
Sorry, I Didn’ t Catch That! –
An Investigation of Non-understanding Errors and Recovery Strategies

Dan Bohus
Carnegie Mellon University

Pittsburgh, PA, 15213
dbohus@cs.cmu.edu

Alexander I . Rudnicky
Carnegie Mellon University

Pittsburgh, PA, 15213
air@cs.cmu.edu

Abstract

We present results from an extensive empiri-
cal analysis of non-understanding errors and
ten non-understanding recovery strategies,
based on a corpus of dialogs collected with a
spoken dialog system that handles conference
room reservations. More specifically, the is-
sues we investigate are: what are the main
sources of non-understanding errors? What is
the impact of these errors on global perform-
ance? How do various strategies for recovery
from non-understandings compare to each
other? What are the relationships between
these strategies and subsequent user response
types, and which response types are more
likely to lead to successful recovery? Can dia-
log performance be improved by using a
smarter policy for engaging the non-under-
standing recovery strategies? If so, can we
learn such a policy from data? Whenever
available, we compare and contrast our results
with other studies in the literature. Finally, we
summarize the lessons learned and present our
plans for future work inspired by this analysis.

1 Introduction

One of the most important challenges facing spoken
language interfaces today is their brittleness when faced
with understanding errors. The problem is present
across all domains and interaction types, and arises pri-
marily from the inherent unreliability of the speech rec-
ognition process. The recognition difficulties are further
exacerbated by the conditions under which these sys-
tems typically operate: spontaneous speech, large vo-
cabularies and user populations, and large variability in
input line quality. In these settings, average word-error-

rates of 20-30% (and up to 50% for non-native speak-
ers) are quite common. Unless mediated by better error
awareness and robust recovery mechanisms, these errors
exert a strong negative influence on the overall per-
formance of spoken dialog systems (Sanders et al, 2002;
Walker et al, 2002), and severely limit the naturalness
of the interaction and the complexity of the tasks that
can be addressed.

Left unchecked, speech recognition errors can lead
to two types of understanding errors in a spoken dialog
system: misunderstandings and non-understandings. In
a misunderstanding, the system obtains an incorrect
interpretation of the user’s turn. In contrast, in a non-
understanding, the system fails to obtain any interpreta-
tion of the input.

In this paper, we focus our attention on non-under-
standings. If for misunderstandings detection is a key
problem (San-Segundo et al, 2000; Litman et al, 2000;
Carpenter et al, 2001), and the set of recovery strategies
is limited and fairly well understood (e.g. explicit and
implicit confirmation (Krahmer et al, 1999)), for non-
understandings the situation is almost the opposite. By
definition, systems know when a non-understanding has
happened. However, a mechanism for diagnosing the
source of the non-understanding is largely missing.
Moreover, the number of potential recovery strategies is
significantly larger (see Table 1) and the relative trade-
offs between them are less well understood. This further
increases the difficulty of selecting the right recovery
strategy at runtime. Most systems use a limited number
of non-understanding recovery strategies in conjunction
with uninformed, simple heuristic rules for engaging
them. For instance, a system might apologize and repeat
its question on the first non-understanding, provide
more help on the second non-understanding, and trans-
fer the user to a human operator if a third consecutive
non-understanding occurred.

As a first step towards better error handling for non-
understandings, we have conducted an empirical study
of these errors and of ten recovery strategies based on

data collected in a mixed-initiative, task-oriented spo-
ken dialog system. More specifically, the questions we
have investigated are:

• What are the main sources of non-understanding
errors (and what are their relative frequencies)?

• How large is the impact of non-understandings on
global dialog performance?

• How do various strategies for recovering from
non-understandings compare to each other?

• What are the relationships between each strategy
and subsequent user behaviors, and which behav-
iors are more likely to lead to successful recovery?

• Can global dialog performance be improved by
using a smarter policy for engaging the non-
understanding recovery strategies?

• If yes, can we learn a better policy from data?
We begin by describing the data collection experi-

ment which provided the corpus of dialogs used in this
investigation. Then, over the following six sections, we
address in turn each of the questions raised above.
Whenever possible, we compare our findings to other
results previously reported in the literature, in an effort
to shed more light on the generalizability of these re-
sults across different domains. Finally, in Section 9 we
summarize the lessons we learned from this investiga-
tion and the ideas it inspired for future work.

2 Experiment and Corpus

2.1 Data Collection Experiment

System. The data was collected through a user study in
which 46 participants, mostly undergraduate and staff
personnel on campus interacted with RoomLine (Room-
Line, 2003), a spoken dialog system for making confer-
ence room reservations. RoomLine is a phone-based
mixed-initiative system which has access to live infor-
mation about the schedules and characteristics (e.g. size,
location, A/V equipment) of 13 conference rooms in
two buildings on campus. To make a room reservation,
the system finds the list of available rooms that satisfy
an initial set of user-specified constraints, and engages
in a follow-up negotiation dialog to present this infor-
mation to the user and identify which room best
matches their needs. Sample conversations with the
system are available online (RoomLine, 2003).

The system uses two parallel SPHINX-II recognition
engines, configured with telephone-based acoustic mod-
els and a trigram statistical language model (the diction-
ary size is 1049). The resulting top hypothesis from
each engine is parsed using the Phoenix robust parser
(Ward and Isaar, 1994). Subsequently, semantic confi-
dence scores are computed for each hypothesis. The
winning hypothesis is forwarded to the RavenClaw-
based dialog manager (Bohus and Rudnicky, 2003). For

output, the system uses a template-based language gen-
eration module and the Theta synthesizer (Theta, 2004).

