
Partially Observable Markov Decision Processes with Continuous Ob-
servations for Dialogue Management

Jason D. Williams

Cambridge University
Engineering Department

Trumpington Street
Cambridge CB2 1PZ UK

jdw30@cam.ac.uk

Pascal Poupart
School of Computer Science

University of Waterloo
200 University Avenue West

Waterloo, ON, N2L 3G1 Canada
ppoupart@cs.uwaterloo.ca

Steve Young
Cambridge University

Engineering Department
Trumpington Street

Cambridge CB2 1PZ UK
sjy@eng.cam.ac.uk

Abstract

This work shows how a dialogue model can
be represented as a Partially Observable
Markov Decision Process (POMDP) with ob-
servations composed of a discrete and con-
tinuous component. The continuous
component enables the model to directly in-
corporate a confidence score for automated
planning. Using a testbed simulated dialogue
management problem, we show how recent
optimization techniques are able to find a pol-
icy for this continuous POMDP which outper-
forms a traditional MDP approach. Further,
we present a method for automatically im-
proving handcrafted dialogue managers by in-
corporating POMDP belief state monitoring,
including confidence score information. Ex-
periments on the testbed system show signifi-
cant improvements for several example
handcrafted dialogue managers across a range
of operating conditions.

1 Introduction

Dialogue management is a difficult problem for several
reasons. First, speech recognition errors are common,
corrupting the evidence available to the machine about a
user’s intentions. Second, a user may change their in-
tentions at any point – as a result, the machine must
decide whether conflicting evidence has been intro-
duced by a speech recognition error, or by a new user
intention. Finally, the machine must make trade-offs
between the “cost” of gathering additional information
(increasing its certainty of the user’s goal, but prolong-
ing the conversation) and the “cost” of committing to an
incorrect user goal. That is, the system must perform
planning to decide what sequence of actions to take to
best achieve the user’s goal despite having imperfect

information about that goal. For all of these reasons,
dialogue management can be cast as planning under
uncertainty.

In this context, making use of any “clues” about
speech recognition accuracy ought to improve the per-
formance of a dialogue manager. In this paper, we are
interested in one such clue: confidence score. A confi-
dence score is a real-valued metric intended to provide a
clue about the reliability of a recognition hypothesis.
This paper addresses how confidence score can be in-
corporated into the dialog management problem when
viewed as planning under uncertainty.

Planning under uncertainty can be approached as a
(fully observable) Markov decision processes (MDP) or
a partially observable Markov decision process
(POMDP), and both of these techniques have been ap-
plied to dialog management. The application of MDPs
was first explored by Levin and Pieraccini (1997).
Levin et al. (2000) provide a formal treatment of how a
MDP may be applied to dialogue management, and
Singh et al. (2002) show application to real systems.
However, MDPs assume the current state of the envi-
ronment (i.e., the conversation) is known exactly, and
thus they do not naturally capture the uncertainty intro-
duced by the speech recognition channel.

Partially observable MDPs (POMDPs) extend
MDPs by providing a principled account of noisy ob-
servations. Roy et al. (2000) compare an MDP and a
POMDP version of the same spoken dialogue system,
and find that the POMDP version gains more reward per
unit time than the MDP version. Further, the authors
show a trend that as speech recognition accuracy de-
grades, the margin by which the POMDP outperforms
the MDP increases. Zhang et al. (2001) extend this
work in several ways. First, the authors add “hidden”
system states to account for various types of dialogue
trouble, such as different sources of speech recognition
errors. Second, the authors use Bayesian networks to
combine observations from a variety of sources (includ-
ing confidence score). The authors again show that the

POMDP-based methods outperform MDP-based meth-
ods.

In all of these proposals, the authors have incorpo-
rated confidence score by dividing the confidence score
metric into regions, often called “confidence buckets.”
For example, in the MDP literature, Singh et al. (2002)
tracks the confidence bucket for each field as “high,
medium, or low” confidence. The authors do not ad-
dress how to determine an “optimal” number of confi-
dence buckets, nor how to determine the “optimal”
thresholds of the confidence score metric that divide
each bucket.

In the POMDP literature, Zhang et al. (2001) use
Bayesian networks to combine information from many
continuous and discrete sources, including confidence
score, to compute probabilities for two metrics called
“Channel Status” and “Signal Status”. Thresholds are
then applied to these probabilities to form discrete, bi-
nary observations for the POMDP. However, it is not
clear how to set these thresholds to maximize POMDP
return.

Looking outside the (PO)MDP framework, Paek and
Horvitz (2003) suggest using an influence diagram to
model user and dialogue state, and selecting actions
based on “Maximum Expected [immediate] Utility.”
This proposal can be viewed as a POMDP with con-
tinuous observations that greedily selects actions – i.e.,
which selects actions based only on immediate reward.1
By choosing appropriate utilities, the authors show how
local grounding actions can be automatically selected in
a principled manner. In this work, we are interested in
POMDPs as they enable planning over any horizon.

