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Abstract 

We present results from an extensive empiri-
cal analysis of non-understanding errors and 
ten non-understanding recovery strategies, 
based on a corpus of dialogs collected with a 
spoken dialog system that handles conference 
room reservations. More specifically, the is-
sues we investigate are: what are the main 
sources of non-understanding errors? What is 
the impact of these errors on global perform-
ance? How do various strategies for recovery 
from non-understandings compare to each 
other? What are the relationships between 
these strategies and subsequent user response 
types, and which response types are more 
likely to lead to successful recovery? Can dia-
log performance be improved by using a 
smarter policy for engaging the non-under-
standing recovery strategies? If so, can we 
learn such a policy from data? Whenever 
available, we compare and contrast our results 
with other studies in the literature. Finally, we 
summarize the lessons learned and present our 
plans for future work inspired by this analysis.  

1 Introduction 

One of the most important challenges facing spoken 
language interfaces today is their brittleness when faced 
with understanding errors. The problem is present 
across all domains and interaction types, and arises pri-
marily from the inherent unreliability of the speech rec-
ognition process. The recognition difficulties are further 
exacerbated by the conditions under which these sys-
tems typically operate: spontaneous speech, large vo-
cabularies and user populations, and large variability in 
input line quality. In these settings, average word-error-

rates of 20-30% (and up to 50% for non-native speak-
ers) are quite common. Unless mediated by better error 
awareness and robust recovery mechanisms, these errors 
exert a strong negative influence on the overall per-
formance of spoken dialog systems (Sanders et al, 2002; 
Walker et al, 2002), and severely limit the naturalness 
of the interaction and the complexity of the tasks that 
can be addressed.  

Left unchecked, speech recognition errors can lead 
to two types of understanding errors in a spoken dialog 
system: misunderstandings and non-understandings. In 
a misunderstanding, the system obtains an incorrect 
interpretation of the user’s turn. In contrast, in a non-
understanding, the system fails to obtain any interpreta-
tion of the input.  

In this paper, we focus our attention on non-under-
standings. If for misunderstandings detection is a key 
problem (San-Segundo et al, 2000; Litman et al, 2000; 
Carpenter et al, 2001), and the set of recovery strategies 
is limited and fairly well understood (e.g. explicit and 
implicit confirmation (Krahmer et al, 1999)), for non-
understandings the situation is almost the opposite. By 
definition, systems know when a non-understanding has 
happened. However, a mechanism for diagnosing the 
source of the non-understanding is largely missing. 
Moreover, the number of potential recovery strategies is 
significantly larger (see Table 1) and the relative trade-
offs between them are less well understood. This further 
increases the difficulty of selecting the right recovery 
strategy at runtime. Most systems use a limited number 
of non-understanding recovery strategies in conjunction 
with uninformed, simple heuristic rules for engaging 
them. For instance, a system might apologize and repeat 
its question on the first non-understanding, provide 
more help on the second non-understanding, and trans-
fer the user to a human operator if a third consecutive 
non-understanding occurred. 

As a first step towards better error handling for non-
understandings, we have conducted an empirical study 
of these errors and of ten recovery strategies based on 



data collected in a mixed-initiative, task-oriented spo-
ken dialog system. More specifically, the questions we 
have investigated are:  

• What are the main sources of non-understanding 
errors (and what are their relative frequencies)?  

• How large is the impact of non-understandings on 
global dialog performance? 

• How do various strategies for recovering from 
non-understandings compare to each other?  

• What are the relationships between each strategy 
and subsequent user behaviors, and which behav-
iors are more likely to lead to successful recovery? 

• Can global dialog performance be improved by 
using a smarter policy for engaging the non-
understanding recovery strategies? 

• If yes, can we learn a better policy from data?   
We begin by describing the data collection experi-

ment which provided the corpus of dialogs used in this 
investigation. Then, over the following six sections, we 
address in turn each of the questions raised above. 
Whenever possible, we compare our findings to other 
results previously reported in the literature, in an effort 
to shed more light on the generalizability of these re-
sults across different domains. Finally, in Section 9 we 
summarize the lessons we learned from this investiga-
tion and the ideas it inspired for future work.  

2 Experiment and Corpus 

2.1 Data Collection Experiment 

System. The data was collected through a user study in 
which 46 participants, mostly undergraduate and staff 
personnel on campus interacted with RoomLine (Room-
Line, 2003), a spoken dialog system for making confer-
ence room reservations. RoomLine is a phone-based 
mixed-initiative system which has access to live infor-
mation about the schedules and characteristics (e.g. size, 
location, A/V equipment) of 13 conference rooms in 
two buildings on campus. To make a room reservation, 
the system finds the list of available rooms that satisfy 
an initial set of user-specified constraints, and engages 
in a follow-up negotiation dialog to present this infor-
mation to the user and identify which room best 
matches their needs. Sample conversations with the 
system are available online (RoomLine, 2003).  

The system uses two parallel SPHINX-II recognition 
engines, configured with telephone-based acoustic mod-
els and a trigram statistical language model (the diction-
ary size is 1049). The resulting top hypothesis from 
each engine is parsed using the Phoenix robust parser 
(Ward and Isaar, 1994). Subsequently, semantic confi-
dence scores are computed for each hypothesis. The 
winning hypothesis is forwarded to the RavenClaw-
based dialog manager (Bohus and Rudnicky, 2003). For 

output, the system uses a template-based language gen-
eration module and the Theta synthesizer (Theta, 2004).  

The system was equipped with ten different strate-
gies for recovering from non-understandings, described 
and illustrated in Table 1. By strategy we denote a sim-
ple, single-turn action that the system can take to at-
tempt recovery. A number of these strategies, such as 
asking the user to repeat or rephrase, reissuing the sys-
tem prompt or providing various levels of help are often 
encountered in spoken dialog systems. Two strategies 
that we would like to draw the reader’s attention upon 
are Yield and MoveOn. In the Yield strategy, the system 
remains silent, as if it did not hear the user’s response, 
and hence implicitly signals a communication problem. 
In the MoveOn strategy, the system ignores the problem 
altogether and tries to advance the task by moving on to 
a different question. Note that this is possible only at 
certain points in the dialog, where an alternative dialog 
plan for achieving the same goals is available. For in-
stance, in the case illustrated in Table 1, the MoveOn 
strategy gives up on trying to find whether the user 
wants a small or a large room, and starts suggesting 
rooms one by one. In other cases, the system would try 
to advance the dialog by using a simpler question, for 
instance asking “For which day do you need the room?”  
instead of “How can I help you?”   

Experimental design. The user study was de-
signed as a between-groups experiment, with two condi-
tions: control and wizard.  

Participants in the control condition interacted with 
a version of the RoomLine system which used an unin-
formed (random) policy to engage the non-understand-
ing recovery strategies: each time a non-understanding 
happened, the system randomly chose one of the ten 
available strategies.  

Participants in the wizard condition interacted with a 
modified Wizard-of-Oz version of the same system. In 
this version, each time a non-understanding happened a 
human wizard decided which one of the ten recovery 
strategies should be used. In all other aspects, this sys-
tem was identical with the system used in the control 
condition. The wizard had live access to the user’s 
speech. Several other system state variables were pre-
sented to the wizard via a graphical user interfaces (e.g. 
recognition result, confidence score, semantic parse). 
When a non-understanding occurred, the wizard se-
lected which strategy should be used through the GUI, 
and the decision was communicated back to the system. 
The wizard had to make this decision during a relatively 
short time interval (1-2 seconds) in order to maintain the 
illusion that the users were interacting with an autono-
mous system. A single wizard, the first author of this 
paper, was employed throughout the whole experiment. 
The wizard had very good knowledge of the system’s 
functionality and of the domain.  