The system was equipped with ten different strate-
gies for recovering from non-understandings, described
and illustrated in Table 1. By strategy we denote a sim-
ple, single-turn action that the system can take to at-
tempt recovery. A number of these strategies, such as
asking the user to repeat or rephrase, reissuing the sys-
tem prompt or providing various levels of help are often
encountered in spoken dialog systems. Two strategies
that we would like to draw the reader’s attention upon
are Yield and MoveOn. In the Yield strategy, the system
remains silent, as if it did not hear the user’s response,
and hence implicitly signals a communication problem.
In the MoveOn strategy, the system ignores the problem
altogether and tries to advance the task by moving on to
a different question. Note that this is possible only at
certain points in the dialog, where an alternative dialog
plan for achieving the same goals is available. For in-
stance, in the case illustrated in Table 1, the MoveOn
strategy gives up on trying to find whether the user
wants a small or a large room, and starts suggesting
rooms one by one. In other cases, the system would try
to advance the dialog by using a simpler question, for
instance asking “For which day do you need the room?”
instead of “How can I help you?”

Experimental design. The user study was de-
signed as a between-groups experiment, with two condi-
tions: control and wizard.

Participants in the control condition interacted with
a version of the RoomLine system which used an unin-
formed (random) policy to engage the non-understand-
ing recovery strategies: each time a non-understanding
happened, the system randomly chose one of the ten
available strategies.

Participants in the wizard condition interacted with a
modified Wizard-of-Oz version of the same system. In
this version, each time a non-understanding happened a
human wizard decided which one of the ten recovery
strategies should be used. In all other aspects, this sys-
tem was identical with the system used in the control
condition. The wizard had live access to the user’s
speech. Several other system state variables were pre-
sented to the wizard via a graphical user interfaces (e.g.
recognition result, confidence score, semantic parse).
When a non-understanding occurred, the wizard se-
lected which strategy should be used through the GUI,
and the decision was communicated back to the system.
The wizard had to make this decision during a relatively
short time interval (1-2 seconds) in order to maintain the
illusion that the users were interacting with an autono-
mous system. A single wizard, the first author of this
paper, was employed throughout the whole experiment.
The wizard had very good knowledge of the system’s
functionality and of the domain.

The experimental design described above satisfies
two needs. On one hand, we wanted to be able to com-
paratively evaluate the ten recovery strategies, when
engaged in an uninformed fashion. This analysis can be
performed based on data collected in the control condi-
tion, where the system randomly chooses which strategy
to use. The results are discussed in detail in Sections 5
and 6. At the same time, we wanted to verify whether or
not a better policy for engaging the ten strategies (im-
plemented in this case by the human wizard) can sig-
nificantly improve performance. The results of this
comparative analysis are presented in Section 7.

At this point we would like to briefly comment on
the decision to give the wizard full access to the live
user speech. This puts the wizard in an apparently privi-
leged position when compared to a system that would
have to make the same recovery decisions (e.g. the sys-
tem does not accurately know what the user says, espe-
cially during non-understandings). However, recall that
our goal is only to show that a better recovery policy
exists, and not to prove that this particular policy can be

learned or implemented by the system. Without access
to the user’s speech, the decision making task might
have been too difficult for the wizard, especially given
the response-time constraints. In this case, a negative
result, i.e. the lack of detectable differences in the per-
formance of the two policies, would not be very infor-
mative. On the other hand, a negative result obtained
when the wizard has full access to the user’s speech
would cast more serious doubts about the existence of a
better non-understanding recovery policy.

Participants. 46 subjects, mostly undergraduate
students and staff personnel on campus, participated in
the data collection experiment. The participants had
only marginal prior experience with spoken language
interfaces (some of them had previously interacted with
phone-based customer-service interactive systems). We
randomly assigned the participants into two groups cor-
responding to the control and wizard conditions. At the
same time, a balance was maintained between groups in
terms of the participants’ gender and whether or not
their first language was north-American English.

 S: Would you like a small room or a large one?
U: [Non-Understanding]

1
AskRepeat (AREP) [system asks the user to repeat the non-understood utterance]
S: Can you please repeat that?

2
AskRephrase (ARPH) [system asks the user to rephrase the non-understood utterance]
S: Can you please try to rephrase that?

3
Reprompt (RP) [system repeats the previous prompt]
S: Would you like a small room or a large room?

4
DetailedReprompt (DRP) [system repeats a more verbose version of the previous prompt]
S: I’m sorry, I don’t think I understood you correctly. Right now I’m trying to find out if you would
 prefer a small room or a large one.

5
Notify (NTFY) [system merely notifies the user that a non-understanding has occurred]
S: Sorry, I’m not sure I understood what you said …

6
Yield (YLD) [system remains silent, and thus implicitly notifies the user that a non-understanding has occurred]
S: Ø

7
MoveOn (MOVE) [system advances the task by moving on to a different question]
S: Sorry, I didn’t catch that. One choice would be Wean Hall 7220. This room can accommodate
 20 people and has a whiteboard and a projector. Would you like a reservation for this room?

8

YouCanSay (YCS) [system tell the user what he or she can say at this point in the dialog]
S: Sorry, I didn’t catch that. Right now I’m trying to find out if you would prefer a small room or a
 large one. You can say ‘I want a small room’ or ‘I want a large room’. If the size of the room
 doesn’t matter to you, just say ‘I don’t care’.

