At

St

Rt+1

At+1

St+1

Rh

Ah

Sh

…

∑
=

h

t
tR

0

Immediate RewardTransition Probabilities

Objective Function

Rt

At

St

Rt+1

At+1

St+1

Rh

Ah

Sh

…

∑
=

h

t
tR

0

Immediate RewardTransition Probabilities

Objective Function

Figure 1. An influence diagram model of a finite hori-
zon MDP. Informational arcs have been left out.

the features that can be known about the current utter-
ance at hand. We now discuss modeling assumptions
that can be made on top of this basis.

The MDP framework relies on several assumptions,
not all of which may be valid in the context of spoken
dialogue. The most obvious assumption is the Markov
assumption. One reason for making the Markov as-
sumption is that it allows the Bellman equations in (4)
to exploit the “Optimality Principle,” which states that
whatever the initial state may be, all remaining
decisions must be optimal with regard to the state
following the first decision (Bellman, 1957). This al-
lows the optimal policy (5) to be solved efficiently us-
ing dynamic programming. However practical this
reason may be, whether or not a model constrained by
the Markov assumption yields the highest reward as
compared to models constrained by other assumptions is
still an empirical question, one which we investigate
later.

From a linguistic perspective, it seems counter-
intuitive to believe, as the Optimality Principle implies,
that an optimal policy based just on the previous turn
(i.e., the features of the previous utterance) provide as
good of a policy as that based on the full history of in-
teraction. After all, most linguists acknowledge that in
a conversation, participants collaboratively build up
shared knowledge about what has been said and mutu-
ally understood (Clark, 1996). This shared knowledge,
or common ground, is cumulative in nature and under-
lies all future interactions. In the next section, we con-
sider a cumulative model with no temporal assumptions
in contrast to the MDP.

A response to this criticism is to argue that if aspects
of history are important for making future decisions,
they could be incorporated with global states that sum-
marize what has been learned so far. However, this
argument merely avoids the problem by adding addi-
tional assumptions, this time relating to what variables
should be included in the state space. Most policy
guided dialogue systems specify the state space up
front, delineating all state variables that are assumed to
be relevant for receiving a reward. These variables are
defined and restricted so as to not only facilitate the
Markov assumption, but also expedite tractable infer-
ence. Unfortunately, in practice, most of the time dia-
logue designers do not know in advance what variables
should be included in the state space. In the next sec-
tion, we discuss what a dialogue designer could do in
such a situation. For now, it is enough to say that if
possible, we should like to build models that rely on as
few assumptions as necessary.

Finally, another assumption underlying the MDP is
that the probabilities of making state transitions or re-
ceiving specific rewards do not change over time; that
is, they are “stationary.” For dialogue systems that pro-
vide services across a large population of users, the sta-

tionary assumption may indeed hold since individual
differences are generalized. However, for dialogue sys-
tems that provide services to a limited number of users,
it is not unreasonable to believe that people may change
their preferences about how they want the system to
behave around them over time. If unobservable states
such as user frustration are included in the model, they
may change over time as well. In such cases, it is in-
cumbent upon the system to continually adapt its policy.
Elsewhere, we discuss how a dialogue system could
adapt its policy in real-time to a particular user through
online feedback (Chickering & Paek, 2005).

3 Alternative Models

In the previous section, we discussed how the Markov
assumption can be tied together with the selection of
state space. Unfortunately, dialogue designers who
want to utilize reinforcement learning for dialogue man-
agement typically do not know in advance what vari-
ables are relevant for receiving a reward and how they
are related to each other: that is, the structure of the state
space is unknown. Rather than choosing variables so as
to facilitate the Markov assumption, we propose that the
state space be learned from data along with the policy.
This can be done using techniques for learning the pa-
rameters and structure of a Bayesian network, extended
to influence diagrams (Heckerman, 1995; Chickering &
Paek, 2005).

