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Abstract 

This work shows how a dialogue model can 
be represented as a Partially Observable 
Markov Decision Process (POMDP) with ob-
servations composed of a discrete and con-
tinuous component.  The continuous 
component enables the model to directly in-
corporate a confidence score for automated 
planning.  Using a testbed simulated dialogue 
management problem, we show how recent 
optimization techniques are able to find a pol-
icy for this continuous POMDP which outper-
forms a traditional MDP approach.  Further, 
we present a method for automatically im-
proving handcrafted dialogue managers by in-
corporating POMDP belief state monitoring, 
including confidence score information.  Ex-
periments on the testbed system show signifi-
cant improvements for several example 
handcrafted dialogue managers across a range 
of operating conditions. 

1 Introduction 

Dialogue management is a difficult problem for several 
reasons.  First, speech recognition errors are common, 
corrupting the evidence available to the machine about a 
user’s intentions.   Second, a user may change their in-
tentions at any point – as a result, the machine must 
decide whether conflicting evidence has been intro-
duced by a speech recognition error, or by a new user 
intention.  Finally, the machine must make trade-offs 
between the “cost” of gathering additional information 
(increasing its certainty of the user’s goal, but prolong-
ing the conversation) and the “cost” of committing to an 
incorrect user goal.  That is, the system must perform 
planning to decide what sequence of actions to take to 
best achieve the user’s goal despite having imperfect 

information about that goal.  For all of these reasons, 
dialogue management can be cast as planning under 
uncertainty. 

In this context, making use of any “clues” about 
speech recognition accuracy ought to improve the per-
formance of a dialogue manager.  In this paper, we are 
interested in one such clue: confidence score.  A confi-
dence score is a real-valued metric intended to provide a 
clue about the reliability of a recognition hypothesis.  
This paper addresses how confidence score can be in-
corporated into the dialog management problem when 
viewed as planning under uncertainty. 

Planning under uncertainty can be approached as a 
(fully observable) Markov decision processes (MDP) or 
a partially observable Markov decision process 
(POMDP), and both of these techniques have been ap-
plied to dialog management.  The application of MDPs 
was first explored by Levin and Pieraccini (1997).  
Levin et al. (2000) provide a formal treatment of how a 
MDP may be applied to dialogue management, and 
Singh et al. (2002) show application to real systems.  
However, MDPs assume the current state of the envi-
ronment (i.e., the conversation) is known exactly, and 
thus they do not naturally capture the uncertainty intro-
duced by the speech recognition channel. 

Partially observable MDPs (POMDPs) extend 
MDPs by providing a principled account of noisy ob-
servations.  Roy et al. (2000) compare an MDP and a 
POMDP version of the same spoken dialogue system, 
and find that the POMDP version gains more reward per 
unit time than the MDP version.  Further, the authors 
show a trend that as speech recognition accuracy de-
grades, the margin by which the POMDP outperforms 
the MDP increases.  Zhang et al. (2001) extend this 
work in several ways.  First, the authors add “hidden” 
system states to account for various types of dialogue 
trouble, such as different sources of speech recognition 
errors.  Second, the authors use Bayesian networks to 
combine observations from a variety of sources (includ-
ing confidence score).  The authors again show that the 



POMDP-based methods outperform MDP-based meth-
ods.   

In all of these proposals, the authors have incorpo-
rated confidence score by dividing the confidence score 
metric into regions, often called “confidence buckets.”  
For example, in the MDP literature, Singh et al. (2002) 
tracks the confidence bucket for each field as “high, 
medium, or low” confidence.  The authors do not ad-
dress how to determine an “optimal” number of confi-
dence buckets, nor how to determine the “optimal” 
thresholds of the confidence score metric that divide 
each bucket. 

In the POMDP literature, Zhang et al. (2001) use 
Bayesian networks to combine information from many 
continuous and discrete sources, including confidence 
score, to compute probabilities for two metrics called 
“Channel Status” and “Signal Status”.  Thresholds are 
then applied to these probabilities to form discrete, bi-
nary observations for the POMDP.  However, it is not 
clear how to set these thresholds to maximize POMDP 
return.  