9
TerseYouCanSay (TYCS) [a terser version of the YouCanSay strategy]
S: Sorry, I didn’t catch that. You can say ‘I want a small room’ or ‘I want a large room’. If the size
 of the room doesn’t matter to you, just say ‘I don’t care’.

10

FullHelp (HELP) [system provides a longer help message which includes an explanation of the current state
of the dialog, as well as what the user can say at this point]
S: I’m sorry, I don’t think I understood you correctly. So far I have found five conference rooms
 available matching your constraints. Right now I’m trying to find out if you would prefer a small
 room or a large room. You can say ‘I want a small room’ or ‘I want a large room’. If the size of
 the room doesn’t matter to you, just say ‘I don’t care’.

Table 1. Ten strategies for recovering from non-understandings

Tasks and Experimental Procedure. Each par-
ticipant attempted a maximum of 10 scenario-based
interactions with the system, within a set time period of
40 minutes. The same 10 scenarios were presented in
the same order to all participants. The scenarios were
designed to cover all the important aspects of the sys-
tem’s functionality and had different degrees of diffi-
culty. To avoid language entrainment, the scenarios
were presented graphically. Descriptions of the 10 sce-
narios as well as a concrete example of the graphical
representation are available online (Bohus, 2005).

After completing their interactions with the system,
the participants filled in a SASSI questionnaire (Hone
and Graham, 2000) containing 35 questions grouped in
6 factors: response accuracy, likeability, cognitive de-
mand, annoyance, habitability, and speed. Additionally,
participants were asked to describe what they liked
most, what they liked least and what would be the first
thing they would change in the system.

2.2 Corpus Statistics and Annotations

The corpus of dialogs collected in this experiment (in-
cluding both the control and wizard conditions) contains
449 sessions and 8278 user turns. In Table 2 we present
a number of additional descriptive statistics. Since pro-
nounced differences exist on a large number of metrics
between native and non-native users, we also present
the breakdown of the figures in these two populations.

 Total Native Non-native
Subjects 46 34 12
Sessions 449 338 111
Turns 8278 5783 2495
Word-error-rate 25.6% 19.6% 39.5%
Concept-error-rate 35.7% 26.3% 57.6%
% Non-understandings 17.0% 13.4% 25.2%
% Misunderstandings 13.5% 9.8% 22.5%
Task success rate 75.1% 85.2% 44.1%

Table 2. Overall corpus statistics

The user speech data was orthographically tran-

scribed by a human annotator, and subsequently
checked by a second annotator. The transcriptions in-
clude annotations for various human and non-human
noises in the audio signal. Based on these transcriptions,
a number of additional annotations were created. At the
turn level, we manually labeled:

• Concept transfer and misunderstandings: each
user turn was annotated with the number of con-
cepts that were correctly and incorrectly trans-
ferred from the user to the system; each turn with
at least one incorrectly transferred concept was
automatically labeled as a misunderstanding;

• Transcript grammaticality: each user turn was
manually annotated as either in-grammar, out-of-
grammar, out-of-application-scope or out-of-

domain (for a discussion, see Section 3);
• User responses to non-understandings: the user

response types following non-understandings
were labeled using a tagging scheme first intro-
duced by Shin and Narayanan (2002);

• Corrections: each turn in which the user was at-
tempting to correct a system understanding error
was flagged as a correction, as in (Swerts et al,
2000);

At the session level, we labeled task completion.

3 Sources of Understanding Errors

We now turn our attention to the first question: what are
the main sources of non-understandings, and what are
their relative frequencies?

While the main focus of this paper is on non-under-
standings, the analysis we present in this section covers
sources of understanding errors in general, i.e. both
misunderstandings and non-understandings. To avoid
potential biases introduced by the wizard’s recovery
policy, the analysis was conducted using only data from
the control condition, where the recovery strategies
were engaged in an uninformed fashion.

We anchor our error source analysis in the ground-
ing model inspired by Clark (1996) and used by Paek
and Horvitz (2000) in the Conversational Architectures
project, illustrated in Figure 1. In this model, partici-
pants coordinate on 4 different levels to achieve mutual
understanding in conversation. In the context of human-
computer interaction, the model also illustrates the flow
of information from the user to the system. At the con-
versation level, the user has a high-level goal, which
subsequently acquires a corresponding semantic, lexical
and eventually an acoustic representation in the lower
levels. The acoustic signal then passes through a noisy
channel, and arrives at the system side. Here, a series of
chained components (speech recognition, language un-
derstanding, and discourse interpretation) are used to
progressively reconstruct the user’s higher level goal

Conversation

Intention

Channel

Signal

Acoustic
Repr.

Channel

Lexical
Repr.

Semantic
Repr.

Goal

User System

Interpretation

Parsing

Recognition

End-pointer

Figure 1. Grounding in communication

from the incoming acoustic signal.
Understanding errors typically occur due to mis-

matches at different levels between the expressed form
of the user’s intent and the system’s modeling abilities.
For example, at the conversation level, the user might
not be aware of certain system limitations and might try
to formulate a goal which the system cannot handle. In
this case it will be impossible for the system to correctly
reconstruct the user‘s goal, and we will have an under-
standing error. Similarly, at the signal level, mismatches
between a user’s pronunciation style and the system’s
acoustic models can lead to speech recognition errors,
and ultimately to understanding errors. This view of
understanding errors highlights two complementary
approaches that can be used to mitigate the mismatches.
One is to create models which can provide better cover-
age, while still maintaining good performance. The
other is to steer the user’s responses into the space cov-
ered by the system’s models.