To derive the structure of the graphical models we
describe below, including the MDP, we learned influ-
ence diagrams employing decision trees to encode local
conditional distributions using a tool that performs
Bayesian structure search (Chickering, 2002). Decision
trees can be learned for both discrete and continuous
variables, where splits in the trees are made through
greedy search guided by a Bayesian scoring function
(Chickering et al., 1997). In learning the influence dia-
grams, we only specified constraints on the state space,
such as the Markov assumption, for which we wanted to
conduct experiments. In particular, we built competing
models to the MDP that vary the nature of the temporal
relations between features. We did not assume that the
state space was known beforehand, and as such, we in-
cluded all variables that we were able to log for interact-
ing with a command-and-control, speech-enabled web
browser. We now describe the data collection and mod-
els we built.

3.1 Data Collection

The data from which we built all models was for spoken
dialogue interaction with a speech-enabled web
browser. As we describe in Chickering & Paek (2005),
the data was generated using a simulation environment,
where all possible system actions to a user command
were systematically explored. The simulation pro-

ceeded as follows. First, we randomly selected a com-
mand from the command-and-control grammar for the
browser (e.g., “go back”, “go forward”, “go to link x”).
Using state-of-the-art TTS generation, we produced an
utterance for the command, varying all possible TTS
parameters, such as engine, pitch, rate, and volume.
Since we were interested in building models that were
robust to noise, we included empty commands and
added various types of background noise to see if a
model could learn to ignore spurious commands. The
produced utterance was then recognized by a Microsoft
Speech API (SAPI) recognition engine, whereupon we
logged all possible SAPI events. These events, and
functions of these events, constituted the feature set,
which roughly fell into the following three broad cate-
gories:

1. Within-utterance ASR features: Features pertaining

to a single utterance such as the number of hy-
potheses in an n-best list of variable length, the
mean of the confidence scores, etc.

2. Between-utterance ASR features: Features pertain-
ing to matches across utterances, such as whether
the top rule in the n-best list matched the previous
top rules, etc.

3. Dialogue features: Features pertaining to the over-
all dialogue such as the number of repairs so far,
whether the system has engaged in a confirmation
yet, etc.

It is important to note that both the between-utterance
ASR features and dialogue features span multiple time
slices. By including these features, we leave open the
possibility that historical variables may very well be
relevant for receiving a reward. In building the models,
we let the learning algorithm decide whether to include
these variables in its decision trees.

Once the produced utterance was recognized and
events recorded, the simulation took a random action.
For the first utterance, the simulation could either exe-
cute the most likely command in the n-best list
(DoTop), confirm among the top three choices while
giving the option that it may not be any of them (Con-
firm), ignore the utterance as spurious (Ignore), or ask
for a repetition (Repeat). For the second utterance,
Only DoTop, Confirm, and Repeat were possible, and
for the third utterance, only DoTop and Bail, an action
which makes an apology and terminates the dialogue,
were possible. We did not allow the interaction to ex-
tend beyond the third utterance given the typically low
tolerance users have in command-and-control settings
for extended repairs.

If the simulation selected DoTop, Ignore, or Bail,
the session finished and the simulation could now be
rewarded. For taking the action DoTop, if the result of
executing the most likely command matched the “true”

command (i.e., the one sampled from the grammar), the
simulation received a positive scalar reward (+100);
otherwise, it received a negative reward (-100). For
taking the action Ignore, if the true command was
empty, it received +100, else -100. For Bail, it received
-100. If either the repair action Confirm or Repeat was
selected, a penalty (-75) was received, and the simula-
tion proceeded to produce a confirmation choice that
matched the true command or a repetition of the previ-
ous utterance respectively.

In summary, by sampling a command from the
grammar and then responding to it with random actions
until the dialogue finished and rewards were assigned,
the simulation environment amassed data that could be
used to learn which features and actions were most rele-
vant for receiving a reward.

3.2 Types of Models

In order to validate empirically whether constraining the
state space by the Markov assumption, especially when
the structure of the state space may be unknown, truly
affords the highest reward, we built three types of alter-
native influence diagrams that vary in the extent of their
temporal dependencies using the simulation data.