Looking outside the (PO)MDP framework, Paek and 
Horvitz (2003) suggest using an influence diagram to 
model user and dialogue state, and selecting actions 
based on “Maximum Expected [immediate] Utility.”  
This proposal can be viewed as a POMDP with con-
tinuous observations that greedily selects actions – i.e., 
which selects actions based only on immediate reward.1  
By choosing appropriate utilities, the authors show how 
local grounding actions can be automatically selected in 
a principled manner.  In this work, we are interested in 
POMDPs as they enable planning over any horizon. 

This paper makes two contributions.  First, we show 
how a confidence score can be accounted for exactly in 
a POMDP-based dialogue manager by treating confi-
dence score as a continuous observation.  Using a test-
bed simulated dialog management problem, we show 
that recent optimization techniques produce policies 
which outperform traditional MDP-based approaches 
across a range of operating conditions.   

Second, we show how a hand-crafted dialogue man-
ager can be improved automatically by treating it as a 
POMDP policy.  We then show how a confidence score 
metric can be easily included in this improvement proc-
ess.  We illustrate the method by presenting three hand-
crafted controllers for the testbed dialog manager, and 
show that our technique improves the performance of 
each controller significantly across a variety of operat-
ing conditions. 

The paper is organised as follows.  Section 2 briefly 
reviews background on POMDPs.  Section 3 presents 
our method for incorporating confidence score into a 
POMDP-based dialogue manager.  Section 4 outlines 

                                                           
1 We can express this formally as a POMDP with dis-

count 0=λ .  See section 2 for background on POMDPs. 

our testbed dialogue management simulation.  Section 5 
compares policies produced by our method vs. an MDP 
baseline on the testbed problem.  Section 6 shows how a 
handcrafted policy can be improved using confidence 
score, and provides an illustration, again using the test-
bed problem.  Section 7 concludes. 

2 Overview of POMDPs 

Formally, a POMDP is defined as a tuple {S, Am, T, R, 
O, Z}, where S is a set of states, Am is a set of actions 
that an agent may take,2 T defines a transition probabil-
ity ),|( massp ′ , R defines the expected (immediate, 
real-valued) reward ),( masr , O is a set of observations, 
and Z defines an observation probability, ),|( masop ′′ .  
In this paper, we will consider POMDPs with discrete S 
and continuous O.  

The POMDP operates as follows.  At each time-step, 
the machine is in some unobserved state s .  The ma-
chine selects an action ma , receives a reward r , and 
transitions to (unobserved) state s ′ , where s ′  depends 
only on s  and ma .  The machine receives an observa-
tion o ′  which is dependant on s ′  and ma .  Although 
the observation gives the system some evidence about 
the current state s , s  is not known exactly, so we main-
tain a distribution over states called a “belief state,” b.  
We write )(sb to indicate the probability of being in a 
particular state s.  At each timestep, we update b as fol-
lows: 

 ),,|()( baospsb m′′=′′  (1)  
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The numerator consists of the observation function, 
transition matrix, and current belief state.  The denomi-
nator is independent of s′ , and can be regarded as a 
normalisation factor; hence: 

 ∑
∈

′′′⋅=′′
Ss

mm sbsaspasopksb )(),|(),|()( . (3) 

We refer to maintaining the value of b at each time-step 
as “belief monitoring.” 

The immediate reward is computed as the expected 
reward over belief states: 

                                                           
2 In the literature, the system action set is often written 

as an un-subscripted A.  In this work, we will model both 
machine and user actions, and have chosen to write the ma-
chine action set as Am for clarity. 
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A policy specifies an action to take given a belief 
state.3  The goal of the machine is to find a policy which 
maximises the cumulative, infinite-horizon, discounted 
reward called the return: 
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where tb  indicates the distribution over all states at time 
t, )(sbt  indicates the probability of being in state s at 
timestep t, and λ  is a geometric discount factor, 

10 ≤≤ λ .   
Because belief space is real-valued, an optimal infi-

nite-horizon policy may consist of an arbitrary partition-
ing of S-dimensional space in which each partition maps 
to an action.  In fact, the size of the policy space grows 
exponentially with the size of the (discrete) observation 
set and doubly exponentially with the distance (in time-
steps) from the horizon (Kaelbling et al., 1998).  A con-
tinuous observation space compounds this further.  
Nevertheless, real-world problems often possess small 
policies of high quality. 

