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Abstract

Until recently, rigid and sometimes cumber-
some structures, which underly dialog pat-
terns considered manageable for achieving
a given task in a controlled manner, proved
to be a serious weakness of interactive sys-
tems. Through the introduction of the in-
formation state as a representation to con-
trol the evolving state of a dialog, substan-
tial improvements were obtained, with elab-
orations made for information-seeking and
task-oriented dialogs. For handling tuto-
rial dialogs, more rigid schemas are still in
frequent use, due to the different require-
ments for this genre, which include more
freedom on behalf of the human conversant
due to limited pressure to understand a stu-
dent’s dialog contributions in full detail. In
order to enable more flexible dialogs that
also do justice to particularities of tutorial
issues, we propose a mixed automaton- and
information-state based model of dialogs.
Capabilities of this model include elabora-
tions to handle multiple task contributions
in one turn, and abstractions from domain-
and task-specific reasoning. A consequence
of this design is the concentration on issues
related to dialog proper, which increases
the system’s portability, a burning issue in
the area of tutorial systems.

1 Introduction

Dialog patterns in human-computer interaction typ-
ically appear much more rigid than sequences in hu-
man conversation, and they may turn out even cum-
bersome in a number of situations. Through the in-
troduction of the information state (IS) as a rep-
resentation to control the evolving state of a dialog,

this serious weakness is attacked with increasing suc-
cess, which has been demonstrated in a number of
elaborations. As opposed to information-seeking and
task-oriented dialogs, more rigid schemas are still in
frequent use for handling tutorial dialogs, due to the
different requirements of this genre. By and large,
tutorial dialogs are mostly driven by domain- and
task-specific issues, such as providing hints in in-
creasing degrees of detail, from an issue-related given
repertoire. These schemas, however, somehow inter-
mix dialog- and task-specific issues, which reduces
modularity and therefore makes portability more dif-
ficult, a serious concern in the field of tutorial sys-
tems.

In order to enable participation in more flexible di-
alogs that also do justice to particularities of tutorial
issues, we propose a mixed automaton- and IS-based
model of dialogs. The underlying principles are im-
plemented in the tool DiaWoZ that allows specifi-
cations of dialog structures, embedded in a system
for carrying out Wizard-of-Oz (WoZ) experiments
(Fiedler et al., 2004). In this paper, we present
an instantiation of this model for dialog fragments
from a corpus of simulated tutorial dialogs on prov-
ing mathematical theorems. Capabilities obtained
include elaborations to handle multiple task contri-
butions expressed in a single turn, and abstractions
from domain- and task-specific reasoning, which are
encapsulated in external system calls. A consequence
of this design is the concentration on issues related
to dialog proper, increasing portability.

This paper is organized as follows. First, we dis-
cuss differences between tutorial dialogs and task-
oriented or information-seeking conversations. Then
we describe the project scenario for our investiga-
tions. Next, we introduce the functionality of Dia-
WoZ. Then we present elaborations for dialogs in a
tutorial session, in terms of information states. Fi-
nally, we present a mixed automaton- and IS-based
model for an example dialog from our corpus.



2 Motivation

Information state representations increased the flexi-
bility of dialog models. Elaborations have been made
for typical situations in information-seeking and
task-oriented dialogs, including grounding (Mathe-
son et al., 2000), and negotiation (Larsson, 2002).
Moreover, it has even been demonstrated that rea-
soning on cooperativity principles combined with
pragmatic utterance interpretation enables a system
to conduct natural dialogs (Sadek et al., 1997).

As opposed to that, tutorial systems mostly apply
rigid schemata, driven by task and domain-specific
given elaborations. Examples include Ms. Lindquist
(Heffernan and Koedinger, 2000), where pseudo-
natural language dialog is driven by well-elaborate
tutorial strategies, Atlas-Andes (Freedman, 2000a),
(Freedman, 2000b) which applies a plan-based mech-
anism uncovering hints in increasing degrees of de-
tail, Autotutor (Person et al., 2000), where human-
authored scripts encapsulate tutorial strategies and
dialog interaction, and a geometry tutor (Popescu
and Koedinger, 2000), which incorporates some spe-
cific strategies to address errors and flaws in the stu-
dents use of terminology.