This paper makes two contributions. First, we show
how a confidence score can be accounted for exactly in
a POMDP-based dialogue manager by treating confi-
dence score as a continuous observation. Using a test-
bed simulated dialog management problem, we show
that recent optimization techniques produce policies
which outperform traditional MDP-based approaches
across a range of operating conditions.

Second, we show how a hand-crafted dialogue man-
ager can be improved automatically by treating it as a
POMDP policy. We then show how a confidence score
metric can be easily included in this improvement proc-
ess. We illustrate the method by presenting three hand-
crafted controllers for the testbed dialog manager, and
show that our technique improves the performance of
each controller significantly across a variety of operat-
ing conditions.

The paper is organised as follows. Section 2 briefly
reviews background on POMDPs. Section 3 presents
our method for incorporating confidence score into a
POMDP-based dialogue manager. Section 4 outlines

1 We can express this formally as a POMDP with dis-

count 0=λ . See section 2 for background on POMDPs.

our testbed dialogue management simulation. Section 5
compares policies produced by our method vs. an MDP
baseline on the testbed problem. Section 6 shows how a
handcrafted policy can be improved using confidence
score, and provides an illustration, again using the test-
bed problem. Section 7 concludes.

2 Overview of POMDPs

Formally, a POMDP is defined as a tuple {S, Am, T, R,
O, Z}, where S is a set of states, Am is a set of actions
that an agent may take,2 T defines a transition probabil-
ity),|(massp ′ , R defines the expected (immediate,
real-valued) reward),(masr , O is a set of observations,
and Z defines an observation probability,),|(masop ′′ .
In this paper, we will consider POMDPs with discrete S
and continuous O.

The POMDP operates as follows. At each time-step,
the machine is in some unobserved state s . The ma-
chine selects an action ma , receives a reward r , and
transitions to (unobserved) state s ′ , where s ′ depends
only on s and ma . The machine receives an observa-
tion o ′ which is dependant on s ′ and ma . Although
the observation gives the system some evidence about
the current state s , s is not known exactly, so we main-
tain a distribution over states called a “belief state,” b.
We write)(sb to indicate the probability of being in a
particular state s. At each timestep, we update b as fol-
lows:

),,|()(baospsb m′′=′′ (1)

),|(

)(),|(),|(
)(

baop

sbsaspasop
sb

m

Ss
mm

′

′′′
=′′

∑
∈ . (2)

The numerator consists of the observation function,
transition matrix, and current belief state. The denomi-
nator is independent of s′ , and can be regarded as a
normalisation factor; hence:

 ∑
∈

′′′⋅=′′
Ss

mm sbsaspasopksb)(),|(),|()(. (3)

We refer to maintaining the value of b at each time-step
as “belief monitoring.”

The immediate reward is computed as the expected
reward over belief states:

2 In the literature, the system action set is often written

as an un-subscripted A. In this work, we will model both
machine and user actions, and have chosen to write the ma-
chine action set as Am for clarity.

 ∑
∈

=
Ss

mm asrsbab),()(),(ρ , (4)

A policy specifies an action to take given a belief
state.3 The goal of the machine is to find a policy which
maximises the cumulative, infinite-horizon, discounted
reward called the return:

 ∑ ∑ ∑
∞

=

∞

= ∈

=
0 0

),()(),(
t t

tm
Ss

t
t

tmt
t asrsbab λρλ (5)

where tb indicates the distribution over all states at time
t,)(sbt indicates the probability of being in state s at
timestep t, and λ is a geometric discount factor,

10 ≤≤ λ .
Because belief space is real-valued, an optimal infi-

nite-horizon policy may consist of an arbitrary partition-
ing of S-dimensional space in which each partition maps
to an action. In fact, the size of the policy space grows
exponentially with the size of the (discrete) observation
set and doubly exponentially with the distance (in time-
steps) from the horizon (Kaelbling et al., 1998). A con-
tinuous observation space compounds this further.
Nevertheless, real-world problems often possess small
policies of high quality.

In this work, we make use of two recent approxi-
mate methods. The first, Perseus (Spaan and Vlassis,
2004), operates on problems with discrete observation
sets and is capable of rapidly finding good yet compact
policies (when they exist). Perseus heuristically selects
a small set of representative belief points, and then itera-
tively applies value updates to just those points, instead
of all of belief space, achieving a significant speed-up.
Perseus has been tested on a range of problems, and
found to outperform a variety of other methods, includ-
ing grid-based methods (Spaan and Vlassis, 2004).

The second method is an extension to Perseus pro-
posed by Hoey and Poupart (2005) which operates on
POMDPs with continuous or very large discrete obser-
vation sets. This method exploits the fact that different
observations may lead to identical courses of action to
discretize continuous observations without any loss of
information. In the context of dialogue management
with a continuous confidence score, it implicitly and
adaptively finds optimal lossless buckets of confidence
that are equivalent to using the original continuous con-
fidence score.4

3 We will assume the planning horizon for a policy is in-

finite unless otherwise stated.
4 The actual implementation used in this paper approxi-

mates some integrals by Monte Carlo sampling, which
means that the confidence buckets are not exactly lossless.