In this work, we make use of two recent approxi-
mate methods.  The first, Perseus (Spaan and Vlassis, 
2004), operates on problems with discrete observation 
sets and is capable of rapidly finding good yet compact 
policies (when they exist).  Perseus heuristically selects 
a small set of representative belief points, and then itera-
tively applies value updates to just those points, instead 
of all of belief space, achieving a significant speed-up.  
Perseus has been tested on a range of problems, and 
found to outperform a variety of other methods, includ-
ing grid-based methods (Spaan and Vlassis, 2004). 

The second method is an extension to Perseus pro-
posed by Hoey and Poupart (2005) which operates on 
POMDPs with continuous or very large discrete obser-
vation sets.  This method exploits the fact that different 
observations may lead to identical courses of action to 
discretize continuous observations without any loss of 
information.  In the context of dialogue management 
with a continuous confidence score, it implicitly and 
adaptively finds optimal lossless buckets of confidence 
that are equivalent to using the original continuous con-
fidence score.4 

                                                           
3 We will assume the planning horizon for a policy is in-

finite unless otherwise stated.   
4 The actual implementation used in this paper approxi-

mates some integrals by Monte Carlo sampling, which 
means that the confidence buckets are not exactly lossless.   

3 Method 

This section presents our method for incorporating 
confidence score into the POMDP as a continuous 
observation. 

First, we decompose the observation o into a 
discrete component h and a continuous component c.  
The discrete component represents the speech 
recogntion hypothesis, and the continuous component 
represents the confidence score. 5   The observation 
function then becomes ),|,( maschp ′′′ .  Next, we will 
assume that ma  does not affect recognition directly – 
i.e., h′  and c′  are conditionally dependent on only s′ .  
Thus the observation function becomes: 
 ).|,()|,(),|,( schpschpaschp m =′′′=′′′ . (6) 

This distribution expresses the probability density of 
observing hypothesis h with confidence score c in state 
s.  In the POMDP model, s includes unobserved ele-
ments of the current state, such as the user’s true action.  
As such, the observation function can be viewed as a 
model of the errors introduced by the speech recognition 
channel. 

In practice this distribution will be impossible to es-
timate directly from data, so we make several assump-
tions.  First, we assume that the state s can be factored 
in order to condition {h,c} on fewer elements.  For ex-
ample, the observation will depend directly on the 
user’s (actual, unobserved) action/utterance au and pos-
sibly the current grammar g selected by the machine.  
However, the observation will not directly depend on 
the (unobserved) user’s goal. 

Second, we can decompose the distribution by as-
suming that confidence scores are drawn from just two 
distributions – one for “correct” recognitions and an-
other for “incorrect” recognitions.   

Combining both of these assumptions, we write: 

 


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=⋅
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),|()(
),|()(
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where: 
 

•  ),|( gahp u  expresses the confusion matrix – i.e., 
probability of observing hypothesis h given that the 
user took action ua , and grammar g was active; and 

•  )(cpcorrect  and )(cpincorrect  express the probability 
density function of the confidence scores associated 
with correct and incorrect recognitions. 
 

To perform policy improvement on this POMDP we 
have two options.  First, we can use an optimization 

                                                           
5 Our proposal assumes that just the top recognition hy-

pothesis and its confidence score are considered.  We will 
explore incorporating an N-Best list in future work. 



method which accounts for the continuous observations, 
such as that by Hoey and Poupart (2005).  We note that 
this method creates a policy which takes the expected 
additional information in the confidence score into ac-
count.  We call this the continuous-POMDP solution. 

We note that there is benefit to using the confidence 
score information for belief state monitoring (as in Eq. 
3) even if it was not used during policy optimization.  
The second option for performing policy improvement 
is therefore to marginalize the confidence score, i.e.,: 

 ∫=
c

uu gachpgahp ),|,(),|( . (8) 

then optimize the resulting POMDP using a technique 
such as Perseus.  At runtime, the full observation func-
tion ),|,( gachp u  is used for belief state monitoring.  
We call this the discrete-POMDP solution. 