These examples give evidence for the divergence
between the requirements in the contrasted cate-
gories of dialogs. The commonality among all these
scenarios is the distribution of expertise: the sys-
tem is ascribed full capabilities required for the issue
at hand, while the user is ascribed at best limited
knowledge. The difference among these genres lies
in the way this divergence of expertise is treated. In
information-seeking dialogs, all effort is concentrated
on making the requested information available to the
user. Similarly, all effort is invested in conveying nec-
essary techniques and associated information to the
apprentice. In contrast, the tutor’s goal is to release
as little information as possible, to enable students
to uncover as much as possible about the solution to
the given problem by themselves.

This divergence has consequences on specificities
of dialogs: In task-oriented and information-seeking
dialogs, grounding is of predominant importance,
which increases the occurrence of clarification di-
alogs. Moreover, users should feel encouraged to
make their utterances clear and well-structured. In
tutorial dialogs, students are typically given more
degrees of freedom to formulate their statements.
While the systems may frequently not be able to un-
derstand these statements in full detail, they may
still produce useful reactions that make progress to-
wards the tutorial goal, such as hinting, and insisting
on use of terminology.

3 Our Project Environment

Our work is part of the Dialog project 1

(Benzmüller et al., 2003). Its goal is to (i) empir-
ically investigate the use of flexible natural language
dialog in tutoring mathematics, and (ii) develop an
experimental prototype system gradually embodying
the empirical findings. The system will conduct di-
alogs in written natural language to help a student
understand and construct mathematical proofs. In
contrast to most existing tutorial systems, we envi-
sion a modular design, making use of the powerful
proof system Ωmega (Siekmann et al., 2002).

This design enables a detailed reasoning about the
student’s action and enables elaborate system re-
sponses. The scenario is illustrated in Fig. 1:

• Learning Environment: Students take an inter-
active course in the relevant subfield of math-
ematics within the web-based system Active-

Math (Melis et al., 2001).

• Mathematical Proof Assistant (MPA): Checks
the appropriateness of user specified inference
steps with respect to the problem-solving goal;
based on Ωmega.

• Proof Manager (PM): In the course of the tu-
toring session the user may explore alternative
proofs. PM builds and maintains a represen-
tation of constructed proofs and communicates
with the MPA to evaluate the appropriateness
of the user’s dialog contributions for the proof
construction.

• Dialog Manager: The concern of this paper.

• Knowledge Resources: This includes pedagogical
knowledge (teaching strategies), and mathemat-
ical knowledge (the domain expertirse).

Since there are virtually no dialogs about mathe-
matical tutoring available, we have conducted a WOz
experiment (Benzmüller et al., 2003b) with a simu-
lated system in order to collect a corpus of this genre
in the naive set theory domain. During the session,
the subjects had to prove theorems about set com-
plement and power set. The subjects were instructed
to enter steps of a proof rather than a complete proof
at once, in order to encourage dialog interaction with
the system. The corpus showed that subjects made
contributions in varying degrees of packaging, com-
bining several proof steps, and even answers with
further proof step specifications. We intend to han-
dle such cases in our dialog model.

1The Dialog project is part of and sponsored by
the Collaborative Research Center on Resource-Adaptive
Cognitive Processes (SFB 378) at Saarland University.