3 Method

This section presents our method for incorporating
confidence score into the POMDP as a continuous
observation.

First, we decompose the observation o into a
discrete component h and a continuous component c.
The discrete component represents the speech
recogntion hypothesis, and the continuous component
represents the confidence score. 5 The observation
function then becomes),|,(maschp ′′′ . Next, we will
assume that ma does not affect recognition directly –
i.e., h′ and c′ are conditionally dependent on only s′ .
Thus the observation function becomes:
).|,()|,(),|,(schpschpaschp m =′′′=′′′ . (6)

This distribution expresses the probability density of
observing hypothesis h with confidence score c in state
s. In the POMDP model, s includes unobserved ele-
ments of the current state, such as the user’s true action.
As such, the observation function can be viewed as a
model of the errors introduced by the speech recognition
channel.

In practice this distribution will be impossible to es-
timate directly from data, so we make several assump-
tions. First, we assume that the state s can be factored
in order to condition {h,c} on fewer elements. For ex-
ample, the observation will depend directly on the
user’s (actual, unobserved) action/utterance au and pos-
sibly the current grammar g selected by the machine.
However, the observation will not directly depend on
the (unobserved) user’s goal.

Second, we can decompose the distribution by as-
suming that confidence scores are drawn from just two
distributions – one for “correct” recognitions and an-
other for “incorrect” recognitions.

Combining both of these assumptions, we write:





≠⋅
=⋅

≈
uuincorrect

uucorrect

ahifgahpcp
ahifgahpcp

schp
),|()(
),|()(

)|,((7)

where:

•),|(gahp u expresses the confusion matrix – i.e.,
probability of observing hypothesis h given that the
user took action ua , and grammar g was active; and

•)(cpcorrect and)(cpincorrect express the probability
density function of the confidence scores associated
with correct and incorrect recognitions.

To perform policy improvement on this POMDP we
have two options. First, we can use an optimization

5 Our proposal assumes that just the top recognition hy-

pothesis and its confidence score are considered. We will
explore incorporating an N-Best list in future work.

method which accounts for the continuous observations,
such as that by Hoey and Poupart (2005). We note that
this method creates a policy which takes the expected
additional information in the confidence score into ac-
count. We call this the continuous-POMDP solution.

We note that there is benefit to using the confidence
score information for belief state monitoring (as in Eq.
3) even if it was not used during policy optimization.
The second option for performing policy improvement
is therefore to marginalize the confidence score, i.e.,:

 ∫=
c

uu gachpgahp),|,(),|(. (8)

then optimize the resulting POMDP using a technique
such as Perseus. At runtime, the full observation func-
tion),|,(gachp u is used for belief state monitoring.
We call this the discrete-POMDP solution.

Stated alternatively, the continuous-POMDP tech-
nique uses infinitely many confidence buckets during
planning and belief monitoring, whereas the discrete-
POMDP technique uses no confidence information dur-
ing planning, but infinitely many confidence buckets
during belief monitoring. By contrast, MDP methods
(in the literature, and our baseline, presented below) use
a handful of confidence buckets for planning, but do not
perform any belief monitoring.

4 Testbed dialogue management problem

To test the practicability of the method, we created a
testbed dialogue management problem in the travel do-
main. In this problem, the user is trying to buy a ticket
to travel from one city to another city. The machine
asks the user a series of questions, and then “submits” a
ticket purchase request, ending the dialogue. The ma-
chine may also choose to “fail”. In the testbed problem,
there are three cities, {a,b,c}.

For ease of expression, we decompose the POMDP
state variable Ss∈ into three components: (1) the
user’s goal, uu Ss ∈ ; (2) the user’s action, uu Aa ∈ ; and
(3) the state of the dialogue, dd Ss ∈ . The POMDP
state s is given by the tuple },,{ duu sas . We note that,
from the machine’s perspective, all of these components
are unobservable.

The user’s goal, us , gives the current goal of the
user – i.e., the user’s desired itinerary. There are a total
of 6 user goals, given by

yxcbayxyxsu ≠∈∈ },,,{,:),(.
The user’s action, ua , gives the user’s most recent

user’s actual action. User actions are drawn from the
set {x, from-x, to-x, from-x-to-y, yes, no, null} where

yxcbayx ≠∈ },,,{, .

The component ds indicates the state of the dia-
logue from the standpoint of the user. This component
enables a policy to make decisions about the appropri-
ateness of behaviours in a dialogue. For example, we
want to discourage the machine from attempting to con-
firm an item before it has asked for it even if this strat-
egy was most expedient, because this behaviour will
deviate significantly from conversational norms.