Figure 2 displays the alternative models. Besides
learning an MDP, which has a first order Markov de-
pendency, we also learned a second order Markov
model where the third time slice state variables could
also depend on those in the first time slice, as shown in
the top of the Figure. In preparing the data for the sec-
ond order model, we added between-utterance ASR
features such as where the top command in the third
slice occurred in the n-best lists of the second and first

R1

A1

S1

R2

A2

S2

R3

A3

S3

R1

A1

S1

R2

A2

S2

R3

A3

S3

R1

A1

S1

R2

A2

S2

R3

A3

S3

R1

A1

S1

R1

A1

S1

R2

A2

S2

R3

A3

S3

∑R

A1

S1

∑R

A2

S2S1

∑R
A3

S3S1

S2

∑R

A1

S1

∑R

A1

S1

∑R

A2

S2S1

∑R
A3

S3S1

S2

2nd Order

0th Order

Cumulative

Figure 2. Alternative models to the MDP that vary along
the Markov scale. The utility node in the top two mod-
els have been left out, as well as informational arcs in
the second order model.

time slices. We also built a zero order model without
any dependencies between time slices, as shown in the
middle of the Figure.

Finally, we built a cumulative total reward model for
each time slice where state features accumulate with
each successive time slice, as shown in the bottom of
the Figure 2. For this model, the local system actions
optimize the total utility function, as opposed to the
immediate reward function. This kind of model had
been applied previously in the call-routing domain to
transfer calls so as to minimize caller time and opera-
tional expense (Paek & Horvitz, 2004). In effect, the
cumulative total reward model falls under the rubric of a
“model-free” approach in that it does not explicitly rep-
resent the dynamics of the environment, but rather di-
rectly predicts the long term reward. Fundamentally,
the cumulative model attempts to classify the total re-
ward, which given the small state space for our domain,
was discrete, though in more complicated domains a
regression could be learned.

Building each model entailed piecewise construction

of portions of the model by the time slice variables in-
volved. For those models involving just the first time
slice variables, we had over 20,000 simulation sessions
as training data. For those models involving the first
and second time slices, we had over 10,000 sessions.
And finally, for those models involving all three time
slices, we had over 5,000 sessions.

Table 1 summarizes the complexity of the models as
a function of the number of splits in the decision trees
that make up the local probability distributions, and the
number of state space variables. For the first and sec-
ond order Markov models we also built “limited” ver-
sions, where the state space variables were limited to
those that directly predicted the immediate reward as
parents. This had the effect of reducing the complexity
of each respective model by a factor of 6 for the number
of splits, and 4 for the number of state variables. The
simplest model by far was the cumulative total reward
model which had roughly 50 times less splits than any
of the unlimited Markov models, and 10 times less vari-
ables than the MDP model.

Figure 3 shows the limited MDP learned from the
simulation data. For the first time slice, no dependen-
cies between state variables are necessary since all fea-
tures of the first utterance are fully observed. Note that
each time slice has a number of features related to the n-
best list confidence scores. This is not surprising given
that most hand-crafted dialogue management strategies
utilize some kind of confidence threshold for taking
actions (e.g., “Do the top recognized command if its
confidence is greater than 95%). The mean confidence
score in the n-best list appears in every time slice sug-
gesting that it pays off to build features that aggregate
the confidence scores. In fact, many of the features in
the first and second time slices of the limited MDP are
aggregate features of the n-best list, such as the sum of
all confidence scores (“Score Sum”), the range of score
values (“Score Range”), and whether all the rules in the

R1 A1 R2 A2 R3 A3

3rd Rule

Most Freq
Interference

Score
Mean

2nd Score

Score
Range

Number of
Interference

Number of
Sound Starts

1st Rule

Rules All
Same

Score
Sum

Rules All
Same

Score
Mean

1st Rule

3rd Score

Score
Minimum

Max Number
Rule Matches

1st Rule
Score
Mean

1st Rule Same
As Previous

2nd Rule

R1 A1 R2 A2 R3 A3

3rd Rule

Most Freq
Interference

Score
Mean

2nd Score

Score
Range

Number of
Interference

Number of
Sound Starts

1st Rule

Rules All
Same

Score
Sum

Rules All
Same

Score
Mean

1st Rule

3rd Score

Score
Minimum

Max Number
Rule Matches

1st Rule
Score
Mean

1st Rule Same
As Previous

2nd Rule

Figure 3. A finite horizon MDP learned from data, where the state space was constrained to include only those vari-
ables that directly predicted the immediate reward for each time slice, in addition to the Markov assumption. The
overall value node has been left out, as well as the informational arcs.