PEDAGOGICAL

KNOW
LEDGE

USER

M
ODEL

LEARNING
ENVIRONMENT

MATHEMATICAL
PROOF ASSISTANT

DIALOG MANAGER

LINGUISTIC
RESOURCES

DIALOG
RESOURCES

G
E

N
E

R
A

T
IO

N

PR
O

O
F M

A
N

A
G

E
R

A
N

A
L

Y
SIS

MATHEMATICAL
KNOWLEDGE

(MBASE)

ACTIVEMATH OMEGA

U
SE

R

Figure 1: Dialog project scenario

4 The Tool DiaWoZ

In order to meet the demands of modeling dialogs for
tutorial systems, also in their development, we have
designed and implemented DiaWoZ, a tool that en-
ables setting up and executing of WOz experiments
to collect dialog data. Its architecture is highly mod-
ular and allows for the progressive refinement of the
experiments by both modeling increasingly sophis-
ticated dialogs and successively replacing simulated
components of the system by actual implementa-
tions, in particular, the dialog model itself.

The architecture of the entire tool is motivated and
described in (Fiedler et al., 2004). In this section, we
briefly introduce its dialog specification part, and we
illustrate its functionality with a simple, constructed
example.

4.1 The Dialog Specification

In DiaWoZ, a dialog specification is a finite state ma-
chine combined with an information state. The finite
state automaton is defined by a set of states and a set
of transitions between states. Furthermore, the dia-
log specification language allows one to define global
variables, which are accessible from all states of the
automaton, hence in the whole dialog. In addition,
local variables can be defined for each state, whose
scope comprises the corresponding subdialogs. The
information state is conceived as the set of global
and local variables accessible from the current state.

Going beyond other approaches, the transitions
are associated with pre- and postconditions. The
preconditions, whose fulfilment depends on process-
ing in the node, are defined in terms of variables in
the information state and restrict the set of appli-
cable transitions for the current state dependent on

Information State:
NEUTRAL: open
INVERSE: open
ASSOCIATIVE: open

1

2

3 4 5

876

t3

t0

t1‘ t3‘

t2‘ t2
t1

t4‘ t4 t5‘ t5 t6‘ t6

Figure 2: An example dialog specification

the information state. The postconditions are effects
that can both change the information state by setting
its variables to different values and result in a func-
tion call, triggering an observable event such as an
utterance. In particular, transitions can be param-
eterized in terms of the variables of the information
state and the values to which they are changed in
the transitions’ effects.

As an example consider the following task from
algebra: An algebraic structure (S, ◦), where S is
a set and ◦ an operator on S, should be classified.
(S, ◦) is a group if (i) there is a neutral element in
S with respect to ◦, (ii) each element in S has an
inverse element with respect to ◦, and (iii) ◦ is asso-
ciative. In a tutorial dialog, the tutor must ensure,
that the student addresses all three subtasks to con-
clude that a structure is a group. An appropriate
dialog specification is given in Figure 2. The ini-
tial information state is displayed on top, while the
finite-state automaton is shown below it. State 1 is
the start state. In State 2, there are three transitions
t1, t2, and t3, which lead to parts of the automaton
that represent subdialogs about the neutral element
(States 3 and 6), the inverse elements (States 4 and
7), and associativity (States 5 and 8), respectively.



Hence, the dialog specifications in this simple model
ensure that a started subtask is completed prior to
addressing another subtask. However, the way how
this subdialog is carried out is entirely left to the wiz-
ard. The information state consists of three global
variables neutral, inverse, and associative cap-
turing whether their corresponding values have been
solved. The preconditions of the transitions are:

t1: neutral = open

t2: inverse = open

t3: associative = open

The remaining transitions are always applicable.

These applicability conditions are defined in a
rather free manner, to give the wizard maximum
flexibility in deciding about the interpretation of the
student’s utterances. In addition, the wizard is free
to apply further changes to the information state, if
justified by that interpretation (see the overanswer-
ing in the example dialog in the next subsection).
The effects of the transitions t′

1
, t′

2
, and t′

3
change

the value of neutral, inverse, and associative,
respectively, to done, indicating the successful com-
pletion of the associated subdialog. Moreover, each
transition produces specifications for an utterance in
the dialog. In an advanced system version with fairly
elaborated analysis components, the interpretation
of the student’s utterances would be carried out di-
rectly and affect the information state.