The experimental design described above satisfies 
two needs. On one hand, we wanted to be able to com-
paratively evaluate the ten recovery strategies, when 
engaged in an uninformed fashion. This analysis can be 
performed based on data collected in the control condi-
tion, where the system randomly chooses which strategy 
to use. The results are discussed in detail in Sections 5 
and 6. At the same time, we wanted to verify whether or 
not a better policy for engaging the ten strategies (im-
plemented in this case by the human wizard) can sig-
nificantly improve performance. The results of this 
comparative analysis are presented in Section 7. 

At this point we would like to briefly comment on 
the decision to give the wizard full access to the live 
user speech. This puts the wizard in an apparently privi-
leged position when compared to a system that would 
have to make the same recovery decisions (e.g. the sys-
tem does not accurately know what the user says, espe-
cially during non-understandings). However, recall that 
our goal is only to show that a better recovery policy 
exists, and not to prove that this particular policy can be 

learned or implemented by the system. Without access 
to the user’s speech, the decision making task might 
have been too difficult for the wizard, especially given 
the response-time constraints. In this case, a negative 
result, i.e. the lack of detectable differences in the per-
formance of the two policies, would not be very infor-
mative. On the other hand, a negative result obtained 
when the wizard has full access to the user’s speech 
would cast more serious doubts about the existence of a 
better non-understanding recovery policy. 

Participants. 46 subjects, mostly undergraduate 
students and staff personnel on campus, participated in 
the data collection experiment. The participants had 
only marginal prior experience with spoken language 
interfaces (some of them had previously interacted with 
phone-based customer-service interactive systems). We 
randomly assigned the participants into two groups cor-
responding to the control and wizard conditions. At the 
same time, a balance was maintained between groups in 
terms of the participants’ gender and whether or not 
their first language was north-American English. 

 S:  Would you like a small room or a large one? 
U: [Non-Understanding] 

1 
AskRepeat (AREP) [system asks the user to repeat the non-understood utterance] 
S: Can you please repeat that? 

2 
AskRephrase (ARPH) [system asks the user to rephrase the non-understood utterance] 
S: Can you please try to rephrase that? 

3 
Reprompt (RP) [system repeats the previous prompt] 
S: Would you like a small room or a large room? 

4 
DetailedReprompt (DRP) [system repeats a more verbose version of the previous prompt] 
S: I’m sorry, I don’t think I understood you correctly. Right now I’m trying to find out if you would 
 prefer a small room or a large one. 

5 
Notify (NTFY) [system merely notifies the user that a non-understanding has occurred] 
S: Sorry, I’m not sure I understood what you said …  

6 
Yield (YLD) [system remains silent, and thus implicitly notifies the user that a non-understanding has occurred] 
S: Ø 

7 
MoveOn (MOVE) [system advances the task by moving on to a different question] 
S: Sorry, I didn’t catch that. One choice would be Wean Hall 7220. This room can accommodate  
 20 people and has a whiteboard and a projector. Would you like a reservation for this room? 

8 

YouCanSay (YCS) [system tell the user what he or she can say at this point in the dialog] 
S: Sorry, I didn’t catch that. Right now I’m trying to find out if you would prefer a small room or a  
 large one. You can say ‘I want a small room’ or ‘I want a large room’. If the size of the room  
 doesn’t matter to you, just say ‘I don’t care’. 

9 
TerseYouCanSay (TYCS) [a terser version of the YouCanSay strategy] 
S: Sorry, I didn’t catch that. You can say ‘I want a small room’ or ‘I want a large room’. If the size  
 of the room doesn’t matter to you, just say ‘I don’t care’. 

10 

FullHelp (HELP) [system provides a longer help message which includes an explanation of the current state 
of the dialog, as well as what the user can say at this point] 
S: I’m sorry, I don’t think I understood you correctly. So far I have found five conference rooms  
 available matching your constraints. Right now I’m trying to find out if you would prefer a small  
 room or a large room. You can say ‘I want a small room’ or ‘I want a large room’. If the size of  
 the room doesn’t matter to you, just say ‘I don’t care’. 

 

Table 1. Ten strategies for recovering from non-understandings 



Tasks and Experimental Procedure. Each par-
ticipant attempted a maximum of 10 scenario-based 
interactions with the system, within a set time period of 
40 minutes. The same 10 scenarios were presented in 
the same order to all participants. The scenarios were 
designed to cover all the important aspects of the sys-
tem’s functionality and had different degrees of diffi-
culty. To avoid language entrainment, the scenarios 
were presented graphically. Descriptions of the 10 sce-
narios as well as a concrete example of the graphical 
representation are available online (Bohus, 2005). 

After completing their interactions with the system, 
the participants filled in a SASSI questionnaire (Hone 
and Graham, 2000) containing 35 questions grouped in 
6 factors: response accuracy, likeability, cognitive de-
mand, annoyance, habitability, and speed. Additionally, 
participants were asked to describe what they liked 
most, what they liked least and what would be the first 
thing they would change in the system. 

2.2 Corpus Statistics and Annotations 

The corpus of dialogs collected in this experiment (in-
cluding both the control and wizard conditions) contains 
449 sessions and 8278 user turns. In Table 2 we present 
a number of additional descriptive statistics. Since pro-
nounced differences exist on a large number of metrics 
between native and non-native users, we also present 
the breakdown of the figures in these two populations. 

 
 Total Native Non-native 
# Subjects 46 34 12 
# Sessions 449 338 111 
# Turns 8278 5783 2495 
Word-error-rate 25.6% 19.6% 39.5% 
Concept-error-rate 35.7% 26.3% 57.6% 
% Non-understandings 17.0% 13.4% 25.2% 
% Misunderstandings 13.5% 9.8% 22.5% 
Task success rate 75.1% 85.2% 44.1% 

 

Table 2. Overall corpus statistics 
 
The user speech data was orthographically tran-

scribed by a human annotator, and subsequently 
checked by a second annotator. The transcriptions in-
clude annotations for various human and non-human 
noises in the audio signal. Based on these transcriptions, 
a number of additional annotations were created. At the 
turn level, we manually labeled: 

• Concept transfer and misunderstandings: each 
user turn was annotated with the number of con-
cepts that were correctly and incorrectly trans-
ferred from the user to the system; each turn with 
at least one incorrectly transferred concept was 
automatically labeled as a misunderstanding; 

• Transcript grammaticality: each user turn was 
manually annotated as either in-grammar, out-of-
grammar, out-of-application-scope or out-of-

domain (for a discussion, see Section 3); 
• User responses to non-understandings: the user 

response types following non-understandings 
were labeled using a tagging scheme first intro-
duced by Shin and Narayanan (2002); 

• Corrections: each turn in which the user was at-
tempting to correct a system understanding error 
was flagged as a correction, as in (Swerts et al, 
2000); 

At the session level, we labeled task completion. 

3 Sources of Understanding Errors 

We now turn our attention to the first question: what are 
the main sources of non-understandings, and what are 
their relative frequencies?  

While the main focus of this paper is on non-under-
standings, the analysis we present in this section covers 
sources of understanding errors in general, i.e. both 
misunderstandings and non-understandings. To avoid 
potential biases introduced by the wizard’s recovery 
policy, the analysis was conducted using only data from 
the control condition, where the recovery strategies 
were engaged in an uninformed fashion.  