The dialogue state sd itself contains three compo-
nents. Two of these indicate (from the user’s perspec-
tive) whether the from place and to place have not been
specified (n), are unconfirmed (u), or are confirmed (c).
A third component z specifies whether the current turn
is the first turn (1) or not (0). There are a total of 18
dialogue states, given by:
 }0,1{},,,{,:),,(∈∈∈ zcunyxzyxs ddddd (9)

Unlike MDP-based models we do not include a state
component for confidence associated with a particular
user goal. The concept of confidence in a particular
user goal is naturally captured by the probability mass
assigned to that user goal in the belief state.

The POMDP action mm Aa ∈ is the action the ma-
chine takes in the dialogue. The machine has 16 actions
available, drawn from the set {greet, ask-from/ask-to,
conf-to-x/conf-from-x, submit-x-y, fail}, where

yxcbayx ≠∈ },,,{, .
These state components yield a total of 1944 states,

to which we add one additional, absorbing end state.
When the machine takes the fail action or a submit-x-y
action, control transitions to this end state, and the dia-
logue ends.

To reduce the number of parameters required to
specify the transition function, we decompose the transi-
tion function:
),,,|,,(),|(muduudum aassasspassp ′′′=′ (10)

).,,,,,|(

),,,,|(),,,|(

muduuud

muduuumuduu

aasssasp
aasssapaasssp

′′′
⋅′′⋅′=
 (11)

We then assume conditional independence as fol-
lows. First, we assume that the user’s goal during a
dialogue is fixed, removing several dependencies:
)|(),,,|(uumuduu sspaasssp ′=′ . (12)

Next, we assume that the user’s action depends only
on their (current) goal and the preceding machine ac-
tion:
),|(),,,,|(muumuduuu asapaasssap ′′=′′ . (13)

Finally, to update the dialog state, we need only
consider the previous state of the dialogue, the user’s
action, and the machine’s action:
),,|(),,,,,|(mdudmuduuud asaspaasssasp ′′=′′′ . (14)

In sum, our factored transition function is given by:

).,,|(),|(

),|(),|(

mdudmuu

muum

asaspasap
asspassp

′′′′
⋅′=′

 (15)

The initial (prior) probability of the user’s goal is
distributed uniformly over the 6 user goals. In the test-
bed problem the user has a fixed goal for the duration of
the dialogue, and we define the user goal model accord-
ingly.

The observation function is given by:
),,,|,(),|,(mudum aasschpaschp ′′′′′=′′′ . (16)

As noted above, the observation function accounts
for the corruption introduced by the speech recognition
engine, so we assume the observation depends only on
the action taken by the user:6

)|,()|,(

),,,|,(

uu

mudu

achpachp
aasschp

=′′′
=′′′′′

. (17)

We define the observation function to encode the
probability of making a speech recognition error to be

errp . Substituting errp into Eq. 7, the observation func-
tion becomes:







≠
−

⋅

=−⋅
=

u
u

err
incorrect

uerrcorrect

u ahif
A
pcp

ahifpcp
achp

1
)(

)1()(
)|,((18)

We define c on the interval [0,1] and define the
probability densities)(cpcorrect and)(cpincorrect as
the exponential probability density functions normalized
to the region [0,1]; i.e.,










=

≠
−=










=

≠
−=

−

⋅

0,1

0,
1)(

0,1

0,
1)(

)1(

incorrect

incorrecta

ac
incorrect

incorrect

correct

correcta

ac
correct

correct

a

a
e

ea

cp

a

a
e

ea

cp

incorrect

incorrect

correct

correct

 (19)

where correcta and incorrecta are constants defined on
),(∞−∞ . We note that as xa approaches positive or

negative infinity,)(cpx becomes deterministic and
conveys complete information; when 0=xa ,)(cpx is
a uniform density and conveys no information. Since
we expect the confidence value for correct recognition
hypotheses to tend to 1, and for incorrect recognition
hypotheses to tend to 0, we would expect 0>xa .

6 In the testbed problem, we assume that the same rec-

ognition grammar is always used.

Substituting the transition function (Eq. 15) and the
observation function (Eq. 16) into the general belief
state update function (Eq. 3), the belief state update
function for the testbed problem becomes:

∑

∑∑

∈

∈∈

′′⋅′
⋅′′⋅′′′⋅

=′′′′

uu

dduu

Aa
udu

Ss
mdud

Ss
muu

muuu

udu

assb

asaspassp

asapachpk
assb

),,(

),,|(),|(

),|()|,(
),,(

. (20)

 The reward measure includes components for both
task completion and dialogue “appropriateness”, includ-
ing: a reward of 100− for taking the greet action when
not in the first turn of the dialogue; a reward of 3− for
confirming a field before it has been referenced by the
user; a reward of 5− for taking the fail action; a reward
of 10+ or 10− for taking the submit-x-y action when
the user’s goal is (x,y) or not, respectively; and a reward
of 1− otherwise. A discount of 95.0=γ was used for
all experiments.