4.2 An Example Dialog

To show how DiaWoZ works, let us come back to
the example dialog specification given in Figure 2. It
covers the following example dialog (where Z denotes
the set of integers):

(U1) Tutor: To show that (Z, +) is a
group, we have to show
that it has a neutral el-
ement, that each element
in Z has an inverse, and
that + is associative in Z.

(U2) Tutor: What is the neutral ele-
ment of Z with respect to
+?

(U3) Student: 0 is the neutral element,
and for each n in Z, −n is
the corresponding inverse.

(U4) Tutor: That leaves us to show as-
sociativity.

Let us now examine the dialog in detail. Starting
in State 1, there is only one transition that can be
picked, namely t0. It leads to State 2, which produces
specifications for utterance (U1). In State 2, all three
transitions t1, t2, and t3 can be picked, because their

preconditions are fulfilled. Let us assume that t1 is
chosen, which leads to State 3 and provides speci-
fications for the tutor’s utterance (U2). Now, the
student enters utterance (U3). Note that the stu-
dent not only answers the tutor’s question, but also
gives the solution for the second subtask about the
inverse elements. The next action depends on the in-
terpretation of the student’s utterance. For a wrong
answer, transition t4 would be pursued, while with
the answer as given, transition t′1 is the appropriate
one. The utterance interpretation, which is done by
the wizard, includes setting the variables neutral

and inverse of the information state to done, by
the effect of t′

1
, which brings us back to State 2. Due

to the over-answering, the tutor should not choose
the subtask about the inverse elements in the next
dialog turn. Hence, only transition t3 is applicable,
which provides specifications for the production of
utterance (U4).

5 The Dialog Model

In the information-seeking dialog genre, the empha-
sis in dialog model design is on allowing to guide
the dialog in such way that the dialog participants
provide/obtain all the supplementary information
needed to retrieve the required data. Dialog mod-
eling techniques used here include finite-state au-
tomata (McTear, 1999). More complex IS-based dia-
log models have been used in task-oriented dialogs in
which the focal point is on negotiating participants’
problem solving goals (Matheson et al., 2000). In tu-
torial dialogs, especially in the context of socratic tu-
toring, the emphasis is placed on accounting for flex-
ible adaptation in following the student’s reasoning,
while hinting at a correct solution when student’s
line of reasoning becomes inconsistent. As opposed
to information-seeking or task-oriented dialogs, tu-
torial dialogs are characterized by an inherent bias
in the knowledge states between the dialog partici-
pants: the student and the tutor. Moreover, student
contributions to the discourse tend to be termino-
logically flawed, imprecise at the domain-level, erro-
neous in the formal parts of presentation, and may
contain domain-specific misconceptions. A typical
dialog scheme involves an attempt at solution fol-
lowed by tutor’s evaluation of the attempt, a hint at
a correct solution, or a request for elaboration on an
aspect of the contribution that was not clear.

In this section, we present an IS-inspired dialog
model for tutorial dialogs that comprises a record
representing the state of information at the given
stage of the dialog, whose purpose is to guide dialog
execution by the dialog automaton (cf. Section 6).



2

6

6

6

6

6

6

6

6

6

6

4

local :

2

6

4
state id :

2

6

4

var1 : val1
...
varn : valn

3

7

5

3

7

5

global :

2

6

4

Given : Set(Prop)
LatestTurn : List(DM)
Proof − State : int
QUD : Stack(qud)

3

7

5

3

7

7

7

7

7

7

7

7

7

7

5

Figure 3: Excerpt of the IS record

5.1 Knowledge sources

The information incorporated into the Information
State comes from the following sources:

Input understanding component The input un-
derstanding module stores a discourse represen-
tation, including a representation of the seman-
tics of utterances in every turn. The discourse
representation consists of a tree structure in
which alternative readings of ambiguous state-
ments, rhetorical relations, and dialog functions
between adjacent segments are represented.

