
Developing City Name Acquisition Strategies
in Spoken Dialogue Systems Via User Simulation

Ed Filisko and Stephanie Seneff ∗

MIT Computer Science and Artificial Intelligence Laboratory
32 Vassar Street, Cambridge, Massachusetts 02139, USA

{filisko,seneff}@csail.mit.edu

Abstract

This paper describes our recent work on
mechanisms for error recovery in spoken
dialogue systems. We focus on the acqui-
sition of city names and dates in the flight
reservation domain. We are specifically
interested in addressing the issue of acquir-
ing out-of-vocabulary city names through a
speak-and-spell mode subdialogue. In order
to explore various dialogue strategies, we
developed a user simulation system, which
includes a configurable simulated user and a
novel method of utterance generation. The lat-
ter utilizes a concatenative speech synthesizer,
along with an existing corpus of dialogues,
to produce a large variety of simulated in-
puts. The results from various simulated user
configurations are presented, along with a
discussion of how the simulated user facilitates
the debugging of dialogue strategies and the
discovery of situations unanticipated by the
system developer.

Keywords: spoken dialogue systems, user
simulation, error recovery

1 Introduction

Spoken dialogue systems are emerging as an intuitive in-
terface for providing conversational access to online in-
formation sources (Gorin et al., 1997; Pieraccini et al.,
1997; Dahlbäck et al., 1999; Gustafson et al., 1999; Zue
et al., 2000; Eckert et al., 2001; Walker et al., 2001; De-
necke, 2002; Polifroni and Chung, 2002; Seneff, 2002;
Glass and Seneff, 2003; Quast et al., 2003). While the

∗ This research was supported by an industrial consortium
supporting the MIT Oxygen Alliance.

effectiveness of such systems has improved significantly
over the past several years, a critical barrier to widespread
deployment remains in the form of communication break-
down at strategic points in the dialogue, often when the
user is trying to convey a critical piece of information that
the system repeatedly misunderstands. This situation is
particularly likely to occur whenever the user is attempt-
ing to supply a named entity from a large or open vo-
cabulary set. For example, a weather domain might have
weather information for several hundred or even several
thousand cities, but there is no easy way for the user to
be informed of exactly which cities it knows. When the
user asks for the weather for an unknown city, the system
will likely misrecognize it as an altogether inappropriate
known city. If the vocabulary is static and the system
lacks an explicit model for unknown words, the user’s re-
peated attempts will only lead to failure and frustration.

U I would like to fly from Miami, Florida to the island
of Dominica [Seattle and Atlanta] on December 17th.

S Okay, from Miami to Seattle on Monday Dec. 17th.
Can you provide a departure time or airline preference?

U No, I don’t want to go to Seattle.
S What city does the flight arrive in?
U Roseau, Dominica [Toronto, Connecticut].
S Okay, from Miami to Toronto on Monday Dec. 17th.

Can you provide a departure time or airline preference?
U No, I’m not going to Toronto. I want to go to

Dominica [Jamaica].
S Okay, from Miami to Kingston on Monday Dec. 17th.

Can you provide a departure time or airline preference?
U No, I don’t want to go to Kingston [Houston], I want to

go to Dominica [Connecticut].

Figure 1: Example dialogue from the Mercury flight domain,
illustrating a situation where the user (U) is attempting to fly
to a city that the system (S) does not know. Words in brackets
indicate what the system recognized.

Figure 1 shows an example dialogue in the Mercury
flight reservation domain (Seneff, 2002), where the user
was attempting to travel to a city the system did not



know. The system repeatedly misrecognized the un-
known words, Roseau and Dominica, in a variety of
ways, leading to ever increasing user frustration. Clearly,
a more intelligent model is needed to detect and recover
from such situations.

An improvement in system behavior can be accom-
plished through confidence scoring (Jurafsky and Martin,
2000; Wessel et al., 2001; Hazen et al., 2002) and/or an
explicit unknown word model (Bazzi and Glass, 2002) to
at least provide the possibility of predicting that the city
might not be known. In such a case, the system can apolo-
gize and suggest that the user propose a nearby larger city.
However, a more productive strategy would be to request
more information about the city, such as a spelling via
speech or the telephone keypad. Armed with this addi-
tional information and a large external database, the sys-
tem could likely identify the city. If necessary, it could
engage the user in a subdialogue to resolve any ambigu-
ity due to either slight spelling variants or multiple cities
with the same name in different states or countries.

Once the system knows the name of the city, it should
be able to provide useful information to the user, for in-
stance, by finding latitude/longitude data for the city on
the Web or from a geography database, and then provid-
ing the weather for the closest known city. Furthermore,
by invoking a letter-to-sound system (Chung, Wang, et
al., 2004) that incorporates information gleaned from the
spoken pronunciation of the city originally provided by
the user, the system can add the new city to the recog-
nizer’s working vocabulary (Chung, Seneff, et al., 2004),
so that future references to it should be understood.

A challenging aspect of the above-outlined strategy is
the design of the error detection and recovery subdia-
logue. Confidence scoring and unknown word detection
are themselves prone to error, and hence the system can
never be certain that it does not know the word. A strat-
egy that invokes tedious confirmation subdialogues for
every hypothesized city would surely annoy the user; yet
an obtuse unwillingness to acknowledge failure will lead
to communication breakdown and frustration. In addi-
tion to confidence scores and unknown word detection,
the user’s behavior can signal a misrecognition. Careful
monitoring of each dialogue turn can sometimes lead to
an awareness of communication breakdown. The system
thus needs to make use of multiple complex cues to de-
cide when to invoke an error recovery subdialogue.

One problematic aspect of developing and evaluating
different error handling strategies is the fact that it is ex-
tremely difficult to collect appropriate user data. Not only
is it costly to collect user data in general, but it is also dif-
ficult to influence the user’s behavior so as to enhance
the occurrence of appropriate scenarios. It then becomes
problematic to define an effective evaluation criterion for
conditions that are inherently rare, and, in any case, it re-

quires a period of weeks or months to collect sufficient
data for both development and evaluation.