The initial (prior) probability of the user’s goal is
distributed uniformly over the 6 user goals. Figure 1
shows an influence diagram of the POMDP.

5 Comparison with MDP baseline

5.1 Description of MDP baseline

To test whether the method for incorporating confidence
score outperforms current methods, we created an
MDP-based dialogue manager baseline, patterned on
systems in the literature, such as (Pietquin, 2004). The
MDP is trained and evaluated through interaction with a
model of the environment, which is formed of the
POMDP transition, observation, and reward functions.
An MDP state estimator maps observations from the
environment model to an MDP state.

The confidence score is divided into M buckets.
Ideally the confidence score bucket sizes would be se-
lected so that they maximize average return. However,
it is not obvious how to perform this selection – indeed,
this is one of the weaknesses of “confidence bucket”
method. Instead, a variety of techniques for setting con-
fidence score threshold were explored. It was found
that dividing the probability mass of the confidence
score c evenly between buckets produced the largest
average returns among the techniques explored. That is,
we define

1

0

1

10

=<<
<<=

− MM cThreshcThresh
cThreshcThresh L

 (21)

and then find the values of mcThresh such that:

{o,c}

au

sd

su

am

r

{o',c'}

au'

sd'

su'

am'

r'

Timestep n Timestep n+1

Figure 1: Influence diagram depiction of the testbed
POMDP. Symbols are as defined in the text. The dot-

ted box shows the composite POMDP state, s. Note that
the system action am depends on the belief state b(s) –

the distribution over all states – and not the true current
(unobservable) state.

 ∫∫
+

−

−∈=
1

1

1,...,2,1,)()(
m

m

m

m

cThresh

cThresh

cThresh

cThresh

Mmdccpdccp (22)

where p(c) is the prior probability of a confidence score.
We find this prior for our testbed problem as follows.
We first find the distribution)|(uacp as:

 ∑
∈

=
Ah

uu achpacp)|,()|((23)

).)(|()1)(|(erruincorrecterrucorrect pacppacp +−= (24)

In the MDP context, we assume the confidence
score buckets are formed without access to a prior

)(uap . From this assumption, we find:

))(()1)(()(errincorrecterrcorrect pcppcpcp +−= (25)

from which the values of mcThresh can be derived.
The MDP state contains components for each field

which reflect whether, from the standpoint of the ma-
chine, (a) a value has not been observed, (b) a value has
been observed but not confirmed, or (c) a value has
been confirmed. The MDP state also tracks which con-
fidence bucket was observed for each field, as well as
for the confirmation. Finally, two additional states –
dialogue-start and dialogue-end – are included in the
MDP state space.

Because the confidence bucket for each field (in-
cluding its value and its confirmation) is tracked in the
MDP state, the size of the MDP state space grows with
the number of confidence buckets. For M=2, the result-
ing MDP called MDP-2 has 51 states.7

7 For reference, M=1 produces an MDP with 11 states,

and M=3 produces an MDP with 171 states.

Given the current MDP state, the MDP policy se-
lects an MDP action, and the MDP state estimator then
maps the MDP action back to a POMDP action.

Because the MDP learns through experience with a
simulated environment, an on-line learning technique,
Watkins (1989) Q-learning, was used to train the MDP
baseline. A variety of learning parameters were ex-
plored, and the best-performing parameter set was se-
lected: initial Q values set to 0, exploration parameter

2.0=ε , and the learning rate α set to 1/k (where k is
the number of visits to the Q(s,a) being updated.).
MDP-2 was trained with approximately 125,000 dialog
turns. To evaluate the resulting MDP policy, 10,000
dialogs were simulated using the learned policy.

5.2 Results

Both the Perseus and the Hoey-Poupart algorithms re-
quired two parameters for operation: number of belief
points, and number of iterations. Through experimenta-
tion, we found that 500 belief points and 30 iterations
attained asymptotic performance for all values of errp .
In addition, the Hoey-Poupart algorithm required a pa-
rameter specifying the number of observations to sam-
ple at each belief point. Through experimentation, we
found that 300 samples produced acceptable results and
reasonable running times.

 Figure 2 shows the average returns for the continu-
ous-POMDP, discrete-POMDP, and MDP-2 solutions
vs. errp ranging from 0.00 to 0.65 for

1=== aaa incorrectcorrect . The error bars show the 95%
confidence interval for return assuming a normal distri-
bution. Note that return decreases consistently as errp
increases for all solution methods, but the POMDP solu-
tions attain larger returns than the MDP method at all
values of errp .8

We next explored the effects of varying the informa-
tiveness of the confidence score. Figures 3, 4, and 5
show average returns for the two POMDP methods and
MDP-2 method vs. a for errp = 0.3, 0.4, and 0.5, re-
spectively. The error bars show the 95% confidence
interval for return assuming a normal distribution. In
these figures, we again define aaa incorrectcorrect == .
The POMDP methods outperform the baseline MDP
method consistently. Note that increasing a increases
average return for all methods, and that the greatest im-
provements are for errp = 0.5 – i.e., the information in
the confidence score has more impact as speech recog-
nition accuracy degrades.