Proof Manager The Proof Manager provides in-
formation on the state of the proof at a given
point in dialog and an evaluation of each of the
alternative interpretations of a given proof con-
tribution in the context of the proof constructed
so far. The proof representation maintained by
the proof manager is co-indexed with the dis-
course representation via labeling: utterances
(or spans thereof) in the discourse model have
direct counterparts in the constructed proof
structure. This allows us to notice changes to
the proof strategy indicated by the dialog.

Pedagogical resources The pedagogical resources
used during dialog execution include the tutorial
strategy and the student model dynamically up-
dated in the course of the session. Additionally,
the tutoring component updates information on
domain knowledge attributed to the student.

At each dialog state, status information of the
relevant IS components is computed and the IS is
updated using information returned by the above
knowledge sources. Below, we present the contents
of the Information State.

5.2 Information State components

The IS record includes global and local variables that
reflect the assumed knowledge states of the dialog

participants, abstracting from details of the domain,
that is, interior parts of proof statements are only
represented when they play a role as discourse ref-
erents. An excerpt of the IS record is presented in
Figure 3. Traditionally, it is divided into a global
and local variables sub-records. In our model, val-
ues of global variables are accessible from all automa-
ton states, while local variables are node-specific. In
the context of a tutoring system, the crucial variable
guiding the dialog at the meta-level is the status of
the problem solution. In case of the theorem proving
domain, this is the proof state at a given time (rep-
resented as an integer value). Every turn is repre-
sented in the IS in the Dialog Move buffer. Once
the student starts constructing a proof (proof-state :
in progress), what is under discussion is the correct-
ness state of the intermediate contributions (QUD
stack). Local variables only become relevant in spe-
cific points in the dialog, for instance, in clarification
sub-dialogs (initiated at node N3; see Figure 4). A
local variable associated with the node N3 will store
the “issue” to be clarified. Below, we present more
details on some of the IS components.

Proof-State Proof state is the status of proof de-
velopment at the given stage of the dialog, repre-
sented as an integer value. At any time in the dia-
log the proof is in one of four states:

undefined: an initial state before the task is commu-
nicated to the student (Proof − State = −1),

communicated: the system offered a problem to the
student, but the student has not yet started
solving it (Proof − State = 0),

in progress: the student has contributed at least
one attempt at the solution, but, according to
the domain reasoner, the proof is not completed
(Proof − State = 1), and finally

completed: the domain reasoner confirms that the
proof is completed (Proof − State = 2).

Latest Turn Latest Turn is a pointer to the last
turn in the discourse history maintained by Discourse
Manager as well as the corresponding node in the
proof structure maintained by the Proof Manager.2

Given “Given” is a set of propositions (domain
facts) that are assumed to be known to both dialog
participants. In particular, in case of tutorial dialogs,
this includes information presented to the student

2In Figure 3, we make it explicit that a turn may
comprise more than one utterance and so more than one
Dialog Move (DM); represented here as a list. Each DM
is addressed and processed by the model individually.



in the lesson material provided before the tutoring
session. In the course of dialog, the set is gradually
extended by completed proof steps.

QUD Question Under Discussion is a stack of cur-
rently pending moves: proof contributions that have
not been evaluated by the tutor yet, tutor’s (clari-
fication) questions, and student’s answers to tutor’s
questions. Hence, the information available through
this stack is weaker than an agenda. In our envi-
ronment, the role of the task agenda is performed
by an interplay between the proof manager, which
determines the subtasks required to solve the overall
problem, and the pedagogical resources, which keep
track of contributions to each of these subtasks. The
dialog automaton is essentially driven by the current
QUD and its attributes. For our purposes, we dis-
tinguish the following moves as relevant QUDs:

proof-statement (made by the user): an assert act
that contains a domain contribution that is an
attempt at a (part of) proof.