An attractive solution is to employ user simulation,
both to help develop the system and to provide highly
controlled evaluation experiments (Scheffler and Young,
2000, 2001; Eckert et al., 2001; Chung, 2004). Increas-
ingly, researchers in spoken dialogue systems have been
exploiting user simulation to aid in system development.
For instance, in developing a restaurant domain (Chung,
2004), thousands of dialogues were generated automati-
cally both to evaluate system performance and to produce
training data for the recognizer language model. The sim-
ulated user consults the system’s response frame to deter-
mine an appropriate query for each subsequent turn. In a
recent experiment in the flight domain, we were able to
locate points of communication breakdown in prior user
dialogues, and continue those conversations with a differ-
ent error recovery approach, using a synthesizer to gen-
erate waveforms for a solicited speak-and-spell subdia-
logue (Filisko and Seneff, 2004).

We report here on a novel approach to user simulation,
which exploits an extensive database of preexisting user
queries, but recombines the utterances using essentially
an example-based template approach. The system deals
with gaps in the corpus by splicing in synthetic wave-
forms for missing words, such as newly introduced rare
cities. This allows us to retain the richness of variety in
the ways users can pose questions, while introducing in
a controlled way rare cities that would require an error
recovery subdialogue to be resolved. We can then de-
velop our error recovery strategies in the context of these
simulated user dialogues. We can experiment with differ-
ent settings for thresholds and measure the effectiveness
in concrete terms such as number of turns and/or time to
completion and overall success rate in understanding the
artificially introduced rare cities.

We have also been developing a configurable generic
dialogue manager, which aims to enable the system de-
veloper to assess the utility of modifying the system to
behave in a certain way. For example, the system can be
programmed to request a speak-and-spell utterance for an
unknown city, and to implicitly confirm a city with a con-
fidence score above a given threshold. The configurabil-
ity of both the simulated user and the dialogue manager
facilitates exploration and assessment of a wide variety
of system strategies and user behaviors.

Our experiments have been conducted within the Mer-
cury flight reservation domain (Seneff, 2002). We have
access to over 30,000 utterances spoken by users in in-
teractive dialogues with Mercury, which we are recy-
cling with creative splicing to produce realistic simulated
speech. While the original Mercury system knew only
about 550 cities, we are now expanding its capability,
with the goal of eventually supporting all the cities for



Language
Generation

Dialogue
Manager

Context
Resolution

Language
Understanding

Speech
Recognition

HUB

Text-to-Speech

Audio/GUI Database

Figure 2: A typical GALAXY configuration for a spoken dia-
logue system.

which we have airport codes. Our experiments focus on
the subtask of resolving the source and destination, as
well as the date of travel, three essential parameters for
accessing our Sabre database.

2 Error Recovery Strategy

In previous work (Filisko and Seneff, 2004), we pre-
sented an analysis of error recovery in the Mercury
domain, which utilized the technique of requesting a
spelling for a problematic word via the telephone key-
pad. The algorithm for invoking keypad entry was con-
servative, so the recovery prompt was a relatively rare
occurrence. Surprisingly, users only complied with the
request a little over 50% of the time, and only 69% of
those responses were valid spellings of a city or airport
name. These results led us to believe that allowing the
user to speak the spelling of the word may be a more in-
tuitive recovery method, requiring less cognitive load.

Our newly designed error recovery mode is intended to
greatly improve the likelihood of understanding rare city
names. We require both the capability to detect a plau-
sible recognition error and to initiate an error recovery
mechanism that is likely to be successful. We decided to
exploit a speak-and-spell capability that had been previ-
ously developed to handle name enrollment in an offline
delegation task (Seneff et al., 2000). Its usage here was
adapted to take advantage of the known offline lexicon,
matching spelling hypotheses against the lexicon, and al-
lowing for a modest amount of error correction.

All of our experiments are configured within the
Galaxy Communicator (Seneff et al., 1998) framework.
A suite of specialized servers communicate with one an-
other via a central hub, as schematized in Figure 2, and
control is specified in a hub program, implemented in a
simple scripting language. Galaxy enables the configura-
tion of complex interactions among the servers with rela-
tive ease, a feature that is essential for implementing our
speak-and-spell error recovery strategy.

A block diagram of the speak-and-spell strategy is il-
lustrated in Figure 3. The recognizer has been aug-

Match?

Recognize
Unknown Word

and Letter Sequence

Spell Check
N−Best Hypotheses

on City/State Context

Second
Pass?

Match?Large Database of
Spell Check on

Geographical Names

Choose
Best

Hypothesis

Rerecognize Using the Unknown Word as Additional Information

Reenter Main Dialogue Control

(e.g., "Nelson N E L S O N")
Speak−and−Spell Utterance

NO

YES

NO

NO

YES

YES

Figure 3: Flow chart detailing the two-pass speak-and-spell
strategy for recovering from a problematic source or destina-
tion.

mented to support an unknown word model as described
in Bazzi and Glass (2002), and the language model has
been trained to predict its likely occurrence as a substitu-
tion for a city name. In addition, we have incorporated a
word-level confidence score, based on the algorithm de-
scribed in Hazen et al. (2002). Whenever a triggering
condition exists (e.g., the best hypothesis from the rec-
ognizer is a low-confidence or unknown city), the sys-
tem prompts for a speak-and-spell entry: “Please speak
the city name followed by its spelling, like this: Bel Air,
B E L A I R.” The speak-and-spell utterance is redirected
to a specialized recognizer, and the resulting N-best hy-
potheses are delivered to the dialogue manager (DM) for
processing. The DM first proceeds to find a match with
any hypotheses available from the N-best list associated
with the previous user query. If a match is found, it pre-
sumes that the hypothesis is correct, and returns to the
main dialogue control, without further confirmation from
the user. If no match is found, the DM consults the lex-
icon of 20,000 city names and, finding a match, returns
to the main dialogue control, confirming the city with the
user. Not finding a match, the DM obtains a small N-best
list of potentially matching cities and dynamically aug-
ments the speak-and-spell recognizer with a vocabulary
consisting of these words, so that the spoken city name
can now be recognized. The speak-and-spell waveform is
then reprocessed. If no match is found during the second
pass, the best spelling hypothesis is given to the dialogue
manager, which resumes the main dialogue control.

2.1 Proof-of-Concept

The speak-and-spell strategy was first tested in a sim-
ple simulation scenario (Filisko and Seneff, 2004) in
Mercury. A set of dialogue situations was selected, in
which the system had requested keypad entry of either the
source or destination city. Instead of providing a keypad
spelling when prompted with one of these requests, the
simulated user generated a speak-and-spell waveform uti-
lizing the DECtalk (Hallahan, 1995) speech synthesizer.
The waveform was then processed by the dialogue man-



ager using the strategy shown in Figure 3. Nearly 90% of
the city names were correctly identified, indicating that
this strategy could potentially be useful in real situations
of error recovery.