8 The MDP-3 system was also created but we were un-

able to obtain better performance from it than we did from
the MDP-2 system.

-6

-4

-2

0

2

4

6

8

10

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

0.2
5

0.3
0

0.3
5

0.4
0

0.4
5

0.5
0

0.5
5

0.6
0

0.6
5

perr

A
ve

ra
ge

 re
tu

rn
disc-POMDP
MDP-2
cont-POMDP

Figure 2: Average return for continuous-POMDP,

discrete-POMDP, and MDP-2 methods for a = 1.

In Figures 2 through 5, the discrete-POMDP and
continuous-POMDP methods performed similarly. This
trend could be due to the relatively short horizon in the
testbed problem: most of the dialogues spanned a hand-
ful of turns. Alternatively, this trend might indicate that
the discrete-POMDP method provides sufficient plan-
ning. We intend to explore this issue with larger dia-
logue management problems in future work.

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

6

0 1 2 5
a (Informativeness of confidence score)

Av
er

ag
e

re
tu

rn

cont-POMDP
MDP-2
disc-POMDP

Figure 3: Average return vs. a (informativeness of

confidence score) at perr = 0.30 for continuous-POMDP,
discrete-POMDP, and MDP-2 methods.

-1

0

1

2

3

4

5

0 1 2 5

a (Informativeness of confidence score)

Av
er

ag
e

re
tu

rn

disc-POMDP
cont-POMDP
MDP-2

Figure 4: Average return vs. a (informativeness of

confidence score) at perr = 0.40 for continuous-POMDP,
discrete-POMDP, and MDP-2 methods.

-4

-3

-2

-1

0

1

2

3

4

0 1 2 5

a (Informativeness of confidence score)

Av
er

ag
e

re
tu

rn

disc-POMDP
cont-POMDP
MDP-2

Figure 5: Average return vs. a (informativeness of

confidence score) at perr = 0.50 for continuous-POMDP,
discrete-POMDP, and MDP-2 methods.

6 Improving handcrafted policies

In this section, we describe a method for improving a
handcrafted policy by incorporating the belief state
monitoring outlined above.

Intuitively, a policy specifies what action to take in a
given situation. In the previous section, we relied on the
representation of a POMDP policy produced by value
iteration – i.e., a value function, represented as a set of
N vectors each of dimensionality |S|. We write)(snυ to
indicate the sth component of the nth vector.

Each vector represents the value, at all points in be-
lief space, of executing some “policy tree” which starts
with an action associated with that vector. We write

An ∈)(π̂ to indicate the action associated with the nth
vector. If we assume that the policy trees have an infi-
nite horizon, then we can express the optimal policy at
all timesteps as:

 









= ∑

=

S

s
n

n
sbsb

1

)()(maxargˆ)(υππ (26)

Thus the value-function method provides both a par-
titioning of belief space into regions (each correspond-
ing to an action which is optimal in that region), as well
as the expected return of taking that action. A second
way of representing a POMDP policy is as a “policy
graph” – a finite state controller consisting of N nodes
and some number of directed arcs. Each controller node
is assigned a POMDP action, and we will again write

)(ˆ nπ to indicate the action associated with the nth node.
Each arc is labelled with a POMDP observation, such
that all controller nodes have exactly one outward arc
for each observation.),(onl denotes the successor
node for node n and observation o.

A policy graph is a general and common way of rep-
resenting handcrafted dialogue management policies.
More complex handcrafted policies – for example, those

created with rules – can usually be compiled into (pos-
sibly very large) policy graphs. We believe that a pol-
icy graph is a much more intuitive way for a human
designer to specify a dialogue manager than a value
function.

6.1 Method

To improve the policy graph, we will first need to
evaluate it. Although a policy graph does not make the
expected return associated with each controller node
explicit, as pointed out by Hansen (1998), we can find
the expected return associated with each controller node
by solving this system of linear equations in υ :

 .)())(ˆ,|())(ˆ,|(

))(ˆ,()(

),(∑∑
∈′ ∈

′′′
+=

Ss Oo
onl

n

snsopnssp

nsrs

υππγ
πυ

 (27)

Solving this set of linear equations yields a set of
vectors – one vector for each controller node. To find
the expected value of starting the controller in node n
and belief state b we compute:

 ∑
=

S

s
n sbs

1

)()(υ (28)

To improve the performance of the controller, we
use)(snυ at run-time, as follows. At the beginning of
the dialog, we find the node with the highest expected
return for b0 and execute its action. Throughout the
dialog, we perform belief state monitoring – i.e., we
maintain the current belief state at each time-step as
given in Eq. 3. At each time-step, rather than following
the policy specified by the finite state controller, we re-
evaluate which node has the highest expected return for
the current b. We then take the action specified by that
node. Because the node-value function and belief state
are exact, this style of execution is guaranteed to per-
form at least as well as the original handcrafted control-
ler. Note that, in this style of execution, transitions may
occur which are not arcs in the handcrafted policy.