Stated alternatively, the continuous-POMDP tech-
nique uses infinitely many confidence buckets during 
planning and belief monitoring, whereas the discrete-
POMDP technique uses no confidence information dur-
ing planning, but infinitely many confidence buckets 
during belief monitoring.  By contrast, MDP methods 
(in the literature, and our baseline, presented below) use 
a handful of confidence buckets for planning, but do not 
perform any belief monitoring. 

4 Testbed dialogue management problem 

To test the practicability of the method, we created a 
testbed dialogue management problem in the travel do-
main.  In this problem, the user is trying to buy a ticket 
to travel from one city to another city.  The machine 
asks the user a series of questions, and then “submits” a  
ticket purchase request, ending the dialogue.  The ma-
chine may also choose to “fail”.  In the testbed problem, 
there are three cities, {a,b,c}.  

For ease of expression, we decompose the POMDP 
state variable Ss∈  into three components: (1) the 
user’s goal, uu Ss ∈ ; (2) the user’s action, uu Aa ∈ ; and 
(3) the state of the dialogue, dd Ss ∈ .  The POMDP 
state s is given by the tuple },,{ duu sas .  We note that, 
from the machine’s perspective, all of these components 
are unobservable. 

The user’s goal, us , gives the current goal of the 
user – i.e., the user’s desired itinerary.  There are a total 
of 6 user goals, given by 

yxcbayxyxsu ≠∈∈ },,,{,:),( .   
The user’s action, ua , gives the user’s most recent 

user’s actual action.  User actions are drawn from the 
set {x, from-x, to-x, from-x-to-y, yes, no, null} where 

yxcbayx ≠∈ },,,{, . 

The component ds  indicates the state of the dia-
logue from the standpoint of the user.  This component 
enables a policy to make decisions about the appropri-
ateness of behaviours in a dialogue.  For example, we 
want to discourage the machine from attempting to con-
firm an item before it has asked for it even if this strat-
egy was most expedient, because this behaviour will 
deviate significantly from conversational norms. 

The dialogue state sd itself contains three compo-
nents.  Two of these indicate (from the user’s perspec-
tive) whether the from place and to place have not been 
specified (n), are unconfirmed (u), or are confirmed (c).  
A third component z specifies whether the current turn 
is the first turn (1) or not (0).  There are a total of 18 
dialogue states, given by: 
 }0,1{},,,{,:),,( ∈∈∈ zcunyxzyxs ddddd  (9) 

Unlike MDP-based models we do not include a state 
component for confidence associated with a particular 
user goal.  The concept of confidence in a particular 
user goal is naturally captured by the probability mass 
assigned to that user goal in the belief state. 

The POMDP action mm Aa ∈  is the action the ma-
chine takes in the dialogue.  The machine has 16 actions 
available, drawn from the set {greet, ask-from/ask-to, 
conf-to-x/conf-from-x, submit-x-y, fail}, where 

yxcbayx ≠∈ },,,{, .   
These state components yield a total of 1944 states, 

to which we add one additional, absorbing end state.  
When the machine takes the fail action or a submit-x-y 
action, control transitions to this end state, and the dia-
logue ends. 

To reduce the number of parameters required to 
specify the transition function, we decompose the transi-
tion function: 
 ),,,|,,(),|( muduudum aassasspassp ′′′=′  (10) 
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We then assume conditional independence as fol-
lows.  First, we assume that the user’s goal during a 
dialogue is fixed, removing several dependencies: 
 )|(),,,|( uumuduu sspaasssp ′=′ . (12) 

Next, we assume that the user’s action depends only 
on their (current) goal and the preceding machine ac-
tion: 
 ),|(),,,,|( muumuduuu asapaasssap ′′=′′ . (13) 

Finally, to update the dialog state, we need only 
consider the previous state of the dialogue, the user’s 
action, and the machine’s action: 
 ),,|(),,,,,|( mdudmuduuud asaspaasssasp ′′=′′′ . (14) 



In sum, our factored transition function is given by: 
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 (15) 

The initial (prior) probability of the user’s goal is 
distributed uniformly over the 6 user goals.  In the test-
bed problem the user has a fixed goal for the duration of 
the dialogue, and we define the user goal model accord-
ingly. 