It should be noted that this simulation assumed a com-
pletely compliant user who never hesitates or makes
spelling mistakes. Real dialogues are never so simple,
however. In order to test how well the strategy would
stand against real users, we incorporated the speak-and-
spell strategy into the Jupiter weather information sys-
tem (Zue et al., 2000) for four days. Although there were
several instances of successful recovery, many types of
noncompliance were revealed. One common action was
for the user to completely ignore the speak-and-spell re-
quest, and to simply repeat the previous utterance.

In an effort to improve upon the initial, simplistic im-
plementation, which did not account for such user be-
havior, we decided to run the two recognizers in parallel
when the system requested a speak-and-spell utterance.
The N-best lists from both the main recognizer and the
speak-and-spell recognizer would be passed to the dia-
logue manager, which would then be responsible for de-
ciding which recognizer to trust.

3 User Simulation Studies

Although we could conceivably simply implement the
complete error recovery strategy outlined above and in-
corporate it into our online Jupiter system, we were con-
cerned about the possibility of alienating our pool of de-
voted users due to potentially annoying system behavior
in unanticipated circumstances. We felt that an extensive
stress-testing stage would reveal many of the possible di-
alogue situations that could arise due to recognition error
or noncompliant user behavior. This could arguably be
achieved by soliciting paid subjects to participate in var-
ious experiments involving carefully defined scenarios.
However, this process is time-consuming and costly, and
hence did not seem like a particularly attractive solution.

We decided instead to explore the option of an ap-
proach that involves simulating user behavior. We chose
to develop this idea within the Mercury flight domain
rather than the Jupiter weather domain, because Mercury
is inherently more complex and will therefore support
more interesting and challenging dialogue scenarios. The
simulated user can replace the real user in an otherwise
identical Galaxy configuration. The telephony server is
replaced with the user simulator server, which acts based
on the system response and calls upon the language gen-
eration and speech synthesis servers to convert its inten-
tions into a speech waveform.

The simulated user is configurable by the developer,
so that various behaviors may be adjusted and evaluated.
For example, the user may initially speak one, two, or all
required attributes for the domain, or the user may be set

RecognizerParser

Generator Templates
Utterance Real User

Utterances

Corpus of

User
Simulated

"a flight to denver please"
Synthesizer

Dialogue
Manager

Utterances

Corpus of
DECtalk

Figure 4: Flow within the dialogue system during a typical
dialogue turn with the simulated user.

up to be noncompliant to a speak-and-spell request; that
is, it will not respond with a speak-and-spell utterance
when prompted to do so. Additionally, we employ a con-
figurable dialogue manager, which can be set up to vary
the type of error recovery request initiated based on vari-
ous triggers, such as a low confidence score, or the num-
ber of speak-and-spell recovery attempts delivered before
giving up on a given attribute.

In the following section, we describe our strategy for
generating a rich set of realistic simulated user utterances
in the flight domain, through creative recycling of an ex-
isting in-domain speech corpus. We then discuss a set of
experiments that involve a simulated user attempting to
convey its intentions to a system.

3.1 Utterance Generation from Existing Corpora

In order to make our simulated user’s utterances as real-
istic as possible, we utilized a method of creatively com-
bining segments of real users’ speech from an existing
corpus of in-domain utterances, along with speech seg-
ments synthesized by DECtalk. This method is beneficial
in two ways:

1. it models the variety of ways that real users with
similar goals pose questions and statements to con-
vey their intentions, and

2. it facilitates the controlled exploration of specific
classes of words via splicing.

A diagram of this creative utterance generation process
is shown in Figure 4. The process begins with the sim-
ulated user, which randomly selects a value for each re-
quired attribute. These attribute/value pairs, or beliefs,
will be maintained for the entire dialogue. The developer
specifies whether each of these attributes must be spoken,
may be spoken, or must not be spoken in the user’s ini-
tial utterance. For example, in our experiments, the user’s
initial utterance contained only source and destination.

The simulated user sends this constrained set of be-
liefs via an eform (electronic form) frame to a generator,
which consults a database of utterance templates, selects



“on January the twenty second”
“Wednesday twenty two November”
“a week from tomorrow”
“four days from now”
“on the day before Thanksgiving”
“on the last Saturday in July”

Figure 5: Examples of date patterns extracted from a corpus of
Mercury utterances.

a template according to a set of developer- specified rules,
and splices in the values provided in the eform. The gen-
erator outputs a string, just one possible surface represen-
tation of the beliefs held by the simulated user. This string
is then passed to the synthesizer to produce a synthetic
speech waveform, which is then passed to the speech rec-
ognizer as if it were a real spoken utterance.

3.1.1 Database of Utterance Templates
The database of utterance templates was created by

parsing nearly 16,800 unique transcriptions of previously
recorded Mercury utterances. The result of the parse is
the same set of sentences; however, the members of a
given class are replaced by the corresponding class name.
For example, the utterance:
flights to boston on may third

would be translated to:
flights to <us city> <month date>

This process produced a corpus of nearly 10,400 unique
utterance templates. Simultaneously, all members of a
given class are extracted, producing a set of diverse pat-
terns to instantiate that class name in the utterance tem-
plates. This is of particular importance in modeling the
variety of ways a user can express a date. Representative
examples of extracted date patterns are shown in Figure 5.

An example database entry is shown in Figure 6. Each
entry is associated with a list of utterance templates
(“:sentences”). The generator locates the set of database
entries that match the attributes in the eform provided by
the simulated user. A template is then randomly chosen,
according to a uniform distribution over the set.

A simple example should help to explain the genera-
tion of a simulated user utterance. Assume the simulator
produces the following eform:

{c eform :source “detroit” :destination “denver” }
The system consults the corpus of eforms, like the
one in Figure 6, gathering all that match the specified
source/destination constraints. It then chooses a template
using a uniform distribution over the full set of templates
contained in all matching eforms. A header file specifies
match constraints. For example, we can allow any value
for “:clause” (e.g., “exist”, “clarifier”, “wh-query”) while
rejecting any eforms that contain meaningful additional
attributes such as “:departure time” or “:airline”.