 This style of execution is distinct from policy itera-
tion, in which the nodes and links of the controller are
changed and the controller is re-evaluated (using e.g.,
Eq 27) to iteratively improve the controller’s expected
return. We do not explore policy iteration in this paper;
however, we note that a handcrafted controller could be
used to bootstrap a policy iteration process. Since a
finite state controller is more intuitive for a (human)
designer to understand, we intend to explore policy it-
eration in future work.

6.2 Testbed handcrafted controllers

Three handcrafted policies were created for the testbed
dialogue management problem, called HC1, HC2, and
HC3. All of the handcrafted policies first take the ac-

tion greet. HC1 takes the ask-from and ask-to actions to
fill the from and to fields, performing no confirmation.
If the user does not respond, it re-tries the same action.
If it receives an observation which is inconsistent or
nonsensical, it re-tries the same action. If it fills both
fields without receiving any inconsistent information, it
takes the corresponding submit-x-y action. A logical
diagram showing HC1 is shown in .9

greet

guess
X-Y

ask
from

ask
to

ask
from

else from X
to Y

X
from X

from X to Y,
X≠Y

from X to Y

X
from X

Y, to Y
from X to Y, X≠Y

from X to Y

else else else

Figure 6: HC1 handcrafted controller

HC2 is identical to HC1 except that if the machine

receives an observation which is inconsistent or nonsen-
sical, it immediately takes the fail action. Once it fills
both fields, it takes the corresponding submit-x-y action.

HC3 employs a similar strategy to HC1 but extends
HC1 by confirming each field as it is collected. If the
user responds with “no” to a confirmation, it re-asks the
field. If the user provides inconsistent information, it
treats the new information as “correct” and confirms the
new information. If the user does not respond, or if the
machine receives any nonsensical input, it re-tries the
same action. Once it has successfully filled and con-
firmed both fields, it takes the corresponding submit-x-y
action.

6.3 Results

We first studied the operation of the greedy improve-
ment method without access to confidence score infor-
mation. We executed 10,000 dialogs for each
handcrafted policy at values of perr ranging from 0.05 to
0.65. gives results for HC1. To make the gain of the
greedy improvement method explicit, Figure 7 shows
the difference between the proposed method and the
expected value of executing the handcrafted policy di-
rectly. For reference, also includes the difference be-
tween the handcrafted policies executed normally and
the POMDP policy, which we take to be a practical up-
per bound for the testbed problem. Error bars show the
95% confidence interval for the true expected return

9 A logical diagram is shown for clarity: the actual con-

troller uses the real values a, b, and c, instead of the vari-
ables X and Y, resulting in a controller with 15 states.

assuming normal distribution. We note that in almost
all cases, the greedy improvement method results in a
significant improvement. In many cases, the improved
handcraft controller is close to the POMDP policy – our
assumed practical upper bound. Results for HC2 and
HC3 are shown in Figures 8 and 9.

We next studied the operation of the greedy im-
provement method when confidence score information
is present. Figures 10, 11, and 12 show average returns
for the discrete-POMDP and improved handcraft meth-
ods vs. a for errp = 0.3, 0.4, and 0.5, respectively. a is
defined as in Section 5.2 – i.e., incorrectcorrect aaa == .
Error bars are negligible and are not shown. For each of
the 3 handcrafted controllers in each of the 3 values of

errp , increasing a consistently increases average return.

7 Conclusions

This work has shown how a confidence score can be
directly incorporated into the dialogue model repre-
sented as a Partially Observable Markov Decision Proc-
ess (POMDP) used for dialogue management. Through
a testbed dialogue management problem, we have
shown how recent optimization techniques are able to
find policies which outperform traditional MDP ap-
proaches. Further, we have shown how handcrafted
controllers can be automatically improved by perform-
ing belief state monitoring using confidence score in-
formation.

This paper has focused on confidence score, but this
technique could be used for other observable, continu-
ous metrics with similar properties.

In future work, we plan to incorporate “the speech
recognition N-Best list” (i.e., a list comprised of N rec-
ognition hypotheses produced by the speech recogniser,
each with an associated confidence score), as this
should improve the quality of the belief state estimate.
This extension would require altering the observation
function to cope with a much larger observation space.
However, this growth should not impact the amount of
time required to optimize POMDP policies of a bounded
size since the Hoey-Poupart (2005) method scales inde-
pendently of the complexity of observation spaces for
bounded-size policies.

More broadly, we intend to scale up the model to
handle larger problems. A method of exploiting redun-
dancy in the model is needed to apply the method to
domains with 100s or 1000s of concepts.

Acknowledgements

This work was supported in part by European Union
Framework 6 TALK Project (507802).