Based on the level at which the mismatch occurs, we
identify the following sources of errors:

• Out-of-Application [Conversation Level]: The
user’s utterance falls outside the application’s
functionality. These errors can be further divided
into out-of-domain utterances (e.g. the user asks
the room-reservation system about the weather),
and out-of-application-scope utterances, i.e. ut-
terances which express in-domain goals which
the system is however not able to handle (e.g. the
user asks if a conference room has windows);

• Out-of-Grammar [Intention Level]: The user’s
utterance is within the domain and scope of the
application, but outside of the system’s semantic
grammar (e.g. the user says “erase reservation” ,
which is not in the system’s grammar; the system
could have handled the request had the user said
“cancel reservation” or “delete reservation” ,
which are in the system’s grammar);

• ASR Error [Signal Level]: The user’s utterance
is within the application’s domain, scope and
grammar, but is not recognized correctly due to
acoustic or statistical language modeling mis-
matches (e.g. the user says “Thursday morning”
but this is misrecognized as “Friday morning”);

• End-pointer Error [Channel Level]: The end-
pointer is not able to correctly segment the in-
coming audio signal (e.g. it truncates the utter-
ance or sends an empty utterance into the input
line)

Figure 2 illustrates the breakdown of non-under-
standings and misunderstandings by error source. The
majority of errors originate at the Signal (i.e. speech
recognition) level. At the same time, a large number of
non-understandings, and a smaller but still significant
number of misunderstandings are caused by out-of-
application and out-of-grammar utterances.

The out-of-application errors encountered in our
data consist almost entirely of out-of-application-scope
utterances. These utterances are in-domain, but they
refer to inexistent application functionality (the lack of
out-of-domain utterances is most likely due to the sce-
nario-driven nature of the interactions). A closer inspec-
tion of these errors revealed that they subsume about an
equal number of requests for inexistent task-level func-
tionality (e.g. “ I need a room for Monday or Tuesday” –
the system does not handle “or” requests), and requests
for inexistent meta functionality, such as “go back!” or
various types of corrections (e.g. “You got the wrong
day!” , “Change the date!” , “The time is wrong” , etc).

Together with the out-of-grammar utterances, the
out-of-application utterances reflect one facet of an ex-
isting mismatch between user and system at the inten-
tion and conversation levels. A second interesting facet,
revealed through an analysis of the transcripts, is that
there are certain aspects of system functionality which
are never (or very rarely) addressed by the users. For
instance, although the users were told during the brief-
ing that they can say “Help” to the system at any time,
this function was invoked in only in 7 of 226 sessions.
Other types of help commands like “where are we?” ,
“what can you do?” , “what can I say?” , “ interaction
tips” , although available at all times were not discov-
ered by the users and therefore were never used. We
found similar examples with respect to task-level func-
tionality, for commands like “ tell me all the rooms” , “ I
want a smaller / larger room” , “ I don’ t care” (about
room size), “how big is this room” , “ tell me about this
room” , etc. This reflects the fact that, apart from out-of-
grammar errors, users are also not aware of the full
functionality of the application.

The fairly large number of out-of-application and
out-of-grammar utterances suggests that the number of
non-understandings can potentially be reduced by better
informing the users about the application capabilities
and boundaries and steering them into this space. How
exactly this shaping can be performed remains an open
research issue (Tomko, 2004). We will return to this
issue in our discussion from Section 9.

The majority of non-understandings – 62% (and
even more so for misunderstandings – 77%) originate at
the speech recognition level. Here, a large number of

Figure 2. Breakdown of non-understandings
and misunderstandings by error source

0 20% 40% 60% 80% 100%

Non-understandings

Misunderstandings

Out-of-application
Out-of-grammar
ASR Error
Endpointer error

contributing factors can be identified, but more precise
blame assignment is harder to perform. For instance,
non-native accents have a significant impact on ASR
performance: average WER is 20.7% for natives, versus
42.3% for non-natives. Ambient noises also have a pro-
nounced effect on recognition performance: average
WER for noisy utterances is 32.8% > 25.1% for noise-
free utterances. Other factors, such as speaking rate,
user frustration, hyper-articulation, have been showed to
correlate with recognition accuracy (Choularton, 2005).

Rejections. The discussion so far has focused on
genuine non-understandings, i.e. situations in which the
system was not able to extract any meaningful informa-
tion from the user’s turn. However, our dialog manager
also uses a rejection mechanism to guard against poten-
tial misunderstandings: if the system has obtained an
interpretation of the user’s input, but the confidence
score is below a preset threshold, then the utterance will
be rejected by the dialog manager. These rejected utter-
ances will also appear as non-understandings at the dia-
log management level. Figure 3 illustrates the ratios of
non-understandings and misunderstandings, as com-
puted before and after the rejection mechanism. After
rejections, the total ratio of non-understandings grows
by 7.1% absolute from 10.1% to 17.2%. About 40% of
the rejections (2.9% of the total number of turns, and
17% of the total number of non-understandings) are
false-rejections, i.e. utterances correctly understood but
falsely rejected because of a low confidence score. The
relatively high false rejection rate contributes signifi-
cantly to the total number of non-understandings, on par
with other sources of errors. The false-rejection rate can
be lowered by building better confidence annotators, or
by tuning the rejection threshold to the domain. In (Bo-
hus and Rudnicky, 2005), we describe a data-driven
method for optimizing the rejection process in light of
domain and dialog-state-specific tradeoffs.