We anchor our error source analysis in the ground-
ing model inspired by Clark (1996) and used by Paek 
and Horvitz (2000) in the Conversational Architectures 
project, illustrated in Figure 1. In this model, partici-
pants coordinate on 4 different levels to achieve mutual 
understanding in conversation. In the context of human-
computer interaction, the model also illustrates the flow 
of information from the user to the system. At the con-
versation level, the user has a high-level goal, which 
subsequently acquires a corresponding semantic, lexical 
and eventually an acoustic representation in the lower 
levels. The acoustic signal then passes through a noisy 
channel, and arrives at the system side. Here, a series of 
chained components (speech recognition, language un-
derstanding, and discourse interpretation) are used to 
progressively reconstruct the user’s higher level goal 

Conversation 

Intention 

Channel 

Signal 
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Repr. 

Channel 

Lexical 
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Semantic 
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User System 
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Figure 1. Grounding in communication 



from the incoming acoustic signal. 
Understanding errors typically occur due to mis-

matches at different levels between the expressed form 
of the user’s intent and the system’s modeling abilities. 
For example, at the conversation level, the user might 
not be aware of certain system limitations and might try 
to formulate a goal which the system cannot handle. In 
this case it will be impossible for the system to correctly 
reconstruct the user‘s goal, and we will have an under-
standing error. Similarly, at the signal level, mismatches 
between a user’s pronunciation style and the system’s 
acoustic models can lead to speech recognition errors, 
and ultimately to understanding errors. This view of 
understanding errors highlights two complementary 
approaches that can be used to mitigate the mismatches. 
One is to create models which can provide better cover-
age, while still maintaining good performance. The 
other is to steer the user’s responses into the space cov-
ered by the system’s models.  

Based on the level at which the mismatch occurs, we 
identify the following sources of errors:  

• Out-of-Application [Conversation Level]: The 
user’s utterance falls outside the application’s 
functionality. These errors can be further divided 
into out-of-domain utterances (e.g. the user asks 
the room-reservation system about the weather), 
and out-of-application-scope utterances, i.e. ut-
terances which express in-domain goals which 
the system is however not able to handle (e.g. the 
user asks if a conference room has windows); 

• Out-of-Grammar [Intention Level]: The user’s 
utterance is within the domain and scope of the 
application, but outside of the system’s semantic 
grammar (e.g. the user says “erase reservation” , 
which is not in the system’s grammar; the system 
could have handled the request had the user said 
“cancel reservation”  or “delete reservation” , 
which are in the system’s grammar); 

• ASR Error [Signal Level]: The user’s utterance 
is within the application’s domain, scope and 
grammar, but is not recognized correctly due to 
acoustic or statistical language modeling mis-
matches (e.g. the user says “Thursday morning”  
but this is misrecognized as “Friday morning”); 

• End-pointer Error [Channel Level]: The end-
pointer is not able to correctly segment the in-
coming audio signal (e.g. it truncates the utter-
ance or sends an empty utterance into the input 
line) 

Figure 2 illustrates the breakdown of non-under-
standings and misunderstandings by error source. The 
majority of errors originate at the Signal (i.e. speech 
recognition) level. At the same time, a large number of 
non-understandings, and a smaller but still significant 
number of misunderstandings are caused by out-of-
application and out-of-grammar utterances. 

The out-of-application errors encountered in our 
data consist almost entirely of out-of-application-scope 
utterances. These utterances are in-domain, but they 
refer to inexistent application functionality (the lack of 
out-of-domain utterances is most likely due to the sce-
nario-driven nature of the interactions). A closer inspec-
tion of these errors revealed that they subsume about an 
equal number of requests for inexistent task-level func-
tionality (e.g. “ I need a room for Monday or Tuesday”  – 
the system does not handle “or”  requests), and requests 
for inexistent meta functionality, such as “go back!”  or 
various types of corrections (e.g. “You got the wrong 
day!” , “Change the date!” , “The time is wrong” , etc).  

Together with the out-of-grammar utterances, the 
out-of-application utterances reflect one facet of an ex-
isting mismatch between user and system at the inten-
tion and conversation levels. A second interesting facet, 
revealed through an analysis of the transcripts, is that 
there are certain aspects of system functionality which 
are never (or very rarely) addressed by the users. For 
instance, although the users were told during the brief-
ing that they can say “Help”  to the system at any time, 
this function was invoked in only in 7 of 226 sessions. 
Other types of help commands like “where are we?” , 
“what can you do?” , “what can I say?” , “ interaction 
tips” , although available at all times were not discov-
ered by the users and therefore were never used. We 
found similar examples with respect to task-level func-
tionality, for commands like “ tell me all the rooms” , “ I 
want a smaller / larger room” , “ I don’ t care”  (about 
room size), “how big is this room” , “ tell me about this 
room” , etc. This reflects the fact that, apart from out-of-
grammar errors, users are also not aware of the full 
functionality of the application.  

The fairly large number of out-of-application and 
out-of-grammar utterances suggests that the number of 
non-understandings can potentially be reduced by better 
informing the users about the application capabilities 
and boundaries and steering them into this space. How 
exactly this shaping can be performed remains an open 
research issue (Tomko, 2004). We will return to this 
issue in our discussion from Section 9. 

The majority of non-understandings – 62% (and 
even more so for misunderstandings – 77%) originate at 
the speech recognition level. Here, a large number of 

Figure 2. Breakdown of non-understandings 
and misunderstandings by error source 
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contributing factors can be identified, but more precise 
blame assignment is harder to perform. For instance, 
non-native accents have a significant impact on ASR 
performance: average WER is 20.7% for natives, versus 
42.3% for non-natives. Ambient noises also have a pro-
nounced effect on recognition performance: average 
WER for noisy utterances is 32.8% > 25.1% for noise-
free utterances. Other factors, such as speaking rate, 
user frustration, hyper-articulation, have been showed to 
correlate with recognition accuracy (Choularton, 2005). 

Rejections. The discussion so far has focused on 
genuine non-understandings, i.e. situations in which the 
system was not able to extract any meaningful informa-
tion from the user’s turn. However, our dialog manager 
also uses a rejection mechanism to guard against poten-
tial misunderstandings: if the system has obtained an 
interpretation of the user’s input, but the confidence 
score is below a preset threshold, then the utterance will 
be rejected by the dialog manager. These rejected utter-
ances will also appear as non-understandings at the dia-
log management level. Figure 3 illustrates the ratios of 
non-understandings and misunderstandings, as com-
puted before and after the rejection mechanism. After 
rejections, the total ratio of non-understandings grows 
by 7.1% absolute from 10.1% to 17.2%. About 40% of 
the rejections (2.9% of the total number of turns, and 
17% of the total number of non-understandings) are 
false-rejections, i.e. utterances correctly understood but 
falsely rejected because of a low confidence score. The 
relatively high false rejection rate contributes signifi-
cantly to the total number of non-understandings, on par 
with other sources of errors. The false-rejection rate can 
be lowered by building better confidence annotators, or 
by tuning the rejection threshold to the domain. In (Bo-
hus and Rudnicky, 2005), we describe a data-driven 
method for optimizing the rejection process in light of 
domain and dialog-state-specific tradeoffs.  

4 Impact of Non-understandings on  
Dialog Performance 

We now turn our attention to the second question: what 
is the impact of non-understanding errors on global 

dialog performance? Again, we only used the data from 
the control condition in our analysis.  