The observation function is given by: 
 ),,,|,(),|,( mudum aasschpaschp ′′′′′=′′′ . (16) 

As noted above, the observation function accounts 
for the corruption introduced by the speech recognition 
engine, so we assume the observation depends only on 
the action taken by the user:6 
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We define the observation function to encode the 
probability of making a speech recognition error to be 

errp .  Substituting errp  into Eq. 7, the observation func-
tion becomes: 
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We define c on the interval [0,1] and define the 
probability densities )(cpcorrect  and )(cpincorrect  as 
the exponential probability density functions normalized 
to the region [0,1]; i.e., 
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where correcta  and incorrecta  are constants defined on 
),( ∞−∞ .  We note that as xa  approaches positive or 

negative infinity, )(cpx  becomes deterministic and 
conveys complete information; when 0=xa , )(cpx  is 
a uniform density and conveys no information.  Since 
we expect the confidence value for correct recognition 
hypotheses to tend to 1, and for incorrect recognition 
hypotheses to tend to 0, we would expect 0>xa . 

                                                           
6 In the testbed problem, we assume that the same rec-

ognition grammar is always used.   

Substituting the transition function (Eq. 15) and the 
observation function (Eq. 16) into the general belief 
state update function (Eq. 3), the belief state update 
function for the testbed problem becomes: 
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 The reward measure includes components for both 
task completion and dialogue “appropriateness”, includ-
ing: a reward of 100−  for taking the greet action when 
not in the first turn of the dialogue; a reward of 3−  for 
confirming a field before it has been referenced by the 
user; a reward of 5−  for taking the fail action; a reward 
of 10+  or 10−  for taking the submit-x-y action when 
the user’s goal is (x,y) or not, respectively; and a reward 
of 1−  otherwise.  A discount of 95.0=γ was used for 
all experiments. 

The initial (prior) probability of the user’s goal is 
distributed uniformly over the 6 user goals.   Figure 1 
shows an influence diagram of the POMDP. 

5 Comparison with MDP baseline 

5.1 Description of MDP baseline 

To test whether the method for incorporating confidence 
score outperforms current methods, we created an 
MDP-based dialogue manager baseline, patterned on 
systems in the literature, such as (Pietquin, 2004).  The 
MDP is trained and evaluated through interaction with a 
model of the environment, which is formed of the 
POMDP transition, observation, and reward functions.  
An MDP state estimator maps observations from the 
environment model to an MDP state.   

The confidence score is divided into M buckets.  
Ideally the confidence score bucket sizes would be se-
lected so that they maximize average return.  However, 
it is not obvious how to perform this selection – indeed, 
this is one of the weaknesses of “confidence bucket” 
method.  Instead, a variety of techniques for setting con-
fidence score threshold were explored.  It was found 
that dividing the probability mass of the confidence 
score c evenly between buckets produced the largest 
average returns among the techniques explored.  That is, 
we define 
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and then find the values of mcThresh such that: 
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Figure 1: Influence diagram depiction of the testbed 
POMDP.  Symbols are as defined in the text.  The dot-

ted box shows the composite POMDP state, s.  Note that 
the system action am depends on the belief state b(s) – 

the distribution over all states – and not the true current 
(unobservable) state. 
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where p(c) is the prior probability of a confidence score.  
We find this prior for our testbed problem as follows.  
We first find the distribution )|( uacp as: 

 ∑
∈

=
Ah

uu achpacp )|,()|(  (23) 

 ).)(|()1)(|( erruincorrecterrucorrect pacppacp +−=  (24) 

In the MDP context, we assume the confidence 
score buckets are formed without access to a prior 

)( uap .  From this assumption, we find: 

 ))(()1)(()( errincorrecterrcorrect pcppcpcp +−=  (25) 

from which the values of mcThresh can be derived. 
The MDP state contains components for each field 

which reflect whether, from the standpoint of the ma-
chine, (a) a value has not been observed, (b) a value has 
been observed but not confirmed, or (c) a value has 
been confirmed.  The MDP state also tracks which con-
fidence bucket was observed for each field, as well as 
for the confirmation.  Finally, two additional states – 
dialogue-start and dialogue-end – are included in the 
MDP state space.   