4 Impact of Non-understandings on
Dialog Performance

We now turn our attention to the second question: what
is the impact of non-understanding errors on global

dialog performance? Again, we only used the data from
the control condition in our analysis.

To address this question, we constructed a logistic
regression model (Myers et al., 2001) which relates the
frequency of non-understandings in a dialog to the
probability of task success. The same approach can be
used for studying the impact on other global perform-
ance metrics.

)(1

1
)1(

FNONe
TSP ⋅+−+

== βα

The independent variable is the frequency of non-
understandings in a session (FNON), and the dependent
variable is the binary task success indicator (TS). Each
data-point corresponds to an entire dialog session.

We fitted a model using 205 dialog sessions. Ses-
sions with less than 3 turns and sessions with differ-
ences between perceived and objective task completion
were eliminated. The fitted model increased the average
data log-likelihood from the majority baseline of -
0.5200 to -0.4306 (p<10-4 in a likelihood-ratio test),
indicating that there is indeed an effect of the frequency
of non-understandings on task success. Figure 4 illus-
trates the expected probability of task success, as pre-
dicted by the model. The plot shows that when the
frequency of non-understandings is between 0%-10%,
the impact on task success is relatively minor. However,
as the frequency of non-understandings exceeds 10%,
the expected probability of task success starts to drop
faster: an increase of the frequency of non-understand-
ings from 10% to 30% reduces the expected chance of
success from 90% to 52%.

Apart from non-understandings, misunderstandings
represent a second important contributor to breakdowns
in interaction. To assess the relative costs of these two
types of errors with respect to task success, we extended
the model described above to include the frequency of
misunderstandings as a second independent variable
(FMIS). As expected, the new model predicts task suc-
cess even better: the average log-likelihood of the data
was further increased to -0.2795 (p<10-4). The estimated
regression coefficients, together with their associated
standard errors and p-values are illustrated in Table 3.
The resulting average cost for misunderstandings
(-16.62) is 2.24 times higher than the average cost for
non-understandings (-7.41). The result confirms that the
rule-of-thumb that “misunderstandings cost twice as
much as non-understandings” holds in our domain.
While the relative costs of these errors can vary across
different domains, and even across different dialog
states within the same system, the proposed regression
approach can be used to establish these costs in a prin-
cipled manner (see also Bohus and Rudnicky, 2005).

Finally, we analyzed the impact of recovery rate on
task success. We say that a strategy has successfully
recovered from a non-understanding if the following

Figure 3. Misunderstandings and non-
understandings before and after rejections

0 20% 40% 60% 80% 100%

Misunderstandings
Non-understandings
Correct understandings

Before rejection
mechanism

After rejection
mechanism

False rejections Correct rejections

user turn is correctly understood by the system (i.e. it is
not a non-understanding and it is not a misunderstand-
ing). The average non-understanding recovery rate is
then defined as the ratio of successful recoveries, with
respect to the total number of attempts to recover.
Again, a significant effect on task success was detected
(p<10-4). The dependence is illustrated in Figure 5. As
this figure shows, the impact of the recovery rate on
performance is greatest when the recovery rate is below
60-70%, and becomes less significant as we pass that
limit.

While it is to be expected that non-understandings
and the associated recovery rate have an effect on global
performance, the analyses that we have performed quan-
tify this effect and provide useful information for focus-
ing future efforts. In our domain, they indicate that
further improvements in the non-understanding recov-
ery rate are likely to translate into significant increases

in task success, especially for the non-native user popu-
lation, where 26.3% of the turns are non-understandings
and the recovery rate is only 39.3%.

5 Performance of Non-understanding
Recovery Strategies

We now turn our attention to the third question: how do
the ten strategies compare with each other in terms of
recovery performance?

We computed the non-understanding recovery rate
(as defined in the previous section) for each of the ten
recovery strategies. The analysis is again performed
only using the data collected in the control condition of
our experiment. In this condition, the recovery strategies
were engaged in an uninformed (random) fashion, and
therefore they were on an equal footing. Figure 6 illus-
trates the resulting performance of each strategy, and
the 95% confidence intervals for these estimates.

An overall analysis of variance for binary response
variables (logistic ANOVA) revealed that there are sta-
tistically significant differences between the mean re-
covery rates of the 10 strategies (p=0.000035). Next, we
used logistic ANOVAs to compare each pair of strate-
gies individually. In each of these ANOVAs, we added
the nativeness indicator as a factor in the model (since
performance varies considerably between native and
non-native users). The results are illustrated in Table 4,
where each cell contains the ratio of the recovery rates
between the strategies in the corresponding row and
column. The resulting p-values (corresponding to the
effect of strategy on recovery rate, when accounting for
nativeness) were corrected for multiple comparisons
using the false-discovery-rate method (Benjamini and
Hochberg, 1995). This method allows us to compute the
expected rate of false detections among the detected
significant differences. The false-discovery-rate (FDR)
for each result is illustrated by the shade of gray. For
instance, we expect that 5% of the 10 cells with
FDR=0.05 are actually not significant differences.
While significant differences cannot be established for
every strategy pair, the detected differences allow us to
identify a partial ordering.