To address this question, we constructed a logistic 
regression model (Myers et al., 2001) which relates the 
frequency of non-understandings in a dialog to the 
probability of task success. The same approach can be 
used for studying the impact on other global perform-
ance metrics.  

)(1

1
)1(

FNONe
TSP ⋅+−+

== βα   

The independent variable is the frequency of non-
understandings in a session (FNON), and the dependent 
variable is the binary task success indicator (TS). Each 
data-point corresponds to an entire dialog session.  

We fitted a model using 205 dialog sessions. Ses-
sions with less than 3 turns and sessions with differ-
ences between perceived and objective task completion 
were eliminated. The fitted model increased the average 
data log-likelihood from the majority baseline of -
0.5200 to -0.4306 (p<10-4 in a likelihood-ratio test), 
indicating that there is indeed an effect of the frequency 
of non-understandings on task success. Figure 4 illus-
trates the expected probability of task success, as pre-
dicted by the model. The plot shows that when the 
frequency of non-understandings is between 0%-10%, 
the impact on task success is relatively minor. However, 
as the frequency of non-understandings exceeds 10%, 
the expected probability of task success starts to drop 
faster: an increase of the frequency of non-understand-
ings from 10% to 30% reduces the expected chance of 
success from 90% to 52%. 

Apart from non-understandings, misunderstandings 
represent a second important contributor to breakdowns 
in interaction. To assess the relative costs of these two 
types of errors with respect to task success, we extended 
the model described above to include the frequency of 
misunderstandings as a second independent variable 
(FMIS). As expected, the new model predicts task suc-
cess even better: the average log-likelihood of the data 
was further increased to -0.2795 (p<10-4). The estimated 
regression coefficients, together with their associated 
standard errors and p-values are illustrated in Table 3. 
The resulting average cost for misunderstandings  
(-16.62) is 2.24 times higher than the average cost for 
non-understandings (-7.41). The result confirms that the 
rule-of-thumb that “misunderstandings cost twice as 
much as non-understandings” holds in our domain. 
While the relative costs of these errors can vary across 
different domains, and even across different dialog 
states within the same system, the proposed regression 
approach can be used to establish these costs in a prin-
cipled manner (see also Bohus and Rudnicky, 2005). 

Finally, we analyzed the impact of recovery rate on 
task success. We say that a strategy has successfully 
recovered from a non-understanding if the following 

Figure 3. Misunderstandings and non-
understandings before and after rejections 
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user turn is correctly understood by the system (i.e. it is 
not a non-understanding and it is not a misunderstand-
ing). The average non-understanding recovery rate is 
then defined as the ratio of successful recoveries, with 
respect to the total number of attempts to recover. 
Again, a significant effect on task success was detected 
(p<10-4). The dependence is illustrated in Figure 5. As 
this figure shows, the impact of the recovery rate on 
performance is greatest when the recovery rate is below 
60-70%, and becomes less significant as we pass that 
limit.  

While it is to be expected that non-understandings 
and the associated recovery rate have an effect on global 
performance, the analyses that we have performed quan-
tify this effect and provide useful information for focus-
ing future efforts. In our domain, they indicate that 
further improvements in the non-understanding recov-
ery rate are likely to translate into significant increases 

in task success, especially for the non-native user popu-
lation, where 26.3% of the turns are non-understandings 
and the recovery rate is only 39.3%. 

5 Performance of Non-understanding  
Recovery Strategies  

We now turn our attention to the third question: how do 
the ten strategies compare with each other in terms of 
recovery performance? 

We computed the non-understanding recovery rate 
(as defined in the previous section) for each of the ten 
recovery strategies. The analysis is again performed 
only using the data collected in the control condition of 
our experiment. In this condition, the recovery strategies 
were engaged in an uninformed (random) fashion, and 
therefore they were on an equal footing. Figure 6 illus-
trates the resulting performance of each strategy, and 
the 95% confidence intervals for these estimates.  

An overall analysis of variance for binary response 
variables (logistic ANOVA) revealed that there are sta-
tistically significant differences between the mean re-
covery rates of the 10 strategies (p=0.000035). Next, we 
used logistic ANOVAs to compare each pair of strate-
gies individually. In each of these ANOVAs, we added 
the nativeness indicator as a factor in the model (since 
performance varies considerably between native and 
non-native users). The results are illustrated in Table 4, 
where each cell contains the ratio of the recovery rates 
between the strategies in the corresponding row and 
column. The resulting p-values (corresponding to the 
effect of strategy on recovery rate, when accounting for 
nativeness) were corrected for multiple comparisons 
using the false-discovery-rate method (Benjamini and 
Hochberg, 1995). This method allows us to compute the 
expected rate of false detections among the detected 
significant differences. The false-discovery-rate (FDR) 
for each result is illustrated by the shade of gray. For 
instance, we expect that 5% of the 10 cells with 
FDR=0.05 are actually not significant differences. 
While significant differences cannot be established for 
every strategy pair, the detected differences allow us to 
identify a partial ordering. 
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 Coefficients S.E. p-value 
Const 5.28 0.70 < 0.0001 
FNON -7.41 2.09 0.0004 
FMIS -16.62 2.74 < 0.0001 

 

Table 3. Regression coefficients for a task success 
model using the frequency of non-understandings 

and misunderstandings as the independent variables 
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The MoveOn, Help and TerseYouCanSay strategies 
occupy the top 3 positions, with no statistically signifi-
cant differences detectable between them. In retrospect, 
this result is not surprising.  A number of studies 
(Swerts et al., 2000; Rotaru and Litman, 2005) have 
shown that once an error has occurred, the likelihood of 
having an error in the next turn is significantly increased 
(our data also confirms this result). As we go deeper 
into a spiral of errors, patience runs out, frustration is 
likely to increase, and the acoustic and language mis-
matches are likely to become more pronounced. More-
over, the fact that there was a non-understanding in the 
first place indicates that the system is in a difficult posi-
tion in terms of decoding the current user intention. 
When the system abandons the current question and 
attempts to solve the problem by using a different dialog 
plan, these effects are likely to be attenuated, and 
chances of correct understanding become higher. Simi-
larly, when the system provides help including sample 
responses for the current question, the users might find 
better ways (from a system’s perspective) to express 
their goals, or they might find out about other available 
options for continuing the dialog from this point.  

The high performance of the MoveOn strategy is 
consistent with prior evidence from a wizard-of-oz 
study of error handling strategies (Skantze, 2003). 
Skantze’s study has revealed that, unlike most spoken 
dialog systems, human wizards often did not signal the 
non-understandings to the user when they occurred. 
Instead, they asked different task-related questions to 
advance the dialog. This strategy generally led to a 
speedier recovery. In the RoomLine system, the 
MoveOn strategy implements this idea in practice, and 
the observed performance confirms the prior evidence 
from Skantze’s study. Although not surprising, we do 
find this result very interesting, as it points towards a 
road less traveled in spoken dialog system design: when 
non-understandings happen, instead of trying to repair 
the current problem, use an alternative dialog plan to 

advance the task.  
The next three strategies – Reprompt, YouCanSay 

and AskRephrase, form a second tier, all having a statis-
tically better recovery rate than the last 4 strategies. 
Finally, no significant differences could be detected in 
terms of recovery rate between the last four strategies: 
DetailedReprompt, Notify, AskRepeat and Yield.  

6 User Responses to Non-understanding 
Recovery Strategies 

We now move on to the fourth question: what are the 
relationships between each strategy and subsequent 
user behaviors, and which behaviors are more likely to 
lead to successful recovery. Like before, the analysis is 
based on data from the control condition, where the 
strategies were engaged in an uninformed fashion. 