Because the confidence bucket for each field (in-
cluding its value and its confirmation) is tracked in the 
MDP state, the size of the MDP state space grows with 
the number of confidence buckets.  For M=2, the result-
ing MDP called MDP-2 has 51 states.7 

                                                           
7 For reference, M=1 produces an MDP with 11 states, 

and M=3 produces an MDP with 171 states. 

Given the current MDP state, the MDP policy se-
lects an MDP action, and the MDP state estimator then 
maps the MDP action back to a POMDP action. 

Because the MDP learns through experience with a 
simulated environment, an on-line learning technique, 
Watkins (1989) Q-learning, was used to train the MDP 
baseline.  A variety of learning parameters were ex-
plored, and the best-performing parameter set was se-
lected: initial Q values set to 0, exploration parameter 

2.0=ε , and the learning rate α  set to 1/k (where k is 
the number of visits to the Q(s,a) being updated.).  
MDP-2 was trained with approximately 125,000 dialog 
turns.  To evaluate the resulting MDP policy, 10,000 
dialogs were simulated using the learned policy. 

5.2 Results 

Both the Perseus and the Hoey-Poupart algorithms re-
quired two parameters for operation: number of belief 
points, and number of iterations.  Through experimenta-
tion, we found that 500 belief points and 30 iterations 
attained asymptotic performance for all values of errp .  
In addition, the Hoey-Poupart algorithm required a pa-
rameter specifying the number of observations to sam-
ple at each belief point.  Through experimentation, we 
found that 300 samples produced acceptable results and 
reasonable running times.   

 Figure 2 shows the average returns for the continu-
ous-POMDP, discrete-POMDP, and MDP-2 solutions 
vs. errp  ranging from 0.00 to 0.65 for 

1=== aaa incorrectcorrect .  The error bars show the 95% 
confidence interval for return assuming a normal distri-
bution.  Note that return decreases consistently as errp  
increases for all solution methods, but the POMDP solu-
tions attain larger returns than the MDP method at all 
values of errp .8   

We next explored the effects of varying the informa-
tiveness of the confidence score.  Figures 3, 4, and 5 
show average returns for the two POMDP methods and 
MDP-2 method vs. a for errp  = 0.3, 0.4, and 0.5, re-
spectively.  The error bars show the 95% confidence 
interval for return assuming a normal distribution.  In 
these figures, we again define aaa incorrectcorrect == .  
The POMDP methods outperform the baseline MDP 
method consistently.  Note that increasing a increases 
average return for all methods, and that the greatest im-
provements are for errp  = 0.5 – i.e., the information in 
the confidence score has more impact as speech recog-
nition accuracy degrades.   

                                                           
8 The MDP-3 system was also created but we were un-

able to obtain better performance from it than we did from 
the MDP-2 system. 
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Figure 2: Average return for continuous-POMDP, 

discrete-POMDP, and MDP-2 methods for a = 1. 
 

In Figures 2 through 5, the discrete-POMDP and 
continuous-POMDP methods performed similarly.  This 
trend could be due to the relatively short horizon in the 
testbed problem: most of the dialogues spanned a hand-
ful of turns.  Alternatively, this trend might indicate that 
the discrete-POMDP method provides sufficient plan-
ning.  We intend to explore this issue with larger dia-
logue management problems in future work.  
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Figure 3: Average return vs. a (informativeness of 

confidence score) at perr = 0.30 for continuous-POMDP, 
discrete-POMDP, and MDP-2 methods. 
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Figure 4: Average return vs. a (informativeness of 

confidence score) at perr = 0.40 for continuous-POMDP, 
discrete-POMDP, and MDP-2 methods. 
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Figure 5: Average return vs. a (informativeness of 

confidence score) at perr = 0.50 for continuous-POMDP, 
discrete-POMDP, and MDP-2 methods. 

6 Improving handcrafted policies 

In this section, we describe a method for improving a 
handcrafted policy by incorporating the belief state 
monitoring outlined above. 

Intuitively, a policy specifies what action to take in a 
given situation.  In the previous section, we relied on the 
representation of a POMDP policy produced by value 
iteration – i.e., a value function, represented as a set of 
N vectors each of dimensionality |S|.  We write )(snυ  to 
indicate the sth component of the nth vector. 