If the third template were chosen from the set in Fig-
ure 6, the following string would be produced:

{c eform
:clause “statement”
:source “<us city0>”
:destination “<us city1>”
:sentences (

“from <us city0> i would like to go to <us city1>”
“hi i would like to go from <us city0> to <us city1>”
“i am flying from <us city0> to <us city1>”
“i am interested in flights from <us city0> to <us city1>”
“i am leaving from <us city0> to go to <us city1>”
... ) }

Figure 6: An entry from the database of utterance templates.
Each unique eform is associated with a set of corresponding
sentences. This eform contains a total of 58 unique sentence
templates.

i am flying from detroit to denver

which would then be passed to the synthesizer.

3.1.2 Concatenative Speech Synthesis
The simulation strategy presented here employs the

Envoice concatenative speech synthesizer (Yi and Glass,
2002). Envoice synthesizes a given utterance by gener-
alizing from existing speech corpora, concatenating the
fewest number of available speech segments. If a word
does not exist in the corpus, Envoice will concatenate
subword units, down to the phone level, given that it is
provided with a pronunciation of the word.

While the corpus is not likely to contain a requested
utterance in its entirety, the synthetic waveforms are
nonetheless composed of real speech segments, and
therefore model the variety of syntactic forms and pho-
netic realizations typically produced by real users. Many
of the utterances will contain segments from multiple
speakers, but this should not disturb recognition since our
recognition algorithm has no speaker-specific aspects.

In order to validate the use of such synthesized utter-
ances in a simulated dialogue system, an experiment was
performed to compare the recognition accuracy on a stan-
dard test set, realized as speech using four methods:

1. the original waveform as spoken by a real user
2. a DECtalk synthesis of the waveform transcript
3. an Envoice synthesis, in which words not in the En-

voice corpus were generated from subword units
4. an Envoice synthesis, in which missing words were

generated by DECtalk.

The test set consisted of 1,451 utterances, with a vocabu-
lary size of 905 words. The corpus was built from 3,292
real user utterances from the Mercury domain. A total
of 89 test set words were absent from the Envoice corpus
and, consequently, had to be generated by concatenating
subword units or by employing DECtalk synthesis.

Results are shown in Table 1. The set of original wave-
forms showed a word error rate (WER) of 12%, while the
DECtalk set performed significantly better with a WER



Method Original DECtalk Envoice Env&DEC

WER 12.0 8.5 13.5 13.6
SER 24.7 22.6 28.8 28.6

Table 1: Recognition results for a test set of utterances, realized
as speech via four different methods: original user waveform,
DECtalk synthesis, Envoice synthesis, and a combination of the
two synthesizers (Env&DEC).

of only 8.5%. The Envoice sets both showed about a 13%
degradation in WER from that of the original waveforms.

The intent of this experiment was to demonstrate that
the concatenative generation of spoken utterances could
lead to recognition performance comparable to that of
original single-speaker waveforms. The performance of
Envoice is sufficient for the purpose of simulated dia-
logues, and the additional degradation may even be useful
for developing error recovery mechanisms. Furthermore,
because our simulations choose sentence patterns that are
evenly distributed over all observations, rather than bi-
ased towards the more common ones, the simulated ut-
terances are likely to be further degraded in recognition
performance, relative to real user utterances. This may
reduce the success rate, but should provide a richer reper-
toire of failure patterns to stimulate system development.

3.2 Dialogues with a Simulated User

The replacement of a real user with a simulated one en-
ables the batch processing of many dialogues. The gen-
eration and analysis of a large number of dialogues while
using a specific dialogue strategy allows us to debug the
system within a tightly controlled framework, as well as
to measure the efficiency or success of the given strategy.

The dialogue manager (DM) of a dialogue system is re-
sponsible for determining which action the system should
take next, depending on the history of the dialogue and
any requisite information that must be obtained from the
user. In the simulations performed here, the DM has a
goal—to acquire values from the user for the following
three attributes in the flight domain: source city, desti-
nation city, and date. As described earlier, the simulated
user randomly selects a value for each attribute, and gen-
erates a creative utterance containing a subset of these at-
tributes. After the recognition, parsing, and interpretation
in context of the generated waveform, the corresponding
semantic representation is passed to the DM.

3.2.1 Overall Dialogue Strategy

Figure 7 shows our strategy for acquiring a set of at-
tributes. The DM searches the user’s input for any re-
quired attributes and, finding one, checks to see if the at-
tribute/value pair has already been confirmed by the user.
If so, the DM continues to look for other attributes in the
input. If acquiring an unconfirmed attribute has not al-

Confirmed
by User?

Aborted?
Acquisition

Unknown/
Low Confidence?

More
Attributes?

YES

NO

NO

YES

YES

YES

NO

NO

Request Attribute from UserUser Input

Need
Attribute?

YES

YES

NO

NO

Allow user
to repair any
remaining
incorrect
attribute

Attempted
Closing?

Dialogue
Complete

Perform Recovery Until Attribute is Acquired or Aborted

YES

Figure 7: Flow chart of the dialogue manager’s strategy for
acquiring values for a set of attributes.

ready been aborted (due to reaching a maximum number
of failed attempts), the DM makes the following moves.
For a hypothesized date it simply requests explicit confir-
mation of the value. A source or destination will either
be marked as an unknown city, or be accompanied by a
confidence score for the hypothesized city name. A high
confidence score causes the DM to accept the city as the
user’s intention. Given a low confidence score or an un-
known city, the DM initiates a series of recovery attempts,
including speak-and-spell requests and explicit confirma-
tions, until the attribute’s value has been confidently ac-
quired, or its acquisition has been aborted. The DM then
continues to look for more attributes in the user’s input.

After the DM has processed all attributes in the input,
it cycles through the required attributes to see if any has
not yet been provided by the user. In such a case, it asks
the user to provide a value for the attribute. Once the DM
has confidently acquired all attributes, it attempts to close
the dialogue. The user then has this last chance to correct
any values that the DM may have incorrectly acquired.

3.2.2 Experimental Configurations

The above strategy was utilized in five simulation ex-
periments. For all experiments, a dictionary of about
20,000 entries specified the set of cities considered for
a match in a speak-and-spell (SAS) subdialogue, as pre-
viously described in Figure 3. In all configurations, the
system runs a main recognizer alongside the specialized
SAS recognizer whenever it prompts for a SAS utterance,
and both hypotheses are given to the DM for considera-
tion. The system attempts only one error correction cycle
per attribute, although it allows the user one last chance



to initiate an additional correction at the end. In each con-
figuration, 50 dialogues were simulated, in which the ini-
tial user utterance contained both source and destination.
The date was subsequently requested by the system.