To perform this analysis, we annotated each user 
turn that followed a non-understanding according to a 
tagging scheme for error segments introduced by Shin 
(2002), and subsequently used by others (Choularton 
and Dale, 2004; Raux et al, 2005). Like Choularton and 
Dale (2004), we used an abbreviated version of the 
original scheme, containing 5 labels: repeat – when the 
user is repeats the previous utterance identically, re-
phrase – when the user rephrases the same semantic 
content in a different lexical manner, change – when the 
user changes the semantic concepts with respect to the 
previous utterance, contradict – when the user contra-
dicts the system, often as a barge-in and other – sub-
sumes response types which do not fall in any of the 
previous categories (e.g. hang-ups, timeouts, etc.)  

Figure 7 shows the overall distribution of user re-
sponse types in our dataset. As a reference, we also 
show the user response type distributions found by Shin 
in an analysis of the Communicator corpus, and Chou-
larton and Dale in an analysis of a deployed system for 
ordering pizza. Note however that a direct comparison 
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MoveOn MOVE 64.4% - 1.10 1.14 1.31 1.33 1.35 1.71 1.80 1.91 2.06 
FullHelp HELP 58.5% - - 1.03 1.19 1.20 1.22 1.55 1.64 1.73 1.87 
TerseYouCanSay  TYCS 56.5% - - - 1.15 1.16 1.18 1.50 1.58 1.68 1.81 
Reprompt RP 49.2% - - - - 1.01 1.03 1.31 1.38 1.46 1.58 
YouCanSay YCS 48.6% -   -  1.02 1.29 1.36 1.44 1.55 
AskRephrase ARPH 48.6% - - - - - - 1.27 1.34 1.42 1.53 
DetailedReprompt DRP 37.7% - - - - - - - 1.06 1.12 1.21 
Notify NTFY 35.7% - - - - - - - - 1.06 1.14 
AskRepeat AREP 33.7% - - - - - - - - - 1.08 
Yield YLD 31.2% - - - - - - - - - - 

 

Table 4. Comparison of non-understanding recovery rates; the cells show the ratio of the non-
understanding recovery rate between the strategy in the corresponding row and column; the shading indi-

cates the false-discovery-rate level (FDR=0.15  FDR=0.10  FDR=0.05) 
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between these experiments is not valid since we only 
considered the user responses which followed a non-
understanding (as opposed to throughout any error seg-
ment). The distribution of user response types we ob-
served is nonetheless similar to previous studies. When 
faced with non-understandings, users tend to rephrase 
(~45%) more than repeat (~20%). A notable difference 
in the distribution appears between the change and con-
tradict user response types. The fact that we only con-
sidered turns following non-understandings potentially 
explains the absence of contradicts (which happen 
mostly when a system misunderstands), while the large 
number of change responses is introduced by the 
MoveOn strategy - see Figure 8 and also additional plots 
available on-line (Bohus, 2005). While in Shin’s study 
of the Communicator data a lot of change responses 
occurred as users were changing their travel plans to go 
around weaknesses in the system, this is not the case in 
this data. Participants in our study were compensated 
according to the number of scenarios they managed to 
complete successfully, and the change responses repre-

sent valid contributions to the dialog, within the con-
fines of the given scenarios. 

Next, we analyzed the impact of strategies on user 
response types. The results are presented in Figure 8. 
An auxiliary three dimensional representation of the 
strategies in the space of user response types is available 
online (Bohus, 2005). The results indicate that AskRe-
peat leads to the largest number of repeat responses 
(31%); the MoveOn strategy leads to the largest number 
of change responses (52%); the AskRephrase and Notify 
strategies lead to the largest number of rephrase re-
sponses (64%). While there is clearly an effect of strat-
egy on user response types, the numbers shown above 
are not extremely large. Under the assumption that cer-
tain types of user responses are more desirable in certain 
circumstances, these results raise the question of 
whether the user response types can be controlled even 
more, for instance by using a more aggressive prompt-
ing style (e.g. “Could you repeat what you just said?” 
instead of “Can you please repeat that?”) 

Finally, we analyzed which type of user responses 
are more likely to lead to recovery. Figure 9 shows the 
recovery rate for each user response type. The best re-
covery performance is attained on change responses 
(63%). Together with the large number of change re-
sponses on the MoveOn and help strategies, this result 
corroborates the high performance of these strategies, 
and the discussion from the Section 5. Somewhat sur-
prisingly, we were not able to establish a statistically 
significant difference between the recovery rates of user 
repeat and rephrase responses. In this respect, our re-
sults conflict with prior studies which have shown that 
user rephrases are better recognized and more likely to 
lead to recovery (Goldberg et al, 2003). Moreover, the 
same analysis performed on the sessions collected in the 
wizard condition (recall that in this case a human wizard 
decided which strategy should be engaged to recover) 
shows that in that case repeat  responses were actually 
significantly better recognized than rephrase responses. 
Briefly, we believe this last result is explained by the 
fact that the wizard made intensive use of the AskRepeat 
strategy, when this strategy was appropriate; this in turn 
boosted the overall number as well as recovery per-
formance of repeat responses.  

Given these observations, we conclude this section 
on a cautionary note: while informative, results regard-
ing the performance of various strategies and user re-
sponses do not necessarily generalize across domains. 
The success of various types of user responses can be 
strongly influenced by a number of factors such as the 
nature of the task, the user population, as well as the 
policy used to engage the strategies. We believe that the 
solution for successful recovery lies in endowing spo-
ken dialog systems with the capacity to dynamically 
adjust their error handling behaviors to the specific 
characteristics of the domains in which they operate. 



7 The Effect of Recovery Policy on Per-
formance: Wizard versus Uninformed 

So far we have concentrated our attention on the func-
tion and performance of individual recovery strategies. 
In the two remaining sections we will shift our focus to 
the non-understanding recovery policy. The recovery 
policy describes which strategy should be used in each 
situation.  

Ultimately, our goal is to endow spoken dialog sys-
tems with the ability to automatically learn good recov-
ery policies from their own experience. Our starting 
point is the hypothesis that the performance of various 
recovery strategies can be improved by engaging them 
at the right time, i.e. by using a good recovery policy. 
For example, asking the user to repeat is not a good 
course of action if the non-understanding was the result 
of an out-of-grammar utterance. In contrast, if the non-
understanding was caused by a transient noise (e.g. a 
door slam), asking the user to repeat is probably more 
likely to succeed. 

As a first step, we therefore wanted to confirm this 
hypothesis: can dialog performance be improved by 
using a better, more informed policy for engaging 
non-understanding recovery strategies? Its validity is 
not as obvious as it might seem. The performance of the 
error recovery process is a product of both the set of 
available strategies and the policy used to engage them. 
If the set of strategies does not provide good coverage 
for the types of problems we encounter, a good policy 
will fail to significantly increase performance. Should 
this be the case, our efforts would probably be better 
focused on developing more (and different) recovery 
strategies, rather than trying to learn a better policy. 

To find an answer for the question raised above, we 
compared the performance of the wizard’s recovery 
policy against the performance of the uninformed pol-
icy. Recall that the wizard had access to more informa-
tion than a system would have at runtime, and therefore 
the detection of a performance gap between the policies 
does not prove that the wizard’s policy is also attainable 
for a system; it only proves that a better policy exists 
(see discussion in subsection 2.1). We start by describ-
ing the dialog performance metrics we used in the com-
parison in subsection 7.1, and we present the results of 
the comparison in subsection 7.2. Finally, in subsection 
7.3 we analyze the effect of the wizard policy on the 
performance of the individual non-understanding recov-
ery strategies.  