Model # Splits
State Space

Variables

0th Order 903 80
1st Order 1096 90
1st Order
(limited) 183 20
2nd Order 1133 90
2nd Order
(limited) 190 20
Cumulative
(combined) 19 9

Table 1. Complexity of the models learned as a function
of the number of splits in the decision trees and the
number of state space variables.

list were the same though the actual phrases or wording
were different (“Rules All Same”).

The MDP in Figure 3 also shows that all time slices
include a state variable related to the grammar rule that
was observed, such as the first or top rule in the n-best
list. This indicates that the model is domain-dependent;
that is, the grammar rules specific to this application
make a difference in whether or not the system receives
a reward. For example, if we look at the decision tree
for the value or reward node of the second time slice,
we would see that if the top rule in the n-best list is
“hide numbers” (i.e., numbered hyperlinks) after the
system has asked for a repeat in the first time slice, and
the system decides in this current time slice to execute
this top rule, the probability that it would receive an
immediate negative reward for failure would be 90%.
All the models we learned from the data were domain-
dependent in this way.

Some of the variables that were not included in the
limited MDP, but were included in the unlimited ver-
sion were most of the between-utterance ASR features.
The notable exception is the variable “1st Rule Same As
Previous,” which checks to see if the top rule between
the current time slice and previous time slice are the
same. In general, most of the state variables included in
the limited models were by and large within-utterance
ASR features.

3.3 Policy estimation

To derive an optimal policy from data involves a two
step process: first, learning an optimal model with re-
spect to the data, and then, learning an optimal policy
with respect to the model. As discussed previously, we
learned the models from the simulation data using
Bayesian structure learning. In order to derive the op-
timal policy, the straightforward approach is to exploit
the Markov assumption, at least for the MDP, and apply
dynamic programming in the usual way. However,
computing the policy for a state space that includes
more than a handful of variables can be quite challeng-
ing, even for the limited model in Figure 3. This has
prompted researchers to investigate techniques for fac-
toring the state space using graphical models as we have
in our models (Meuleau et al., 1998). An alternative
approach for computing the policy, which we utilized, is
to use forward sampling to approximate the dynamic
programming solution for the MDP (Kearns et al.,
1999). Since all the models we learned are generative
models, we can approximate the expectation in (4) by
sampling N random states from the next time slice so
that the optimal value function becomes:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= ∑

∈
++

Ss
ttt

a
tt

t
t

sV
N

RsV)(
1

max)(1
*

1
* (6)

This allows us to compute the action with the greatest
expected reward at any given time slice in the same way
for every Markov model, making it easier to compare
and evaluate them. For the cumulative total reward
model, since the model directly predicts the total re-
ward, we do not need to use sampling for inference as it
contains its own policy for each time slice in the deci-
sion tree for the utility node.

4 Evaluation

Since it is often difficult to know in advance what vari-
ables in the state space are relevant to receiving a re-
ward, we learned both the structure of the state space
and policy for all the models discussed in the previous
section. The only factor that we varied was the set of
constraints we put on the state space. In particular, we
varied the Markov order from zero to three. We also
either limited the model to just the state variables that
predicted the immediate reward or not, and finally, we
built a cumulative total reward model that contains its
own policy. All other factors being equal, the question
remains as to whether or not constraining the state space
by the Markov assumption truly affords the highest re-
ward.