Obtaining the full source and destination often meant
first obtaining the city name, followed by the state name,
since a large number of city names are ambiguous in our
database. Therefore, the measure of attribute accuracy
in our results refers to the system correctly identifying
the source city, source state, destination city, destination
state, and date. If a city name was unique, its correspond-
ing state name was implicitly confirmed, without neces-
sarily ever having been mentioned by the user.

Table 2 describes the configuration for each of the five
simulation experiments. Source and Destination indicate
whether a city name spoken by the user was known or
unknown to the recognizer. Initial indicates whether the
user’s first utterance of each dialogue contained just the
city name or both the city and state names. SAS indicates
whether the system could ever initiate SAS mode as an
error recovery mechanism. Compliant indicates whether
the user would provide a speak-and-spell utterance upon
request. Noncompliant users would respond, for exam-
ple, by rephrasing their previous utterance.

The appendix provides several examples of conversa-
tions between the simulated user and the Mercury sys-
tem. Figure A-1 shows a successful dialogue, illustrating
the simplest possible dialogue flow. The user’s first ut-
terance provides the city and state names for both source
and destination. The system only explicitly confirms the
date, since the confidence scores for the city and state
names were above threshold.

In Figure A-2, the user provides city names that are
unknown to the system. The system correctly obtains the
source and destination cities through SAS mode. Since
these city names are unique in the database, their associ-
ated state names are implicitly confirmed. After the date
is confidently acquired, the dialogue is complete.

Figure A-3 demonstrates how the simulated user can
reword an utterance to help the system understand. The
cities and states are implicitly confirmed by high con-
fidence, except for Vail, which is acquired via SAS
mode. The system misunderstands the implicit month
(April) given in U3. It is likely the system misrecognized
“Make” as “May”, thereby hypothesizing the incorrect
month. The same date phrase is plugged into a new tem-
plate (U5), and the system is able to correctly acquire the
intended date.

Figure A-4 shows a dialogue with a noncompliant sim-
ulated user. The system prompts for a SAS response (S1).
Instead of providing the requested format, however, the
user just provides a new utterance containing the source
city (U2). The system hypothesizes Reading (S2), but
that is rejected by the user (U3). The system again re-

quests a SAS response (S3) and the user is again non-
compliant (U4). This time, however, the system implic-
itly confirms Utica and Oakland due to high confidence.
The system proceeds to request the state names and date,
and the dialogue is successfully completed.

Figure A-5 provides an example of a failed dialogue.
Despite the noncompliant user behavior in U3 and U7,
the system is able to correctly acquire all city and state
names. The system is unable to understand February
nineteenth as the user’s intended date, however. The sys-
tem misrecognizes the day as ninth (S9) and prompts for
the date once again (S10), following the user’s rejection
(U10). The user rephrases the utterance (U11), but the
system hypothesizes the same value, which has already
been rejected. Having reached the maximum number of
explicit requests for the date, the system apologizes and
ends the dialogue. This example demonstrates the need
for a more aggressive approach to obtaining dates. For
example, the N-best list of recognizer hypotheses could
be searched for alternate dates. In future work, we intend
to enable a much more robust acquisition of dates.

3.2.3 Simulation Experiments and Results

Table 3 shows the results of the five simulation exper-
iments. A single dialogue is considered successful if all
acquired attributes were correct. We also report average
number of turns per both successful and failed dialogue,
and mean attribute accuracy over all dialogues.

Recognizing that the number of successful dialogues
varies among different runs of a given configuration,
mainly due to the quality of the concatenated speech, we
ran 10 simulations of 50 dialogues each, for configura-
tion A. A mean of 33.9±2.5 on the number of successful
dialogues was obtained.

The best dialogue success rate is realized in configura-
tion A, in which the simulated user provided known city
names, as well as their associated state names. The user
is also compliant to SAS requests. While only 36 of 50
dialogues were successful, more than 88% of the attribute
values were correctly obtained. As expected, configura-
tion A also yielded the lowest average of 6.6 turns per
successful dialogue. This result reflects the efficiency of
packing more information into a single utterance.

Configuration B is similar to A, except that only the
city name was provided in the user’s initial utterance.
Consequently, the state name was requested more fre-
quently, and this increased the average number of turns
per successful dialogue. This also appears to be a less
effective user strategy, since the number of successful di-
alogues dropped by 5 to 31.

Configuration C models a noncompliant user, who re-
sponded to a SAS request by rephrasing the previously
spoken utterance. The simultaneous use of two recogniz-
ers enables the system to handle this situation appropri-



ately, as confirmed by the results. Interestingly, the over-
all success rate was higher than in B, suggesting that this
strategy is actually a productive one. One would hope
that real users might be inclined to ignore a SAS request
precisely in those situations where the system is likely to
know the intended city.

In configuration D, the system never adopted a strategy
of soliciting a SAS utterance from the user. It could only
request explicit confirmation of its own hypothesized city
names. The results were surprisingly good, with 33 suc-
cessful dialogues and an average attribute accuracy of
91.4% – the best performance achieved for any config-
uration. This result makes it clear that SAS subdialogues
are not very effective for in-vocabulary cities.

Configuration E is the one situation where SAS sub-
dialogues are clearly useful. The city names provided
by the simulated user were all unknown to the system.
This means that no city names could be understood with-
out a mechanism such as speak-and-spell. Because the
city names were out-of-vocabulary (oov), the recognizer
would be expected to propose the oov city “word” more
often, or it should assign low confidence scores to any
known cities that were erroneously hypothesized. As
expected, this strategy resulted in an increased average
number of turns per successful dialogue at 9.0. Although
this configuration gives the worst performance, the fact
that nearly 86% of the acquired attribute values were cor-
rect is very encouraging.

Comparing configuration B with configurations C and
D might lead one to believe that SAS mode is not partic-
ularly effective. However, its main goal is to allow cities
unknown to the original recognizer to be handled. With-
out SAS mode, configuration E would have yielded a 0%
dialogue success rate. For the other configurations, it is
more a matter of observing that SAS mode will not de-
grade performance, rather than expecting it to improve.

For each experiment, the average number of turns per
failed dialogue was greater than that per successful dia-
logue. Limits on acquisition methods must be enforced in
order to avoid run-on dialogues. The system performed
each of the following at most twice per attribute: explicit
request, explicit confirmation, and SAS mode initiation.
The tradeoff lies in loosening the limits to potentially ac-
quire the correct value, at the expense of longer dialogues
and possible increased user frustration.