7.1 Performance Metrics 

To evaluate global dialog performance we used two 
metrics: task success and user satisfaction. Task suc-
cess was defined as a binary variable for each of the 10 
scenarios performed by a user. User satisfaction was 

expressed on a 1-7 Likert scale, and was elicited 
through a post-experiment questionnaire. The user satis-
faction score corresponds therefore to the overall ex-
perience the user had with the system. 

Apart from global dialog performance, we also 
wanted to assess the impact of the wizard policy on lo-
cal non-understanding recovery performance. To our 
knowledge no traditional, well-established metrics exist 
in the community for performing this type of evaluation. 
We therefore constructed a number of metrics which we 
describe below. Each of these metrics evaluates various 
characteristics of the user response following the sys-
tem’s attempt to recover from a non-understanding.  

The first metric, which we have already introduced 
in Section 4, was recovery rate. To compute this metric, 
we simply look at whether the next user turn following a 
system attempt to recover is correctly understood or not. 
If the next turn is correctly understood (i.e. it is not a 
misunderstanding and it is not a non-understanding), 
then we say that the system has successfully recovered. 
Average recovery rate is then simply defined as the 
number of successful recoveries with respect to the total 
number of attempts to recover. The underlying variable 
in this metric is binary - the next turn is either correctly 
understood or not. The metric therefore does not take 
into account the magnitude or costs of potential errors. 
Nevertheless, this metric provides a first order estimate 
of recovery performance and (because of low variance) 
is especially useful when we have only a small number 
of samples to evaluate from.  

A second metric we considered was recovery word-
error-rate. Instead of looking at whether the next turn is 
correctly understood or not, we compute and average 
the word-error-rate for the user turns following non-
understanding recovery attempts. This metric captures 
in more detail the magnitude of the speech recognition 
errors in the user responses. However, in a spoken dia-
log system we are interested in the correctness of con-
cepts acquired by the system rather than the correctness 
of the recognition process per se.  

The third metric we used, recovery concept utility, 
operates at the concept level. This metric takes into ac-
count the number of concepts that are correctly and in-
correctly acquired by the system, as well as their 
relative utilities. The metric is computed as follows: 

CU = UtilCC ·CC + UtilIC ·IC 
where CC is the number of concepts that are correctly 
acquired by the system from the user’s response, and IC 
is the number concepts that are incorrectly acquired 
from that turn. UtilCC and UtilIC are weighting factors 
for the correctly and incorrectly acquired concepts and 
are obtained through a logistic regression model which 
relates the average number of correctly and incorrectly 
acquired concepts per turn to overall task success. A 
model constructed with in-domain data showed that 



UtilCC = +7.81, and Util IC  = -7.19. For the interested 
reader, the methodology for deriving these costs is de-
scribed in more detail in (Bohus and Rudnicky, 2005). 
Because it takes the domain-specific costs for correct 
and incorrect concepts into account, we consider this 
metric more appropriate than the traditional concept-
error-rate.  

Finally, the last metric we considered was recovery 
efficiency. This metric goes one step further than the 
recovery concept utility, and also normalizes for the 
amount of time spent by the system during the recovery 
strategy. The motivation behind this metric is that some 
recovery strategies use shorter prompts than others, and 
therefore might succeed (or fail) faster. To normalize 
for the amount of time spent during recovery, we com-

pute the number of concepts (correct and incorrect) we 
would expect the system to acquire on average during 
that time interval. We then subtract these numbers from 
the number of correct and incorrect concepts we did 
actually acquire in the next user turn. The formula for 
this metric is: 

RE = UtilCC ·(CC - t·rcc) + UtilIC ·(IC - t·ric) 
where t is the time elapsed between the original non-
understanding and the next user turn, and rcc (and ric) 
are the average rates (per second) of acquiring correct 
(and incorrect) concepts during non-understanding re-
covery segments. In other words, during the amount of 
time t the system spent in its attempt to recover, we 
would expect to obtain on average t·rcc correct concepts 
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Figure 10. Performance comparison between the wizard and the uninformed recovery policy  
(* marks a statistically significant difference at p < 0.05) 

Wizard Policy 

Control Policy 

Lower is better 

Metric Overall Wizard vs Uninformed Wizard vs Uninformed 
(only natives) 

Wizard vs Uninformed 
(only non-natives) 

Task Success (%)  (a) 75.1 78.5 � 71.7 85.2 � 85.2  57.4 > 31.6 
User Satisfaction (1-7) (b) 3.93 3.87 � 4.00 4.29 � 4.47 2.67 � 2.67  

Recovery rate (%) (c) 48.7 50.1 � 46.5 61.0 � 56.4 37.9 � 34.4 
Recovery word-error-rate (%) (d) 38.9 35.4 < 44.5 26.6 < 35.7 46.4 < 55.7 
Recovery concept utility (e) 2.80 3.01 � 2.58 4.13 � 4.12 1.62 > 0.63 
Recovery efficiency (f) 0.41 0.81 > 0.00 1.74 � 1.50 -0.34 > -1.90 

 

Table 5. Performance comparison between the wizard and the uninformed recovery policy  
(shaded cells mark differences that are significant at p < 0.05) 



and t·ric incorrect concepts. We subtract these from the 
actual number of correct (CC) and incorrect (IC) con-
cepts we obtained in the user response, and then we take 
the corresponding utilities into account.  

7.2 Results 

The results of the comparison are shown in Table 5 and 
illustrated in Figure 10 (a)-(f). Since performance varies 
considerably between the native and non-native users, 
we present the breakdown of the differences in these 
two populations. In Table 5, the second column shows 
the overall performance (both groups together); the third 
column shows the overall differences between the wiz-
ard and the control conditions, while columns 4 and 5 
show the differences between conditions within the na-
tive and non-native populations. The shaded cells mark 
differences that are statistically significant at a p-value 
smaller than 0.05. To test for statistical significance we 
used t-tests when comparing proportions (e.g. task suc-
cess or recovery rate), and non-parametric Mann-
Whitney U-tests for the other continuous-valued metrics 
(their values are not normally distributed). 

As Figure 10 and Table 5 illustrate, an overall pat-
tern emerges. The wizard policy does indeed lead to 
statistically significant performance improvements on a 
number of metrics, but the improvements appear mostly 
within the non-native population, i.e. in the group of 
users that had more difficulties using the system.  

For instance, while no task success improvement can 
be detected for native users, there is a large task success 
improvement for non-native users (see Figure 10-a). 
The average task success rate grows from 31.6% in the 
control condition to 57.4% in the wizard condition. This 
increase bridges half of the original performance gap 
between native and non-native users in the control con-
dition. Despite this increase in task success rate, no sta-
tistically significant differences can be detected with 
respect to user satisfaction (Figure 10-b); the small 
number of samples we have (one per user) and the large 
variance of this metric lead to wide confidence bounds 
on the mean estimates and preclude a reliable compari-
son. Nevertheless, the same trend of larger, statistically 
significant improvements for the non-native users is 
observed again on the local recovery performance met-
rics (Figure 10.c-f). Statistically significant improve-
ments can be detected in the non-native population for 
three of these metrics: recovery word-error-rate, recov-
ery concept utility, and recovery efficiency.  

We believe the explanation for the observed result 
lies in the simple fact that it is easier to improve per-
formance when performance is low (in our case, for the 
non-native users). This result also confirms our conjec-
ture from Section 4: improvements in non-understand-
ing recovery performance do indeed translate into sig-
nificant increases in task success for the non-native 
population.  