A proof-statement is characterized by its cor-
rectness state attribute delivered by the Proof
Manager whose values may be: correct (the
proof-statement is correct and brings the proof
forward), partially correct (parts of the proof-
statement correspond to a contextually relevant
correct proof-step), irrelevant (the propositional
content of the proof-statement is true, but the
step does not bring the proof forward), alterna-
tive correct (the proof-statement has been rec-
ognized as a correct step, however, in a proof
that has not been identified as the one that the
student is trying to pursue), wrong (the propo-
sitional content of the proof-statement is false).

proof-statement evaluation (made by the system):
evaluation of the proof contribution by the tutor
in the context of the proof being constructed.

A given proof contribution is evaluated in one
of the following categories: accept: the Proof
Manager accepts the correct proof-step, reject:
rejects a wrong step, or pending: evaluation is
pending due to the proof-step being partially
correct, irrelevant, or correct in an alternative
proof (then a clarification dialog is issued first).

question: yes/no question, alternative question, or
wh-question issued by the system3

3In the preliminary version of the system, we make a
simplification in that only the system is allowed to ask
questions. Questions on the part of the student are clas-
sified as unknown.

answer: an assert act that is a relevant answer to a
question.

unknown: none of the above,

address unknown: a move addressing the utterance
classified as unknown.

6 An Example

In this section, we illustrate the DiaWoz model for
one of the dialogs from our corpus (see Figure 6).
This dialog demonstrates some communication pat-
terns that can be observed in tutorial dialogs with
advanced students, including a change of strategy
and multiple statements in one utterance. After the
first correct and confirmed statement (2), the student
specifies a proof step (4) that belongs to a solution
path different from that initiated with the previous
proof statement (2). Consequently, the system starts
a clarification dialog to establish agreement about
the solution path (5). Subsequently, the student not
only provides the clarification required, but he also
specifies a further proof step in the same utterance
(6). The system response addresses both parts (7).
Again, the next student dialog contribution specifies
two proof steps in a single turn (8), which is answered
in a similar fashion (9). The next user statement
completes the proof (10), which is acknowledged and
followed by a summary presentation (11).

In order to handle the driving forces underlying
dialogs of this kind, the burden is split between the
information state and an automaton which encap-
sulates more structurally oriented properties of the
dialog. Specifically, the nodes of the automaton im-
plicitly specify whose turn it is and what the status of
the proof specification is. The latter may be the nor-
mal elaboration mode, comprising proof statements
on behalf of the student and a system reaction, or
some subdialog about one of the issues involved. In
the example dialog, one such subdialog occurs, which
is a meta-dialog about the proof state and associ-
ated clarifications. The links in the automaton ex-
press possible reactions alternatives, some of which
are specific contributions, while there always needs
to be a ’catch-all’ response, in case a student dialog
contribution cannot be interpreted in the context.

The fragment of states in the dialog automaton
which cover the example session in Figure 6 is de-
picted in Figure 4. These states comprise an initial
and an end state (N0 and N6, resp.), two states where
user utterances are handled (N1 and N4), and three
states where the system reaction is specified (N2, N3

and N5). These states (on the left side in the Figure)
represent provision of proof statements and the as-
sociated assessment. The remaining three states (on
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Figure 4: Automaton part of the dialog model for
the example

the right side in the Figure) deal with the clarifica-
tion dialog, where the second system reaction related
node (N5) handles specifics for the proof manager,
prior to resuming with the standard reaction.

Interpretation of student utterances and
contextually-based evaluation by the proof manager
in case of a proof statement is done along the links
S2, S3, S6, S8, S11, and S14. The interpretation is
abstracted into dialog-relevant parts by the proof
manager, which also updates the information state
accordingly. When a move is accessed by the
preconditions associated with a node, it is always
the first move in the discourse representation that
has not yet been accessed by the dialog processing
model. Moreover, output generation is called on
links originating from nodes which are associated
with system turns, except S5 and S9, where reac-
tions to multiple issues are collected. After system
reactions of type confirm, the associated issue is
popped from the QUD stack, and it is then moved
to the Given set.