Over all experiments, the average attribute accuracy
for failed dialogues was nearly 67%, or almost 3.4 of 5
attributes correct. Interestingly, no single attribute stood
out as being more difficult to acquire than another. The
source value was incorrect in 18% of the acquisitions, the
date in 16%, and the destination in 14%.

Overall, the simulation results illustrate how certain di-
alogue strategies are more appropriate for specific situa-
tions. These simulations can help to make new systems

Configuration A B C D E

Source kno kno kno kno unk
Destination kno kno kno kno unk
Initial city&state city city city city
SAS yes yes yes no yes
Compliant yes yes no n/a yes

Table 2: Configurations for user simulation experiments. The
user spoke a known (kno) or unknown (unk) Source or Destina-
tion. Either city or city&state was provided in the user’s Initial
utterance. The system chose whether or not to initiate speak-
and-spell (SAS) mode recovery. The user may or may not have
been Compliant with a request for a speak-and-spell utterance.

Configuration A B C D E

SuccDialogue 36 31 32 33 30
AvgSuccTurns 6.6 7.5 7.5 7.7 9.0
AvgFailTurns 8.4 9.0 10.2 9.1 10.3
AvgAccuracy (%) 88.4 87.2 88.8 91.4 85.9

Table 3: Results for the simulation configurations in Ta-
ble 2. Each configuration consisted of 50 simulated dialogues.
SuccDialogue is the number of successful dialogues, that is,
each dialogue had 100% attribute accuracy. AvgSuccTurns and
AvgFailTurns are the average turns per successful and failed dia-
logue, respectively. AvgAccuracy is the overall average attribute
accuracy per dialogue.

more robust by determining the most effective strategies
for user behaviors as yet unobserved in real usage. Sim-
ulating various user/system configurations can also al-
low us to identify which types of user behavior would be
(un)successful with a given system. For example, without
the dual recognizers, configuration D, with the noncom-
pliant user, would have been disastrous.

4 Related Work

4.1 User Simulation

While user simulation has not been a standard component
of spoken dialogue system development, a number of re-
searchers have reported on experiments conducted and
evaluations made on the basis of user simulation. Eckert
et al. (2001) argued the case of user simulation to pro-
vide a potentially infinite corpus at little cost. In their ex-
periments, conducted in the ATIS flight domain, the user
simulation was represented only at the intention level,
thus bypassing both the recognizer and the language un-
derstanding. Simulated user responses were conditioned
only on the previous system response, which could lead
to a rambling dialogue without a goal.

Scheffler and Young (2000, 2001) explored the use of
user simulations in two domains, an online banking sys-
tem and a movie guide. They also represented the sim-
ulated user’s queries only at the intention level, but initi-
ated two advances over the Eckert et al. approach. Before



each dialogue began, the simulated user was assigned a
set of goals, i.e., a scenario to solve, and its decisions
about what to say next were conditioned on a joint con-
sideration of the user’s goals and the system’s prior re-
sponses. Furthermore, a real user corpus was used both
to define the scenarios and to provide a probability model
of simulated recognition errors applied to the specified
attributes. In the movie domain, they compared time to
completion for each goal with those of the real user di-
alogues, showing a strong correlation, although the real
user dialogues took consistently longer on average.

López et al. (2002) made use of a simulated user model
to compare the performance of two different recogniz-
ers and two different strategies for handling confirmation
(implicit vs. explicit). The domain involved ordering at
a fast-food restaurant, and the simulated user was tasked
with solving a specific scenario. The simulated user’s in-
tentions were mapped to speech by randomly selecting a
read utterance associated with the same defined subgoals.

The research reported by Chung (2004) most closely
matches our own work. Chung utilized a language gen-
eration component to convert the simulated user’s inten-
tions into natural English. The simulated user was as-
signed scenarios to solve within a restaurant guide do-
main. The text strings were converted to synthetic speech
using a speech synthesizer, and the synthetic speech was
then processed through the standard dialogue system. A
distinction between her work and ours is that we use a
large corpus of in-domain, spontaneously produced utter-
ances to provide a much greater variety of linguistic pat-
terns, as well as a more realistic synthetic speech wave-
form, for each utterance.

4.2 Error Detection and Recovery

While many researchers have addressed the topic of error
recovery subdialogues in one way or another, we high-
light here two papers that we feel are most relevant to our
own work, distinguished by their use of an alternate input
mode to correct an error.

Suhm and Waibel (1997) have developed a flexible er-
ror recovery mechanism to handle corrections in a speech
transcription task. The user is allowed to correct errors
in three ways: by repeating the misrecognized word, by
spelling it, or by handwriting. The user has full control
over identifying where the errors have occurred through
an intuitive mouse-based interface to the displayed text.
A novelty of their system is its use of the local context to
improve language modeling for the error recovery task.

Bauer and Junkawitsch (1999) describe research which
is quite closely related to ours in two respects: (1) they
utilize a spoken spelling to disambiguate a large city
database, and (2) they employ user simulations to acquire
inputs for the spoken spelling. Their strategy is similar to
ours in that confidence scoring is used for error detection,

and the initial recognizer is configured to support only a
small subset of the full city set (1,500 out of 22,000 pos-
sible cities in Germany). Their work differs from ours in
that the task is isolated city name recognition rather than
general language understanding, and their spell mode rec-
ognizer was configured as an isolated letter task, which
greatly enhances performance. In a test evaluation of
about 1,000 spoken city names, followed optionally by
simulated spellings, they obtained an impressive overall
recognition accuracy of 96.5%, with spell-mode being in-
voked for about 45% of the city names.

5 Summary and Future Work

This paper describes our work in the area of error re-
covery subdialogues, in order to more confidently ac-
quire a user’s intentions. An analysis of the error recov-
ery mechanism in the Mercury flight reservation domain
revealed that both system and users were not very suc-
cessful in handling problematic city names using spelling
via a telephone keypad. A preliminary simulation ex-
periment demonstrated that the use of a speak-and-spell
(SAS) mechanism had the potential to be successful with
real users: nearly 90% of the city names were correctly
identified. Incorporating the SAS mechanism into the live
Jupiter weather system revealed that real users are not al-
ways compliant with SAS requests.