Each vector represents the value, at all points in be-
lief space, of executing some “policy tree” which starts 
with an action associated with that vector.  We write 

An ∈)(π̂  to indicate the action associated with the nth 
vector.  If we assume that the policy trees have an infi-
nite horizon, then we can express the optimal policy at 
all timesteps as: 

 









= ∑

=

S

s
n

n
sbsb

1

)()(maxargˆ)( υππ  (26) 

Thus the value-function method provides both a par-
titioning of belief space into regions (each correspond-
ing to an action which is optimal in that region), as well 
as the expected return of taking that action. A second 
way of representing a POMDP policy is as a “policy 
graph” – a finite state controller consisting of N nodes 
and some number of directed arcs.  Each controller node 
is assigned a POMDP action, and we will again write 

)(ˆ nπ  to indicate the action associated with the nth node.  
Each arc is labelled with a POMDP observation, such 
that all controller nodes have exactly one outward arc 
for each observation.  ),( onl  denotes the successor 
node for node n and observation o. 

A policy graph is a general and common way of rep-
resenting handcrafted dialogue management policies.  
More complex handcrafted policies – for example, those 



created with rules – can usually be compiled into (pos-
sibly very large) policy graphs.  We believe that a pol-
icy graph is a much more intuitive way for a human 
designer to specify a dialogue manager than a value 
function. 

6.1 Method 

To improve the policy graph, we will first need to 
evaluate it.  Although a policy graph does not make the 
expected return associated with each controller node 
explicit, as pointed out by Hansen (1998), we can find 
the expected return associated with each controller node 
by solving this system of linear equations in υ : 

 .)())(ˆ,|())(ˆ,|(
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 (27) 

Solving this set of linear equations yields a set of 
vectors – one vector for each controller node.  To find 
the expected value of starting the controller in node n 
and belief state b we compute: 
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1

)()(υ  (28) 

To improve the performance of the controller, we 
use )(snυ  at run-time, as follows.  At the beginning of 
the dialog, we find the node with the highest expected 
return for b0 and execute its action.  Throughout the 
dialog, we perform belief state monitoring – i.e., we 
maintain the current belief state at each time-step as 
given in Eq. 3.  At each time-step, rather than following 
the policy specified by the finite state controller, we re-
evaluate which node has the highest expected return for 
the current b.  We then take the action specified by that 
node.  Because the node-value function and belief state 
are exact, this style of execution is guaranteed to per-
form at least as well as the original handcrafted control-
ler.  Note that, in this style of execution, transitions may 
occur which are not arcs in the handcrafted policy. 

  This style of execution is distinct from policy itera-
tion, in which the nodes and links of the controller are 
changed and the controller is re-evaluated (using e.g., 
Eq 27) to iteratively improve the controller’s expected 
return.  We do not explore policy iteration in this paper; 
however, we note that a handcrafted controller could be 
used to bootstrap a policy iteration process.  Since a 
finite state controller is more intuitive for a (human) 
designer to understand, we intend to explore policy it-
eration in future work. 

6.2 Testbed handcrafted controllers 

Three handcrafted policies were created for the testbed 
dialogue management problem, called HC1, HC2, and 
HC3.  All of the handcrafted policies first take the ac-

tion greet.  HC1 takes the ask-from and ask-to actions to 
fill the from and to fields, performing no confirmation.  
If the user does not respond, it re-tries the same action.  
If it receives an observation which is inconsistent or 
nonsensical, it re-tries the same action.  If it fills both 
fields without receiving any inconsistent information, it 
takes the corresponding submit-x-y action.  A logical 
diagram showing HC1 is shown in .9 
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X-Y

ask
from

ask
to

ask
from

else from X
to Y

X
from X

from X to Y,
X≠Y

from X to Y

X
from X

Y, to Y
from X to Y, X≠Y

from X to Y

else else else

 
Figure 6: HC1 handcrafted controller 

 
HC2 is identical to HC1 except that if the machine 

receives an observation which is inconsistent or nonsen-
sical, it immediately takes the fail action.  Once it fills 
both fields, it takes the corresponding submit-x-y action. 