7.3 Effect of Policy on Individual Recovery Strat-
egy Performance 

Next, we analyzed the effect of the policy on the per-
formance of individual recovery strategies. Our original 
hypothesis was that, if the strategies are engaged “at the 
right time”, their performance would improve. 

Figure 11 shows the number of times each non-
understanding recovery strategy was engaged by the 
wizard. Figure 12 shows the recovery rate for each of 
the ten strategies, under the two different conditions. 
We were able to establish a statistically significant dif-
ference (p=0.0023, or p=0.023 Bonferroni corrected for 
multiple comparisons (Savin, 1980)) only for the Ask-
Repeat strategy. AskRepeat is however the strategy most 
often engaged by the wizard. While this strategy ranked 
9th when engaged in an uninformed fashion, its per-
formance improved considerably from 33.7% to 53.0% 
under the wizard policy and is on par with the other top-
performing strategies such as giving help (TerseYou-
CanSay and Help) or advancing the task by asking a 
different question (MoveOn). The same improvement in 
the AskRepeat strategy was also detected on the other 
three recovery performance metrics.  

This result shows that strategy performance can in-
deed be improved by the use of a better recovery policy. 
At the same time, the lack of detectable differences in 
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the other strategies is somewhat disappointing. In retro-
spect, this result might be explained by the fact that the 
decision task the wizard had to perform was quite diffi-
cult, even with access to the full audio signal. To main-
tain the illusion that users were interacting with an 
autonomous system, the wizard had to choose one of ten 
recovery strategies in a very short time interval: 1 to 2 
seconds. This selection task is easier for some of the 
strategies than for others. Furthermore, a number of 
strategies, such as YouCanSay, Reprompt, and Detaile-
dReprompt, were very rarely engaged by the wizard and 
as a result the confidence intervals on their performance 
estimates are very wide, and preclude accurate compari-
sons.  

8 Towards Learning a Recovery Policy  

In the previous section we have established that signifi-
cant improvements in performance can be achieved by 
using a better policy with the current set of strategies. In 
this section we present a set of preliminary results on 
the problem of learning such a policy from data. 

We take a simple, decision-theoretic approach. First, 
we learn to predict the likelihood of success for each 
non-understanding recovery strategy from features 
available at runtime. Then, to implement a policy, we 
compute the expected utility for each strategy (taking 
into account the probabilities and costs for success and 
failure), and select the strategy with the maximum ex-
pected utility.  

In subsection 8.1, we describe the construction of 
predictors for the likelihood of success of each strategy. 
Next, in subsection 8.2 we discuss two recovery policies 
based on these predictors. 

8.1 Predicting the Likelihood of Success for Non-
understanding Recovery Strategies 

We use logistic regression models to develop runtime 
predictors for the likelihood of success of each non-
understanding recovery strategy.  

Data. As training data, we use the turns in which a 
non-understanding occurred and the strategy we are 
interested in was engaged. The training target value is 
the success or failure of the strategy in that particular 
case. Success is defined as “the next user turn is cor-
rectly understood by the system”. 

Note that for learning we only use data collected in 
the control condition, where the non-understanding re-
covery strategies were engaged in an uninformed fash-
ion. The wizard policy might introduce a potential bias 
in the distribution of features, which can negatively af-
fect learning and generalization. For instance, if the 
wizard never used the AskRepeat strategy when the 
number of words in the original non-understood utter-
ance was very large, we will never encounter that set of 

circumstances, or see how the AskRepeat strategy be-
haves under those conditions. In this case, the distribu-
tion of the number_of_words feature might be skewed 
towards small values, and that might negatively affect 
the learning process.  

Given the relatively large number of different recov-
ery strategies in the system (10), the number of avail-
able instances to learn from is fairly small – about 60 to 
70 invocations per strategy. The small number of sam-
ples further complicates an already difficult learning 
problem, since we face a relatively high risk of over-
fitting the training data.  

Features. We identified a large number of features 
available at runtime which could carry information 
about the likelihood of success for various non-under-
standing recovery strategies. The features are collected 
from different levels of processing in the spoken dialog 
system. For instance, from the speech recognition level 
we collected various features characterizing the current 
non-understood utterance: the number of words, the 
signal and noise levels, the number of and proportion of 
words tagged as unconfident by the speech recognizer. 
Similarly, from the language understanding level we 
collected various features reflecting the quality of the 
parse. From the dialog management level we used in-
formation about the dialog state, as well as the history 
of the dialog up to that point (e.g. how many previous 
consecutive non-understandings we encountered, what 
was the average confidence score so far, etc.) 

As a first measure to guard against over-fitting, we 
transformed continuous features into binary features by 
using a preset threshold. Furthermore, we eliminated 
features that had small class-conditional counts. The 
remaining set of features which was used in training is 
available as an online appendix (Bohus, 2005). 

Models. Since we are interested in predicting the 
expected likelihood of success for each strategy (rather 
than a binary success or failure), we decided to use 
stepwise logistic regression models. These models are 
simple, easy to build and incorporate a mechanism for 
feature selection. Moreover, as opposed to a number of 
other discriminative classifiers, logistic regression pro-
vides good class posterior probability scores (e.g. esti-
mates for the likelihood of success).  

In stepwise logistic regression, features (variables) 
are added to the model one by one, as long as they in-
crease the likelihood of the data. A feature is accepted 
in the model if it produces a data likelihood increase 
that is statistically significant with a p-value below a 
preset P-accept. At the same time, in each step features 
already in the model are tested for exclusion. A feature 
is rejected if the resulting model is not significantly 
worse, as determined by a preset P-reject. In our case, 
we set P-accept=0.05 and P-reject=0.30. Finally, as a 
second preventive measure against over-fitting, we 
evaluated the model after each regression step using a 



leave-one-out procedure and stopped adding features as 
soon as the average data likelihood in the leave-one-out 
evaluation decreased.  

Results. We fitted ten step-wise logistic regression 
models, one for each strategy. The results are illustrated 
in Table 6. For 5 of the 10 strategies we can build mod-
els which perform better than a majority baseline, on 
both a soft (average log-likelihood) and hard (binary 
classification) error metric. For the last three models in 
Table 6 no features ever entered the regression. In this 
case the constructed predictors simply predict a prob-
ability of success equal to the majority baseline in the 
training data. In general, the performance of the indi-
vidual predictors is not very good, but this is not sur-
prising given the small number of training instances, the 
reduced number of features used, and difficulty of the 
prediction task (we are trying to predict in advance 
whether or not the next turn is correctly understood, 
without any information from that turn.)  

8.2 Policies for Recovery 

If we can predict for the likelihood of success of each 
non-understanding recovery strategy, a recovery policy 
is easy to construct: we simply choose the action with 
the maximum expected utility: 

�
 = argmax {  PSUCC(S) · USUCC(S) +  

 PFAIL(S) · UFAIL(S) } 
where PSUCC(S) is the estimated probability of success 
for strategy S, PFAIL(S) = 1 - PSUCC(S) is the probabil-
ity of failure, and USUCC(S) and UFAIL(S) are the utili-
ties of success and failure for strategy S.  