To answer this question, we used the same simula-
tion environment we described earlier to create the
training data to also generate 1000 experimental trials.
For any utterance, different models could take different
actions, and as a consequence, receive different re-
sponses. To maintain controlled experimental condi-
tions, we generated utterances and features for the entire
tree of all possible action sequences. That way we en-
sured that every model received the exact same features
if they took the same action, which also meant that be-
tween-utterance features utilized the same previous ut-
terance features. To reduce variability, we also fixed
the TTS to just one voice and one set of parameters.
Furthermore, since all models were trained with differ-
ent kinds of background noise, we also included the
most challenging type of background noise (viz., people
chattering in a cafeteria) in the experimental trials.

As a baseline measure, we included how any system
would do if it followed the simple policy of always exe-
cuting the top command in the n-best list. This baseline
is meant to characterize the behavior of a system that
follows no dialogue management strategies. It simply
commits to the top recognized result and never engages
in repair.

Figure 5 displays the average reward for all models
compared to the baseline, and Figure 6 the total reward.
Although seven lines should be represented, only four
are visible because the first and second order Markov
models, as well as their limited versions, performed
exactly the same with respect to both average and total
reward; that is, the 1st order, 1st order (limited), 2nd or-

der, and 2nd order (limited) models were identical in
performance. Hence, while the complexity of the mod-
els may have differed, they all took the same actions.
This suggests that it is not worthwhile to constrain the
state space beyond the first order Markov relation, nor is
it worthwhile to include any more variables than those
that directly predict the local immediate reward.

As far as the best performance is concerned, the first
and second order models outperformed all other models
for the first 500 trials, but then succumbed to the cumu-
lative total reward model thereafter. By the end of the
experiment, the cumulative total reward model had ac-
crued the highest total reward, as shown in Figure 6. It
is important to consider that the cumulative total reward
model achieved this performance with only 9 state vari-
ables and 19 splits, combined between the three time
slices.

Surprisingly, the zero order Markov model per-
formed worse than the baseline. The reason for this
dealt with the two repair actions, Repeat and Confirm.
Without knowing what action was previously selected,
since dependencies were not permitted between time
slices, the model assigned the same probability of re-
ceiving an immediate negative or positive reward to
both Repeat and Confirm, thereby conflating the two.

To get around this problem, separate models specifically
for Repeat and Confirm would need to be learned,
though it is doubtful that this would have changed the
final result of the experiment.

4.1 Assessing the Winner

Despite the relatively small complexity of the cumu-
lative total reward model, it outperformed all other
models. It is instructive to look at the state space vari-
ables that were included in the model for each time
slice, as shown in Figure 7. For the most part, every
state space variable in each time slice also appears in the
limited MDP displayed in Figure 3. The only exception
is “Number of Sound End Events,” which is almost al-
ways the same in the data as the feature “Number of
Sound Start Events” in the MDP. The primary differ-
ence between the cumulative model and the MDP then
is that the former predicts the total reward as opposed to
the immediate reward.

Ironically, although the cumulative model could
have included previous state space variables in the sec-
ond and third time slices, it did not. Instead, the most
important variables for predicting the total reward at
each time slice were just those features pertaining to the
current time slice utterance. At the surface, this seems

A1 A2 A3

2nd Rule

Number of
Sound Ends

1st Rule

Score
Mean(2)

1st Rule
(2)

1st Rule
(3)

∑
=

h

t
tR

0

Score
Mean

2nd Score

∑
=

h

t
tR

0
∑

=

h

t
tR

0
A1 A2 A3

2nd Rule

Number of
Sound Ends

1st Rule

Score
Mean(2)

1st Rule
(2)

1st Rule
(3)

∑
=

h

t
tR

0

Score
Mean

2nd Score

∑
=

h

t
tR

0
∑

=

h

t
tR

0

Figure 7. The learned cumulative total reward model where state space variables accumulate over time and they all
predict the total reward for the entire dialogue.

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

1 66 131 196 261 326 391 456 521 586 651 716 781 846 911 976

O order

1 order

1 (limited)

2 order

2 (limited)

Cumulative

Baseline

Figure 5. Average reward for all learned models over
1000 trials.