0 10% 20% 30% 40% 50%
0

0.2

0.4

0.6

0.8

1

% Nonunderstandings (FNON)

P
(T

as
k

S
u

cc
es

s
=

1)

Figure 4. Expected probability of task success (and
confidence bounds) at different frequencies of

non-understandings

0 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0

0.2

0.4

0.6

0.8

1

Non-understanding recovery rate

P
(T

as
k

S
u

cc
es

s=
1)

Figure 5. Expected probability of task success (and
confidence bounds) at different non-understanding

recovery rates

 Coefficients S.E. p-value
Const 5.28 0.70 < 0.0001
FNON -7.41 2.09 0.0004
FMIS -16.62 2.74 < 0.0001

Table 3. Regression coefficients for a task success
model using the frequency of non-understandings

and misunderstandings as the independent variables

0%

10%

20%

30%

40%

50%

60%

70%

80%

R
ec

o
ve

ry
 r
at

e

M
O
VE

TY
CS

HEL
P

RP
YCS

ARPH
DRP

NTF
Y

AREP
YLD

Figure 6. Individual strategy recovery rate

The MoveOn, Help and TerseYouCanSay strategies
occupy the top 3 positions, with no statistically signifi-
cant differences detectable between them. In retrospect,
this result is not surprising. A number of studies
(Swerts et al., 2000; Rotaru and Litman, 2005) have
shown that once an error has occurred, the likelihood of
having an error in the next turn is significantly increased
(our data also confirms this result). As we go deeper
into a spiral of errors, patience runs out, frustration is
likely to increase, and the acoustic and language mis-
matches are likely to become more pronounced. More-
over, the fact that there was a non-understanding in the
first place indicates that the system is in a difficult posi-
tion in terms of decoding the current user intention.
When the system abandons the current question and
attempts to solve the problem by using a different dialog
plan, these effects are likely to be attenuated, and
chances of correct understanding become higher. Simi-
larly, when the system provides help including sample
responses for the current question, the users might find
better ways (from a system’s perspective) to express
their goals, or they might find out about other available
options for continuing the dialog from this point.

The high performance of the MoveOn strategy is
consistent with prior evidence from a wizard-of-oz
study of error handling strategies (Skantze, 2003).
Skantze’s study has revealed that, unlike most spoken
dialog systems, human wizards often did not signal the
non-understandings to the user when they occurred.
Instead, they asked different task-related questions to
advance the dialog. This strategy generally led to a
speedier recovery. In the RoomLine system, the
MoveOn strategy implements this idea in practice, and
the observed performance confirms the prior evidence
from Skantze’s study. Although not surprising, we do
find this result very interesting, as it points towards a
road less traveled in spoken dialog system design: when
non-understandings happen, instead of trying to repair
the current problem, use an alternative dialog plan to

advance the task.
The next three strategies – Reprompt, YouCanSay

and AskRephrase, form a second tier, all having a statis-
tically better recovery rate than the last 4 strategies.
Finally, no significant differences could be detected in
terms of recovery rate between the last four strategies:
DetailedReprompt, Notify, AskRepeat and Yield.

6 User Responses to Non-understanding
Recovery Strategies

We now move on to the fourth question: what are the
relationships between each strategy and subsequent
user behaviors, and which behaviors are more likely to
lead to successful recovery. Like before, the analysis is
based on data from the control condition, where the
strategies were engaged in an uninformed fashion.

To perform this analysis, we annotated each user
turn that followed a non-understanding according to a
tagging scheme for error segments introduced by Shin
(2002), and subsequently used by others (Choularton
and Dale, 2004; Raux et al, 2005). Like Choularton and
Dale (2004), we used an abbreviated version of the
original scheme, containing 5 labels: repeat – when the
user is repeats the previous utterance identically, re-
phrase – when the user rephrases the same semantic
content in a different lexical manner, change – when the
user changes the semantic concepts with respect to the
previous utterance, contradict – when the user contra-
dicts the system, often as a barge-in and other – sub-
sumes response types which do not fall in any of the
previous categories (e.g. hang-ups, timeouts, etc.)

Figure 7 shows the overall distribution of user re-
sponse types in our dataset. As a reference, we also
show the user response type distributions found by Shin
in an analysis of the Communicator corpus, and Chou-
larton and Dale in an analysis of a deployed system for
ordering pizza. Note however that a direct comparison

 M
O

VE

HE
LP

TY
CS

RP

YC
S

AR
PH

DR
P

NT
FY

AR
EP

YL
D

MoveOn MOVE 64.4% - 1.10 1.14 1.31 1.33 1.35 1.71 1.80 1.91 2.06
FullHelp HELP 58.5% - - 1.03 1.19 1.20 1.22 1.55 1.64 1.73 1.87
TerseYouCanSay TYCS 56.5% - - - 1.15 1.16 1.18 1.50 1.58 1.68 1.81
Reprompt RP 49.2% - - - - 1.01 1.03 1.31 1.38 1.46 1.58
YouCanSay YCS 48.6% - - 1.02 1.29 1.36 1.44 1.55
AskRephrase ARPH 48.6% - - - - - - 1.27 1.34 1.42 1.53
DetailedReprompt DRP 37.7% - - - - - - - 1.06 1.12 1.21
Notify NTFY 35.7% - - - - - - - - 1.06 1.14
AskRepeat AREP 33.7% - - - - - - - - - 1.08
Yield YLD 31.2% - - - - - - - - - -