0

0.2

0.4

0.6

0.8

1

1.2

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

0.2
5

0.3
0

0.3
5

0.4
0

0.4
5

0.5
0

0.5
5

0.6
0

0.6
5

perr

A
ve

ra
ge

 o
r e

xp
ec

te
d

ga
in

POMDP-HC1
HC1vf-HC1

Figure 7: Gain in average/expected return for HC1

executed using belief state monitoring vs. perr for a=0.
(The POMDP policy, which we take to be our practical

upper bound, is shown for reference in Figures 7
through 9.)

0

0.5

1

1.5

2

2.5

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

0.2
5

0.3
0

0.3
5

0.4
0

0.4
5

0.5
0

0.5
5

0.6
0

0.6
5

perr

Av
er

ag
e

or
 e

xp
ec

te
d

ga
in

POMDP - HC2
HC2vf - HC2

Figure 8: Gain in average/expected return for HC2

executed using belief state monitoring vs. perr for a=0.

-1

0

1

2

3

4

5

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

0.2
5

0.3
0

0.3
5

0.4
0

0.4
5

0.5
0

0.5
5

0.6
0

0.6
5

perr

A
ve

ra
ge

 o
r e

xp
ec

te
d

ga
in

POMDP - HC3
HC3vf - HC3

Figure 9: Gain in average/expected return for HC3

executed using belief state monitoring vs. perr for a=0.

0

1

2

3

4

5

6

0 1 2 5
a (Informativeness of confidence score)

Av
er

ag
e

re
tu

rn

disc-POMDP
HC2
HC1
HC3

Figure 10: Average return vs. a (informativeness of

confidence score) for perr = 0.30 for discrete-POMDP
and handcrafted policies executed with belief state

monitoring.

-2

-1

0

1

2

3

4

5

0 1 2 5
a (Informativeness of confidence score)

Av
er

ag
e

re
tu

rn

disc-POMDP
HC2
HC1
HC3

Figure 11: Average return vs. a (informativeness of

confidence score) for perr = 0.40 for discrete-POMDP
and handcrafted policies executed with belief state

monitoring.

-4

-3

-2

-1

0

1

2

3

4

0 1 2 5
a (Informativeness of confidence score)

Av
er

ag
e

re
tu

rn

disc-POMDP
HC2
HC1
HC3

Figure 12: Average return vs. a (informativeness of

confidence score) for perr = 0.50 for discrete-POMDP
and handcrafted policies executed with belief state

monitoring.

References
Eric A. Hansen. 1998. Solving POMDPs by searching

in policy space. In Uncertainty in Artificial Intelli-
gence, Madison, Wisconsin.

Jesse Hoey and Pascal Poupart. 2005. Solving
POMDPs with continuous or large observation
spaces. To appear in Proceedings of the Joint Inter-
national Conference on Artificial Intelligence
(IJCAI), Edinburgh, Scotland.

Leslie Pack Kaelbling, Michael L. Littman and Anthony
R. Cassandra. 1998. Planning and Acting in Par-
tially Observable Stochastic Domains. Artificial In-
telligence, Vol. 101.

Esther Levin, Roberto Pieraccini, and Wieland Eckert.
2000. A Stochastic Model of Human-Machine Inter-
action for Learning Dialogue Strategies. IEEE
Transactions on Speech and Audio Processing, Vol-
ume 8, No. 1, 11-23.

Esther Levin and Roberto Pieraccini. 1997. A Stochas-
tic Model of Computer-Human Interaction for Learn-
ing Dialogue Strategies. Eurospeech, Greece.

Tim Paek and Eric Horvitz. 2003. On the Utility of
Decision-Theoretic Hidden Subdialog. In Proceed-
ings of International Speech Communication Asso-
ciation (ISCA) Workshop on Error Handling in
Spoken Dialogue Systems, Switzerland.

Olivier Pietquin. 2004. A Framework for Unsupervised
Learning of Dialogue Strategies. Ph D thesis, Fac-
ulty of Engineering, Mons, Belgium.

Nicholas Roy, Joelle Pineau and Sebastian Thrun.
2000. Spoken Dialogue Management Using Prob-
abilistic Reasoning. Annual meeting of the Associa-
tion for Computational Linguistics (ACL-2000).

Satinder Singh, Diane Litman, Michael Kearns and
Marilyn Walker. 2002. Optimizing Dialogue Man-
agement with Reinforcement Leaning: Experiments
with the NJFun System. Journal of Artificial Intelli-
gence, Vol. 16, 105-133.

Matthijs T. J. Spaan and Nikos Vlassis. 2004. Perseus:
randomized point-based value iteration for
POMDPs. Technical Report IAS-UVA-04-02, In-
formatics Institute, University of Amsterdam.

C. J. C. H. Watkins. 1989. Learning from Delayed
Rewards. Ph.D. thesis, Cambridge University.

B. Zhang, Q. Cai, J. Mao, E. Chang, and B. Guo. 2001.
Spoken Dialogue Management as Planning and Act-
ing under Uncertainty. Eurospeech. Denmark.