HC3 employs a similar strategy to HC1 but extends 
HC1 by confirming each field as it is collected.  If the 
user responds with “no” to a confirmation, it re-asks the 
field.  If the user provides inconsistent information, it 
treats the new information as “correct” and confirms the 
new information.  If the user does not respond, or if the 
machine receives any nonsensical input, it re-tries the 
same action.  Once it has successfully filled and con-
firmed both fields, it takes the corresponding submit-x-y 
action. 

6.3 Results 

We first studied the operation of the greedy improve-
ment method without access to confidence score infor-
mation.  We executed 10,000 dialogs for each 
handcrafted policy at values of perr ranging from 0.05 to 
0.65.   gives results for HC1.  To make the gain of the 
greedy improvement method explicit, Figure 7 shows 
the difference between the proposed method and the 
expected value of executing the handcrafted policy di-
rectly.  For reference,  also includes the difference be-
tween the handcrafted policies executed normally and 
the POMDP policy, which we take to be a practical up-
per bound for the testbed problem.  Error bars show the 
95% confidence interval for the true expected return 

                                                           
9 A logical diagram is shown for clarity: the actual con-

troller uses the real values a, b, and c, instead of the vari-
ables X and Y, resulting in a controller with 15 states.   



assuming normal distribution.  We note that in almost 
all cases, the greedy improvement method results in a 
significant improvement.  In many cases, the improved 
handcraft controller is close to the POMDP policy – our 
assumed practical upper bound.  Results for HC2 and 
HC3 are shown in Figures 8 and 9. 

We next studied the operation of the greedy im-
provement method when confidence score information 
is present.  Figures 10, 11, and 12 show average returns 
for the discrete-POMDP and improved handcraft meth-
ods vs. a for errp  = 0.3, 0.4, and 0.5, respectively.  a is 
defined as in Section 5.2 – i.e., incorrectcorrect aaa == .  
Error bars are negligible and are not shown.  For each of 
the 3 handcrafted controllers in each of the 3 values of 

errp , increasing a consistently increases average return.   

7 Conclusions 

This work has shown how a confidence score can be 
directly incorporated into the dialogue model repre-
sented as a Partially Observable Markov Decision Proc-
ess (POMDP) used for dialogue management.  Through 
a testbed dialogue management problem, we have 
shown how recent optimization techniques are able to 
find policies which outperform traditional MDP ap-
proaches.  Further, we have shown how handcrafted 
controllers can be automatically improved by perform-
ing belief state monitoring using confidence score in-
formation. 

This paper has focused on confidence score, but this 
technique could be used for other observable, continu-
ous metrics with similar properties.   

In future work, we plan to incorporate “the speech 
recognition N-Best list” (i.e., a list comprised of N rec-
ognition hypotheses produced by the speech recogniser, 
each with an associated confidence score), as this 
should improve the quality of the belief state estimate.  
This extension would require altering the observation 
function to cope with a much larger observation space.   
However, this growth should not impact the amount of 
time required to optimize POMDP policies of a bounded 
size since the Hoey-Poupart (2005) method scales inde-
pendently of the complexity of observation spaces for 
bounded-size policies.  

More broadly, we intend to scale up the model to 
handle larger problems.  A method of exploiting redun-
dancy in the model is needed to apply the method to 
domains with 100s or 1000s of concepts.   
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Figure 7: Gain in average/expected return for HC1 

executed using belief state monitoring vs. perr for a=0.  
(The POMDP policy, which we take to be our practical 

upper bound, is shown for reference in Figures 7 
through 9.) 
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Figure 8: Gain in average/expected return for HC2 

executed using belief state monitoring vs. perr for a=0. 
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Figure 9: Gain in average/expected return for HC3 

executed using belief state monitoring vs. perr for a=0.  
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Figure 10: Average return vs. a (informativeness of 

confidence score) for perr = 0.30 for discrete-POMDP 
and handcrafted policies executed with belief state 

monitoring. 
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Figure 11: Average return vs. a (informativeness of 

confidence score) for perr = 0.40 for discrete-POMDP 
and handcrafted policies executed with belief state 

monitoring. 
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Figure 12: Average return vs. a (informativeness of 

confidence score) for perr = 0.50 for discrete-POMDP 
and handcrafted policies executed with belief state 

monitoring. 
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