Table 4. Comparison of non-understanding recovery rates; the cells show the ratio of the non-
understanding recovery rate between the strategy in the corresponding row and column; the shading indi-

cates the false-discovery-rate level (FDR=0.15 FDR=0.10 FDR=0.05)

Rephrase Repeat Contradict Change Other
0%

10%

20%

30%

40%

50% Communicator (Shin)
Pizza (Choularton and Dale)
RoomLine (this study)

Figure 7. Distribution of user response types

0

20%

40%

60%

80%

100%

RP
NTF

Y
DRP

M
O
VE

YLD

AREP

ARP
H

TY
CS

HEL
P

YC
S

R
P

NTF
Y

D
RP

M
O
VE YLD

AREP

ARP
H

TY
C
S

H
EL

P
YCS

Repeat
Rephrase
Change
Other

Figure 8. Distribution of user response types
by non-understanding recovery strategy

Repeat Rephrase Change Other
0

10%

20%

30%

40%

50%

60%

70%

80%

R
ec

o
ve

ry
 r
at

e

Figure 9. Recovery rate for different user
response types

between these experiments is not valid since we only
considered the user responses which followed a non-
understanding (as opposed to throughout any error seg-
ment). The distribution of user response types we ob-
served is nonetheless similar to previous studies. When
faced with non-understandings, users tend to rephrase
(~45%) more than repeat (~20%). A notable difference
in the distribution appears between the change and con-
tradict user response types. The fact that we only con-
sidered turns following non-understandings potentially
explains the absence of contradicts (which happen
mostly when a system misunderstands), while the large
number of change responses is introduced by the
MoveOn strategy - see Figure 8 and also additional plots
available on-line (Bohus, 2005). While in Shin’s study
of the Communicator data a lot of change responses
occurred as users were changing their travel plans to go
around weaknesses in the system, this is not the case in
this data. Participants in our study were compensated
according to the number of scenarios they managed to
complete successfully, and the change responses repre-

sent valid contributions to the dialog, within the con-
fines of the given scenarios.

Next, we analyzed the impact of strategies on user
response types. The results are presented in Figure 8.
An auxiliary three dimensional representation of the
strategies in the space of user response types is available
online (Bohus, 2005). The results indicate that AskRe-
peat leads to the largest number of repeat responses
(31%); the MoveOn strategy leads to the largest number
of change responses (52%); the AskRephrase and Notify
strategies lead to the largest number of rephrase re-
sponses (64%). While there is clearly an effect of strat-
egy on user response types, the numbers shown above
are not extremely large. Under the assumption that cer-
tain types of user responses are more desirable in certain
circumstances, these results raise the question of
whether the user response types can be controlled even
more, for instance by using a more aggressive prompt-
ing style (e.g. “Could you repeat what you just said?”
instead of “Can you please repeat that?”)

Finally, we analyzed which type of user responses
are more likely to lead to recovery. Figure 9 shows the
recovery rate for each user response type. The best re-
covery performance is attained on change responses
(63%). Together with the large number of change re-
sponses on the MoveOn and help strategies, this result
corroborates the high performance of these strategies,
and the discussion from the Section 5. Somewhat sur-
prisingly, we were not able to establish a statistically
significant difference between the recovery rates of user
repeat and rephrase responses. In this respect, our re-
sults conflict with prior studies which have shown that
user rephrases are better recognized and more likely to
lead to recovery (Goldberg et al, 2003). Moreover, the
same analysis performed on the sessions collected in the
wizard condition (recall that in this case a human wizard
decided which strategy should be engaged to recover)
shows that in that case repeat responses were actually
significantly better recognized than rephrase responses.
Briefly, we believe this last result is explained by the
fact that the wizard made intensive use of the AskRepeat
strategy, when this strategy was appropriate; this in turn
boosted the overall number as well as recovery per-
formance of repeat responses.

Given these observations, we conclude this section
on a cautionary note: while informative, results regard-
ing the performance of various strategies and user re-
sponses do not necessarily generalize across domains.
The success of various types of user responses can be
strongly influenced by a number of factors such as the
nature of the task, the user population, as well as the
policy used to engage the strategies. We believe that the
solution for successful recovery lies in endowing spo-
ken dialog systems with the capacity to dynamically
adjust their error handling behaviors to the specific
characteristics of the domains in which they operate.

7 The Effect of Recovery Policy on Per-
formance: Wizard versus Uninformed

So far we have concentrated our attention on the func-
tion and performance of individual recovery strategies.
In the two remaining sections we will shift our focus to
the non-understanding recovery policy. The recovery
policy describes which strategy should be used in each
situation.

Ultimately, our goal is to endow spoken dialog sys-
tems with the ability to automatically learn good recov-
ery policies from their own experience. Our starting
point is the hypothesis that the performance of various
recovery strategies can be improved by engaging them
at the right time, i.e. by using a good recovery policy.
For example, asking the user to repeat is not a good
course of action if the non-understanding was the result
of an out-of-grammar utterance. In contrast, if the non-
understanding was caused by a transient noise (e.g. a
door slam), asking the user to repeat is probably more
likely to succeed.