-35000

-30000

-25000

-20000

-15000

-10000

-5000

0

O order 1 order 1 (limited) 2 order 2 (limited) Cumulative Baseline

Figure 6. Total reward for all learned models after 1000
trials.

to support the Markov assumption in that only the cur-
rent state matters. However, this does not prove what is
crucial about the assumption; namely, that future states
need only depend on the current state and not previous
states.

It is important to remember that the cumulative total
reward model is model-free. It makes no assumptions
about how features may be dependent on each other
over time, but instead tries to predict the long term
value of actions. In fact, while model-free approaches
such as Q-learning (Watkins & Dayan, 1992) still learn
policies using a system of equations similar to (4), a
policy for the cumulative model is comparatively easy
to learn. It is simply learning a decision tree that classi-
fies what is likely to be the total reward for all the fea-
tures it has observed. Even if the total reward were
continuous, learning a regression is relatively easy.
Furthermore, during runtime, it requires no inference, as
do the other Markov models.

5 Implications and Limitations

Dialogue designers considering the use of reinforcement
learning methods to learn policies for action selection in
dialogue management could benefit from the implica-
tions of this experimental study. If learning an MDP is
the goal, and the designer is uncertain about what vari-
ables to include in the state space, our results suggest
that an MDP that includes just those variables that are
parents of the local immediate reward performs just as
well as a more complicated model with other variables
that are not parents. In short, in factoring the state
space, only those variables relevant to receiving a re-
ward seem to matter.

On the other hand, if the designer is open to consid-
ering other types of models, the cumulative total reward
model offers several advantages over the MDP. First, it
is much simpler to learn from data and update. The
cumulative model does not require estimation of the
optimal value function nor inference. The policy is in
the decision tree for the utility node. Moreover, if the
reward function needs to be adjusted, it is much easier
to update the total reward and re-learn the model than it
is to re-compute the optimal policy. Second, the cumu-
lative model may perform just as well if not better than
the MDP. In our experiments, it indeed outperformed
the MDP, though we are not quick to generalize this
result due to the limitation of the study. And finally, the
cumulative model makes fewer assumptions about the
structure of the state space, which is quite appealing
from a theoretical standpoint. It does not assume that
that an optimal policy based just on the previous turn is
as good as a policy based on the full history of interac-
tion. Since the full accumulation of knowledge is ex-
pressed in the model, it accords well with socio-
linguistic sensibilities.

The above implications should be moderated by the
limitations of the study. First and foremost, the domain
in which we learned the models was quite small with a
relatively restricted command-and-control grammar,
and a small action space. We plan to extend the simula-
tion and learning methods to larger domains, and it will
be interesting to see if our result still holds. Second,
although we assiduously delineated every feature we
could think of for the state space, we may not have in-
cluded the “right” set of features that could have al-
lowed the MDP or any other model to outperform the
winner. Good feature engineering has been shown to
make a significant difference in other natural-language
processing domains, so it is prudent to remain humble
about the features we utilized. Finally, our results de-
pend on the techniques we used for learning the struc-
ture of the state space. We are agnostic about how these
results may have turned out with other model selection
techniques.

6 Conclusion

Spoken dialogue systems that learn optimal policies for
dialogue management have typically utilized the MDP
framework. In so doing, they are committed to the
Markov assumption as a modeling choice, and very of-
ten, to assumptions about the structure of the state
space. In this paper, we explored whether this choice is
appropriate and empirically beneficial. In particular, we
investigated whether constraining the state space by the
Markov assumption truly affords the highest reward,
especially when the structure of the state space may be
unknown, which is typically the case. We examined
four models that vary in terms of the extent of their
temporal dependencies and found that the cumulative
total reward model, a model-free approach that predicts
the total reward for each time slice with state space fea-
tures accumulating over time, outperformed the MDP
and all other models in terms of total and average re-
ward. This model had the smallest complexity by far,
made the fewest number of assumptions, and is rela-
tively easy to compute. For finite horizons, the cumula-
tive total reward model offers an attractive alternative to
the MDP.

References
Bellman, R.E. 1957. Dynamic Programming. Princeton

University Press.