The remaining pre- and postconditions of the tran-
sitions associated with these nodes are illustrated in
Figures 7 and 8, for states addressing user statements
and system reactions, respectively. In addition to
the conditions listed in this Figure, some common
actions are carried out: (1) a pointer to the interpre-
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Figure 5: Excerpt of the IS after student turn 6

tation of the next user statement is pushed on the
latest turn list in each user-related node, (2) gener-
ator specifications are cleared along each transition
from a user- to a system-related node, and (3) the
generator is called at each transition from a system-
to a user-related node.

The two looping transitions, S2 and S5, serve the
purpose of collecting multiple user statements ex-
pressed in one turn, resp. reacting on them according
to their order. However, such a sequence of specifi-
cations must be coherent, which in our context is
interpreted as being correct proof statements. After
the clarification subdialog, a special transition, S8,
handles feedback to the proof manager, by means of
an external system call. Note the resulting difference
of interpretating utterance (4) in the example dialog,
if the next response would have been “yes” instead
of utterance (6). In this case, utterance (4) would
have been assessed as “not relevant” for the solution
path pursued, leading to another system reaction. In
addition to the transition used for the dialog exam-
ple, the illustrations also contain catch-all interpre-
tations for user contributions, S11 and S13, and the
corresponding system responses S12 and S14.

Figure 5 presents an excerpt of the Information
State after the student utters turn 6. A solution at-
tempt has been contributed by the student, hence the
Proof-status variable has value in-progress. Because
the proof manager identified the previous statement
in turn 4 (formula F4) as valid in an alternative
proof, the tutor issued a clarification request to ver-
ify this hypothesis (this is symbolically indicated by
the local variable query-alternative-proof, associated
with the clarification node, N3, of the dialog automa-
ton, taking a boolean value true). The formula in
turn 6 (F6) is put on top of the QUD stack, with
F4 still pending evaluation. Neither F4 nor F6 have
been added to the Given set because their correct-
ness status is still unresolved.
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(1) Tutor:

Bitte zeigen Sie: A ∩ B ∈ P ((A ∪ B) ∩ (B ∪ C))!

Please show: A ∩ B ∈ P ((A ∪ B) ∩ (B ∪ C))!

(2) Student:

Zerlegen der Potenzmenge: P ((A ∪ C) ∩ (B ∪ C)) = P ((A ∪ C) ∩ P (B ∪ C))

Partitioning the power set: P ((A ∪ C) ∩ (B ∪ C)) = P ((A ∪ C) ∩ P (B ∪ C))

(3) Tutor:

Das ist richtig!

That is correct!
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(4) Student:

Anwenden der Distributivität: P ((A ∪ C) ∩ (B ∪ C)) = P (C ∪ (A ∩ B))

Application of distributivity: P ((A ∪ C) ∩ (B ∪ C)) = P (C ∪ (A ∩ B))

(5) Tutor:

Ist das noch derselbe Lösungsweg wie in der vorigen Antwort?

Is this still the same solution path as indicated in the previous answer?

(6) Student:

Nein, ich habe mich umentschieden: Ich zerlege jetzt die Potenzmenge:P (C ∪ (A ∩ B)) ⊇ P (C) ∪ P (A ∩ B))

No, I have changed my mind: Now I will partition the power set: P (C∪ (A∩B)) ⊇ P (C)∪P (A∩B))

(7) Tutor:

Dann ist dieser wie auch der vorige Schritt richtig!