These observations inspired us to develop a simulated
user, which would replace a real user in the dialogue sys-
tem cycle. This enables batch processing of many di-
alogues in order to observe the performance of specific
dialogue strategies in a controlled environment. To more
realistically model the variability of real user utterances
in the simulations, a method of creative utterance genera-
tion was developed, in which existing in-domain corpora
are used to create a database of utterance templates. Sets
of synthesized words may be spliced into the templates,
facilitating the performance evaluation of very specific
semantic classes, such as U.S. city names or dates.

The generation of five sets of simulated dialogues re-
vealed how the system might perform with real users in
terms of attribute acquisition and error recovery. At the
same time, the simulation of user utterances is a tremen-
dous tool for debugging unanticipated situations. Since
the simulated inputs are based on patterns derived from
real users’ utterances, they provide a rich set of linguistic
variants. This is an invaluable way to test the dialogue
manager’s robustness to misrecognitions.

In future work, we hope to refine this simulation
method to provide a useful tool for system development
in new domains. We will extend the repertoire of simu-
lated user behaviors and, in parallel, increase the sophis-
tication of the dialogue model to handle them. The use
of simulation is an inexpensive yet powerful method to
reveal mistakes in the logic of the dialogue strategies.



There are at least two ways in which we hope to modify
the system in the future, and we will assess these changes
via user simulation studies. One is to explore expand-
ing the original vocabulary to license a much larger num-
ber of cities, perhaps all the cities for which we have air-
port codes. We expect that SAS mode will turn out to be
needed for the rare cities, because it will be difficult for
the system to get them right. But it may be that city-state
combinations are sufficient by themselves. The other di-
rection to explore is to allow users to initiate a SAS mode
subdialogue. This would mean running the SAS recog-
nizer in parallel all the time, but paying attention to its
result only when it appeared legitimate.

Once we have verified that our error recovery subdia-
logue is effective in simulation runs for both compliant
and noncompliant users, we would like to reintroduce it
into the Jupiter weather domain system. We also plan to
experiment with its utility in other systems such as di-
rectory information, where a SAS mechanism could be
extremely useful in identifying peoples’ names.

References
Bauer, J.G. and J. Junkawitsch (1999). Accurate Recognition

of City Names with Spelling as a Fallback Strategy, In Proc.
EUROSPEECH, Budapest, Hungary, 263–266.

Bazzi, I. and J. Glass (2002). Multi-Class Approach for Mod-
elling Out-of-Vocabulary Words, In Proc. ICSLP, Denver,
Colorado, 1613–1616.

Chung, G., C. Wang, S. Seneff, E. Filisko, and M. Tang (2004).
Combining Linguistic Knowledge and Acoustic Information
in Automatic Pronunciation Lexicon Generation, In Proc.
INTERSPEECH, Jeju Island, Korea.

Chung, G., S. Seneff, C. Wang, and L. Hetherington (2004). A
Dynamic Vocabulary Spoken Dialogue Interface, In Proc.
INTERSPEECH, Jeju Island, Korea.

Chung, G. (2004). Developing a Flexible Spoken Dialog Sys-
tem Using Simulation, In Proc. ACL 2004, Barcelona, Spain,
63–70.

Dahlbäck, N., A. Flycht-Eriksson, A. Jönsson, and P. Qvarfordt
(1999). An Architecture for Multi-Modal Natural Dialogue
Systems, In Proc. ESCA Tutorial and Research Workshop on
Interactive Dialogue in Multi-Modal Systems.

Denecke, M. (2002). Rapid Prototyping for Spoken Dialogue
Systems, In Proc. COLING, Taipei, Taiwan.

Eckert, W., E. Levin, and R. Pieraccini (1997). User Modeling
for Spoken Dialogue System Evaluation, In Proc. IEEE ASR
Workshop.

Filisko, E. and S. Seneff (2004). Error Detection and Recovery
in Spoken Dialogue Systems, In Proc. Workshop on Spo-
ken Language Understanding for Conversational Systems,
Boston, Massachusetts, 31–38.

Glass, J. and S. Seneff (2003). Flexible and Personalizable
Mixed-Initiative Dialogue Systems, In Proc. HLT-NAACL
Workshop on Research Directions in Dialogue Processing,
Edmonton, Canada.

Gorin, A., G. Riccardi, and J. Wright (1997). How May I Help
You? Speech Communication, 23:113–127.

Gustafson, J., N. Lindberg, and M. Lundeberg (1999). The Au-
gust Spoken Dialogue System, In Proc. EUROSPEECH, Bu-
dapest, Hungary.

Hallahan, W.I. (1995). DECtalk Software: Text-to-
Speech Technology and Implementation, Digital
Technical Journal, 7(4):5–19. Accessed 04/15/05,
http://www.hpl.hp.com/hpjournal/dtj/vol7num4/toc.htm

Hazen, T.J., S. Seneff, and J. Polifroni (2002). Recognition
Confidence Scoring and its Use in Speech Understanding
Systems, Computer Speech and Language, 16:49–67.

Jurafsky, D.S. and J.H. Martin (2000). Speech and Language
Processing. Prentice Hall, Inc., Englewood, New Jersey.

López-Cózar, R. et al. (2002). A New Method for Testing Dia-
logue Systems Based on Simulations, In Proc. ICSLP, Den-
ver, Colorado.

Pieraccini, R., E. Levin, and W. Eckert (1997). AMICA:
The AT&T Mixed Initiative Conversational Architecture, In
Proc. EUROSPEECH, 1875–1878.

Polifroni, J. and G. Chung (2002). Promoting Portability in
Dialogue Management, In Proc. ICSLP, Denver, Colorado,
2721–2724.

Quast, H., T. Scheideck, P. Geutner, and A. Korthauer (2003).
RoBoDiMa: A Dialogue-Object Based Natural Language
Speech Dialog System, In Proc. ASRU Workshop, Saint
Thomas, Virgin Islands, 174–179.

Scheffler, K. and S. Young (2000). Probabilistic Simulation
of Human-Machine Dialogues, In Proc. ICASSP, Istanbul,
Turkey, 1217–1220.

Scheffler, K. and S. Young (2001). Corpus-Based Dialogue
Simulation for Automatic Strategy Learning and Evalua-
tion, In Proc. Adaptation in Dialogue Systems Workshop at
NAACL, Pittsburgh, Pennsylvania.