We defined two policies. The first policy (max-
recovery-rate) aims to maximize the recovery rate by 
choosing the strategy with the maximum likelihood of 
success. This is equivalent to using the values USUCC=1 
and UFAIL=0 as the utilities for success and failure. The 
second policy (max-recovery-efficiency) aims to maxi-
mize the recovery efficiency, as defined in subsection 
7.1. In this case USUCC(S) is the average recovery effi-

ciency of strategy S when S was successful (i.e. the 
next turn is correctly understood), while UFAIL(S) is the 
average recovery efficiency of strategy S when S failed.  

To obtain a preliminary estimate for the perform-
ance of these policies, we looked at what happened in 
the data from the wizard condition, when the wizard 
happened to make the same decisions as our learned 
policies would have made. Since the MoveOn strategy 
was not available at all points in the dialog, we elimi-
nated it from the learned policies in this analysis (this is 
a simple way to avoid the policy deciding to engage the 
MoveOn strategy when it is not available). The results 
show that, within the subset of instances where the wiz-
ard made the same decision as the max-recovery-rate 
policy, the recovery rate performance was 69.8%. At the 
same time, the wizard’s overall recovery rate (through-
out the whole wizard dataset) was significantly lower – 
50.1%; the overall recovery rate with the uninformed 
policy from the control group was 46.5%1. Similarly, on 
the instances where the wizard agreed with the max-
recovery-efficiency policy, the recovery efficiency per-
formance was 2.02, significantly larger than the overall 
wizard recovery efficiency (0.81), and the uninformed 
policy recovery efficiency (0.00).  

While we view these results as promising, we would 
like to point out a potential problem in this type of 
evaluation. Given that both the wizard and the learned 
policy strive to maximize performance, the distribution 
of the subset of non-understandings where they agree 
might not be representative for the true distribution of 
non-understandings – these might be the cases where 
it’s easier to tell which strategy should be used to re-
cover. Ultimately, a new user study where the system 
runs with the learned policy is required in order to 
robustly evaluate its performance.  

                                                           
1 If we also eliminate the MoveOn strategy from the as-

sessment of the overall wizard and control performance, the 
numbers become 46.6% for the wizard condition and 44.0% 
for the control condition.  

Average data log-likelihood Hard error rate (%) Strategy # training 
instances 

Majority 
Baseline 

Leave-one-
out perf. 

Avg. log-lik. 
increase 

Majority 
Baseline 

(error rate) 

Leave-one-
out perf. 

(error rate) 

Relative 
reduction in 
error rate 

DetailedReprompt 61 -0.6626 -0.6330 0.0296 37.7% 34.4% 8.7% 
Reprompt 67 -0.6930 -0.6645 0.0286 49.2% 32.8% 33.3% 
TerseYouCanSay 46 -0.6846 -0.6576 0.0270 43.5% 32.6% 25.0% 
MoveOn 90 -0.6508 -0.6357 0.0151 35.6% 30.0% 15.6% 
YouCanSay 70 -0.6927 -0.6729 0.0199 48.6% 34.3% 29.4% 
AskRepeat 89 -0.6391 -0.6389 0.0002 33.7% 33.7% 0.0% 
Help 65 -0.6788 -0.6776 0.0012 41.5% 46.1%  -11.1% 
AskRephrase 67 -0.6921 - - 47.8% - - 
Notify 56 -0.6518 - - 35.7% - - 
Yield 64 -0.6211 - - 31.2% - - 

 

Table 6. Performance of success predictors for the 10 non-understanding recovery strategies 



9 Conclusion 

The work described in this paper is part of a larger re-
search program (Bohus, 2004) aimed at endowing spo-
ken dialog systems with better error handling capabili-
ties. In an effort to shed more light on non-understand-
ings, we performed an empirical analysis of these errors 
and ten associated recovery strategy, based on a corpus 
of dialogs collected with a mixed-initiative spoken dia-
log system for making conference room reservations. 

An error source analysis has confirmed that a large 
number of non-understandings (and misunderstandings) 
can be blamed on speech recognition errors. Neverthe-
less, a significant number of non-understandings 
(~30%) stem from requests for inexistent application 
functionality, user corrections, and out-of-grammar ex-
pressions. At the same time, users are not always aware 
of the full functionality provided by the system. We 
believe these language-domain errors can be addressed 
by better steering the users into the application’s space. 
In this vein, we plan to explore more carefully the de-
sign and use of you-can-say help messages. Currently 
these messages inform users about possible ways to 
answer the current question. In the future, we plan to 
investigate the possibility of providing information 
about other options available at this point in the dialog. 
This raises an interesting design issue, since the number 
of different options available to the user can be fairly 
large in a mixed-initiative spoken dialog system. A tar-
geted-help approach (Gorrell et al., 2002) may provide a 
potential solution to this problem. A second path we 
intend to explore is issuing you-can-say messages pre-
emptively (e.g. without waiting for a non-understanding 
to happen) if we can detect that the user belongs to a 
“problematic” population such as non-native speakers, 
first time users, etc. 

We have also confirmed that non-understandings 
exert a negative impact on task success, and we have 
quantified this impact. Models discussed in Section 4 
revealed that the effect of non-understandings on task 
success is marginal when the frequency of non-
understandings is below 10-15%, but increases fast after 
that. Similarly, we found that the effect of the non-
understanding recovery rate on performance is greatest 
when the recovery rate is below 60-70%, and smaller 
once we are above that limit. While the specific num-
bers might differ across applications and domains, we 
expect that the nature of the relationship remains simi-
lar. The type of analysis we presented in Section 4 can 
provide useful information for focusing future develop-
ment efforts. In our domain, it indicates that improve-
ments in the non-understanding recovery rate are likely 
to lead to significant increases in task success, espe-
cially for non-native users (where the non-understand-
ing rate is relatively high, and the non-understanding 
recovery rate is relatively low). 

Next, we compared the individual performance of 
the ten different recovery strategies. The results show 
that, when engaged without any prior knowledge, the 
best performing strategies in our domain are: (1) ad-
vancing the conversation by ignoring the non-
understanding and trying an alternative dialog plan 
(MoveOn), and (2) providing help messages containing 
sample responses for the current system question. The 
high performance of the MoveOn strategy corroborates 
prior evidence from a wizard-of-oz study (Skantze, 
2003) which showed that human operators often do not 
signal non-understandings, but rather try to advance the 
task by asking different questions. In the future, we plan 
to explore in more detail the potential uses of this strat-
egy, as well as its pitfalls. Specific issues we plan to 
investigate include identifying more situations in which 
this strategy is applicable, studying the extent to which 
this strategy can be decoupled from the system’s task, 
and developing more appropriate metrics for assessing 
its performance. 

In the final part of this paper we shifted our attention 
to the recovery policy. We showed that a more informed 
policy for engaging the non-understanding recovery 
strategies (implemented by a human wizard) led to sig-
nificant improvements in task success, as well as a 
number of other local performance metrics. The im-
provements occurred mostly within the non-native 
population, i.e. the group of users who had more diffi-
culties in using the system.  

Finally, we reported a set of preliminary results with 
respect to learning a recovery policy from data. We used 
features available at runtime from various levels in the 
dialog system to build predictors for the likelihood of 
success of each non-understanding recovery strategy. 
For five of the strategies, the learned predictors perform 
better than a majority baseline. Based on these predic-
tors, we constructed two policies: one aims to maximize 
the recovery rate, the other aims to maximize the recov-
ery efficiency. Preliminary estimates indicate that these 
policies are expected to outperform both the wizard and 
the uninformed policy. While these experiments were 
conducted with very few training instances and an em-
pirical validation of the learned policy is still necessary, 
we find these results encouraging as they indicate the 
feasibility of using a learning approach for deriving a 
non-understanding recovery policy from data.  
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