Then this step is correct, and the previous one too
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(8) Student:

Ich schätze die Vereinigung der Teilmenge ab: P (C ∪ (A ∩ B)) ⊇ P (A ∩ B) ⊇ {A ∩ B}

I estimate the union of the subset: P (C ∪ (A ∩ B)) ⊇ P (A ∩ B) ⊇ {A ∩ B}

(9) Tutor:

Diese beiden Schritte sind richtig!

These two steps are correct!

(10) Student:

A ∩ B ∈ {A ∩ B}

A ∩ B ∈ {A ∩ B}

(11) Tutor:

Das ist auch richtig und vollendet den Beweis. Ich wiederhole noch einmal:. . . <proof summary>

This is also correct and completes the proof. I repeat once again: . . .<proof summary>

Figure 6: An example dialog from the corpus (the predicate P stands for power set)



7 Conclusion

In this paper, we have proposed a hybrid dialog
model combining a finite state automaton with in-
formation state representations. The model me-
diates between the rigid automata-based models
mostly used in tutorial systems and information state
based models used for task-oriented and information-
seeking dialogs. While this model still exhibits a
good deal of the flexibility information state based
approaches have to offer, the structural commit-
ments encapsulated in the automaton part makes
control and maintainability of the model easier.
Specifically, development of the dialog model is sup-
ported by the incorporation in a WoZ tool.

Here, we have presented by-hand elaborations for
handling multiple moves within one dialog contribu-
tion, and making external calls to domain knowledge
sources, which are required for meeting properties
of tutorial dialogs. In the future, we intend to ex-
tend this model by increasing the variety of the inter-
play with external knowledge sources, for example,
making dialog continuations in part dependent on
assessments of tutorial strategies, e.g., by interpre-
tating student utterances containing minor mistakes
“cooperatively” by correcting these mistakes, or by
insisting on precision in such cases.
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S2:
Preconditions:

utterance-type(move) = proof-statement
correctness-state(move) = correct
buffer not empty

Postconditions:
proof-state = in-progress
push(QUD, move)

S3:
Preconditions:

utterance-type(move) = proof-statement
correctness-state(move) not alternative-correct
buffer empty

Postconditions:
proof-state = in-progress
push(QUD, move)
invert(QUD)

S6:
Preconditions:

utterance-type(move) = proof-statement
correctness-state(move) = alternative-correct
buffer empty

Postconditions:
same as (postconditions S3)

S8:
Preconditions:

utterance-type(move) = answer
utterance-content(move) = remain or change

Postconditions:
if utterance-content(move) = change

then correctness-state(move) = correct
call(proof-manager,

correctness-state(move) = correct)

S11:
Preconditions:

not ((Preconditions S2) or (Preconditions S3))
Postconditions:

if utterance-type(move) = proof-statement
then push(QUD, move)

S14:
Preconditions:

not (Preconditions S8)
Postconditions:

none

Figure 7: Pre- and postconditions for user nodes

S1:
Preconditions:

proof-state = undefined
Postconditions:

proof-state = communicated
QUD = [describe(proof-task)]

S4:
Preconditions:

QUD = <single move>
Postconditions:

push(QUD, proof-statement-evaluation(move))

S5:
Preconditions:

QUD not <single move>
correctness-state(move) = correct

Postconditions:
push(QUD, proof-statement-evaluation(move))

S7:
Preconditions:

utterance-type(move) = proof-statement
correctness-state(move) = alternative-correct

Postconditions:
push(QUD,alternative-question)

S9:
Preconditions:

none
Postconditions:

pop(proof-stack, move)
push(QUD, proof-statement-evaluation(move))

S10:
Preconditions:

proof-state = complete
Postconditions:

pop(QUD, move)
push(QUD, proof-statement-evaluation(move))
push(QUD, assess(proof))

S12:
Preconditions:

proof-stack empty
Postconditions:

pop(QUD, move)
push(QUD, proof-statement-evaluation(move))

S13:
Preconditions:

move not answer
Postconditions:

push(QUD, address-unknown)

Figure 8: Pre- and postconditions for system nodes