Chickering, D. 2002. “The WinMine Toolkit,” Micro-
soft Technical Report, MSR-TR-2002-103.

Chickering, D., Heckerman, D., and Meeks, C. 1997.
“A Bayesian Approach to Learning Bayesian Net-
works with Local Structure,” UAI-97, pp. 80-89.

Chickering, D. and Paek, T. 2005. “Online Adaptation
of Influence Diagrams,” Microsoft Technical Report,
MSR-TR-2005-55.

Clark, H. 1997. Using Language. Cambridge Univer-
sity Press. Cambridge University Press.

Heckerman, D. 1995. “A Bayesian Approach for
Learning Causal Networks,” UAI-95, pp. 285-295.

Howard, R., and Matheson, J. 1981. “Influence Dia-
grams,” In Readings on the Principles and Applica-
tions of Decision Analysis, vol. 2. pp. 721-17.
Strategic Decisions Group, Menlo Park, CA.

Kearns, M., Mansour, Y., Ng, A. 1999. “A Sparse
Sampling Algorithm for Near-Optimal Planning in
Large Markov Decision Processes,” ICJAI-99.

Lauritzen, S.L. and Nilsson, D. 2001. “Representing
and Solving Problems with Limited Information,”
Management Science, 47(9):1235-1251.

Levin, E., Pieraccini, R. and Eckert, W. 1998. “Using
Markov Decision Processes for Learning Dialogue
Strategies,” ICASSP-98.

Meuleau, N., Hauskrecht, M., Kim, K., Peshkin, L.,
Kaelbling, L., Dean, T. and Boutilier, C. 1998.
“Solving Very Large Weakly Coupled Markov Deci-
sion Processes,” AAAI-98, pp. 165-172.

Paek, T. and Horvitz, E. 2004. “Optimizing Automated
Call Routing by Integrating Spoken Dialog Models
with Queuing Models,” HLT-NAACL-2004, pp. 41-
48.

Paek, T. and Horvitz, E. 2000. “Conversation as Action
Under Uncertainty,” UAI-2000, pp. 445-464.

Roy, N., Pineau, J. and Thrun, S. 2000. “Spoken Dia-
logue Management Using Probabilistic Reasoning,”
ACL-2000.

Singh, S., Litman, D., Kearns, M. and Walker, M. 2002.
“Optimizing Dialogue Management with Reinforce-
ment Learning: Experiments with the NJ-Fun Sys-
tem,” Journal of Artificial Intelligence Research, 16:
105-133.

Sutton, R.S. and Barto, A.G. 1998. Reinforcement
Learning: An Introduction. MIT Press.

Tatman, J.A. and Shachter, R.D. 1990. “Dynamic Pro-
gramming and Influence Diagrams,” IEEE Transac-
tions on Systems, Man and Cybernetics, 20(2):365-
379.

Walker, M., Aberdeen, J., Boland, J., Bratt, E., Garo-
folo, J., Hirschman, L., Le, A., Lee, S., Narayanan,
S., Papineni, K., Pellom, B., Polifroni, B., Pota-
mianos, A., Prabhu, P., Rudnicky, A., Sanders, G.,
Seneff, S., Stallard, D., Wittaker, S. 2001(a).

“DARPA Communicator Dialog Travel Planning
Systems: The June 2000 Data Collection,” Eu-
rospeech-2001.

Walker, M.A., Passonneau, R.J. and Boland, J.E.
2001(b). “Quantitative and Qualitative Evaluation of
DARPA Communicator Spoken Dialogue Systems,”
ACL-2001, pp. 515-522.

Watkins, C.J.C.H. and Dayan, P. 1992. “Q-Learning,”
Machine Learning, 8(3):229-256.

Young, S. 2000. “Probabilistic Methods in Spoken Dia-
logue Systems,” Philosophical Transactions of the
Royal Society (Series A), 358(1769): 1389-1402.

Zhang, B., Cai, Q., Mao, J. and Guo, B. 2001. “Planning
and Acting under Uncertainty: A New Model for
Spoken Dialogue Systems,” UAI-2001, pp. 572-579.