Seneff, S., C. Chuu, and D.S. Cyphers (2000). ORION: From
On-line Interaction to Off-line Delegation, In Proc. ICSLP,
Beijing, China, 142–145.

Seneff, S., E. Hurley, R. Lau, P. Schmid, and V. Zue (1998).
Galaxy-II: A Reference Architecture for Conversational Sys-
tem Development, In Proc. ICSLP, Sydney, Australia, 931–
934.

Seneff, S. (2002). Response Planning and Generation in the
Mercury Flight Reservation System, Computer Speech and
Language, 16:283–312.

Suhm, B. and A. Waibel (1997). Exploiting Repair Context
in Interactive Error Recovery, In Proc. EUROSPEECH,
Rhodes, Greece.

Walker, M. et al. (2001). DARPA Communicator Dialog Travel
Planning Systems: The June 2000 Data Collection, In Proc.
EUROSPEECH, Aalborg, Denmark, 1371–1374.

Wessel, F., R. Schluter, K. Macherey, and H. Hey (2001). Con-
fidence Measures for Large Vocabulary Continuous Speech
Recognition, IEEE Trans. on Speech and Audio Proc.,
9(3):288–298.

Yi, J. and J. Glass (2002). Information-Theoretic Criteria for
Unit Selection Synthesis, In Proc. ICSLP, Denver, Colorado,
2617–2620.

Zue, V., S. Seneff, J. Glass, J. Polifroni, C. Pao, T.J. Hazen, and
L. Hetherington (2000). Jupiter: A Telephone-Based Con-
versational Interface for Weather Information, IEEE Trans.
on Speech and Audio Proc., 8(1):85–96.



Appendix

This appendix provides five example dialogues between the simulated user (U) and the Mercury system (S).

U1: Um, looking for flights from Evansville, Wisconsin to Monroe, Arkansas.
S1: Okay, can you provide a date?
U2: I will be traveling on December sixteenth.
S2: Okay, did you say on December sixteenth as your date?
U3: Yes.
S3: Okay, from Evansville, Wisconsin to Monroe, Arkansas on December 16th. Thank you.

Figure A-1: This example demonstrates the simplest dialogue flow for the given system configuration. In this case,
only the date is explicitly requested and confirmed, because all city and state names were implicitly confirmed due to
high confidence.

U1: Flights from Vancourt to Humphrey.
S1: Please speak the departure city, followed by its spelling, like this: Bel Air, B E L A I R.
U2: Vancourt, V A N C O U R T.
S2: Okay, did you say Vancourt as your source?
U3: Yes.
S3: Please speak the arrival city, followed by its spelling, like this: Bel Air, B E L A I R.
U4: Humphrey, H U M P H R E Y.
S4: Okay, did you say Humphrey as your destination?
U5: Yes.
S5: Can you provide a date?
U6: I said December five.
S6: Okay, did you say on December fifth as your date?
U7: Yes.
S7: Okay, from Vancourt, Texas to Humphrey, Nebraska on December 5th. Thank you.

Figure A-2: In this example, both cities are unknown to the system’s recognizer and can only be acquired through
speak-and-spell mode. The city names are unique in the database, so the state names are implicitly confirmed, and
their explicit acquisition is not required.

U1: I would like to go to Belgrade, Maine from Vail, Colorado.
S1: Please speak the departure city, followed by its spelling, like this: Bel Air, B E L A I R.
U2: Vail, V A I L.
S2: Okay, can you provide a date?
U3: Make that the thirtieth.
S3: Okay, did you say on May thirtieth as your date?
U4: No.
S4: Sorry, can you try saying the date again?
U5: I would like to travel the thirtieth.
S5: Okay, did you say on April thirtieth as your date?
U6: Yes.
S6: Okay, from Belgrade, Maine to Vail, Colorado on April 30th. Thank you.

Figure A-3: In this example, the system requests a date from the user, but misunderstands the user’s response in U3.
The user rewords its utterance in U5 by selecting a new template and plugging in the same date phrase, the thirtieth.
The system is then able to acquire the user’s date.



U1: Fly from Utica arriving to Oakland.
S1: Please speak the departure city, followed by its spelling, like this: Bel Air, B E L A I R.
U2: I am sorry, I am leaving from Utica.
S2: Okay, did you say Reading as your source?
U3: No.
S3: Please speak the departure city, followed by its spelling, like this: Bel Air, B E L A I R.
U4: Um, what about flights from Utica to Oakland.
S4: Can you provide the source state name?
U5: Illinois.
S5: Can you provide the destination state name?
U6: Maryland.
S6: Can you provide a date?
U7: The, uh, on November sixth.
S7: Okay, did you say on November sixth as your date?
U8: Yes.
S8: Okay, from Utica, Illinois to Oakland, Maryland on November 6th. Thank you.

Figure A-4: This example demonstrates the behavior of a noncompliant user. Here, noncompliance means that when
the system requests a speak-and-spell (SAS) utterance, the user instead rewords its previous utterance as in U2 and U4.
Nevertheless, the system is able to correctly recognize the source and destination cities, by simultaneously running
the main recognizer alongside the specialized SAS recognizer and observing both outputs. The dialogue is successful
after the system acquires the state names and the date.

U1: How about from Austin to Kiel.
S1: Okay, did you say Boston as your source?
U2: No.
S2: Please speak the departure city, followed by its spelling, like this: Bel Air, B E L A I R.
U3: Um, Austin to Kiel.
S3: Okay, did you say Austin as your source?
U4: Yes.
S4: Can you provide the source state name?
U5: Pennsylvania.
S5: What city will you be traveling to?
U6: Kiel.
S6: Please speak the arrival city, followed by its spelling, like this: Bel Air, B E L A I R.
U7: I want to fly out to Kiel.
S7: Okay, did you say Kiel as your destination?
U8: Yes.
S8: Can you provide a date?
U9: What if I leave on February nineteenth?
S9: Okay, did you say on February ninth as your date?
U10: No.
S10: Sorry, can you try saying the date again?
U11: Departure on February nineteenth.
S11: I’m sorry, I don’t know all your intentions, but we have to quit this dialogue.

Figure A-5: In this example of a failed dialogue, the system correctly acquires source and destination, but it has
trouble obtaining the proper date. The system hypothesizes February ninth (S9), which the user denies. After the user
rewords the utterance (U11), the system hypothesizes the same date, but does not ask about it again, since the value
has already been denied. The system abandons the dialogue after having reached the maximum number of attempts
for date acquisition.