As a first step, we therefore wanted to confirm this
hypothesis: can dialog performance be improved by
using a better, more informed policy for engaging
non-understanding recovery strategies? Its validity is
not as obvious as it might seem. The performance of the
error recovery process is a product of both the set of
available strategies and the policy used to engage them.
If the set of strategies does not provide good coverage
for the types of problems we encounter, a good policy
will fail to significantly increase performance. Should
this be the case, our efforts would probably be better
focused on developing more (and different) recovery
strategies, rather than trying to learn a better policy.

To find an answer for the question raised above, we
compared the performance of the wizard’s recovery
policy against the performance of the uninformed pol-
icy. Recall that the wizard had access to more informa-
tion than a system would have at runtime, and therefore
the detection of a performance gap between the policies
does not prove that the wizard’s policy is also attainable
for a system; it only proves that a better policy exists
(see discussion in subsection 2.1). We start by describ-
ing the dialog performance metrics we used in the com-
parison in subsection 7.1, and we present the results of
the comparison in subsection 7.2. Finally, in subsection
7.3 we analyze the effect of the wizard policy on the
performance of the individual non-understanding recov-
ery strategies.

7.1 Performance Metrics

To evaluate global dialog performance we used two
metrics: task success and user satisfaction. Task suc-
cess was defined as a binary variable for each of the 10
scenarios performed by a user. User satisfaction was

expressed on a 1-7 Likert scale, and was elicited
through a post-experiment questionnaire. The user satis-
faction score corresponds therefore to the overall ex-
perience the user had with the system.

Apart from global dialog performance, we also
wanted to assess the impact of the wizard policy on lo-
cal non-understanding recovery performance. To our
knowledge no traditional, well-established metrics exist
in the community for performing this type of evaluation.
We therefore constructed a number of metrics which we
describe below. Each of these metrics evaluates various
characteristics of the user response following the sys-
tem’s attempt to recover from a non-understanding.

The first metric, which we have already introduced
in Section 4, was recovery rate. To compute this metric,
we simply look at whether the next user turn following a
system attempt to recover is correctly understood or not.
If the next turn is correctly understood (i.e. it is not a
misunderstanding and it is not a non-understanding),
then we say that the system has successfully recovered.
Average recovery rate is then simply defined as the
number of successful recoveries with respect to the total
number of attempts to recover. The underlying variable
in this metric is binary - the next turn is either correctly
understood or not. The metric therefore does not take
into account the magnitude or costs of potential errors.
Nevertheless, this metric provides a first order estimate
of recovery performance and (because of low variance)
is especially useful when we have only a small number
of samples to evaluate from.

A second metric we considered was recovery word-
error-rate. Instead of looking at whether the next turn is
correctly understood or not, we compute and average
the word-error-rate for the user turns following non-
understanding recovery attempts. This metric captures
in more detail the magnitude of the speech recognition
errors in the user responses. However, in a spoken dia-
log system we are interested in the correctness of con-
cepts acquired by the system rather than the correctness
of the recognition process per se.

The third metric we used, recovery concept utility,
operates at the concept level. This metric takes into ac-
count the number of concepts that are correctly and in-
correctly acquired by the system, as well as their
relative utilities. The metric is computed as follows:

CU = UtilCC ·CC + UtilIC ·IC
where CC is the number of concepts that are correctly
acquired by the system from the user’s response, and IC
is the number concepts that are incorrectly acquired
from that turn. UtilCC and UtilIC are weighting factors
for the correctly and incorrectly acquired concepts and
are obtained through a logistic regression model which
relates the average number of correctly and incorrectly
acquired concepts per turn to overall task success. A
model constructed with in-domain data showed that

UtilCC = +7.81, and Util IC = -7.19. For the interested
reader, the methodology for deriving these costs is de-
scribed in more detail in (Bohus and Rudnicky, 2005).
Because it takes the domain-specific costs for correct
and incorrect concepts into account, we consider this
metric more appropriate than the traditional concept-
error-rate.

Finally, the last metric we considered was recovery
efficiency. This metric goes one step further than the
recovery concept utility, and also normalizes for the
amount of time spent by the system during the recovery
strategy. The motivation behind this metric is that some
recovery strategies use shorter prompts than others, and
therefore might succeed (or fail) faster. To normalize
for the amount of time spent during recovery, we com-

pute the number of concepts (correct and incorrect) we
would expect the system to acquire on average during
that time interval. We then subtract these numbers from
the number of correct and incorrect concepts we did
actually acquire in the next user turn. The formula for
this metric is:

RE = UtilCC ·(CC - t·rcc) + UtilIC ·(IC - t·ric)
where t is the time elapsed between the original non-
understanding and the next user turn, and rcc (and ric)
are the average rates (per second) of acquiring correct
(and incorrect) concepts during non-understanding re-
covery segments. In other words, during the amount of
time t the system spent in its attempt to recover, we
would expect to obtain on average t·rcc correct concepts

Non-Natives Natives
0

1

2

3

4

5

6

7
Average User Satisfaction (1-7)

Non-Natives Natives
0

20

40

60

80

100

*
Average Task Success Rate (%)

Non-Natives Natives
0

10

20

30

40

50

60

70
Average Recovery Rate (%)

Non-Natives Natives
0

10

20

30

40

50

60

70

* *
Average Recovery Word-Error-Rate (%)

Non-Natives Natives
0

1

2

3

4

5

*
Average Recovery Concept-Utility

Non-Natives Natives
-3

-2

-1

0

1

2

3

*
Average Recovery Efficiency

Global Dialog Performance Metrics Local Recovery Performance Metrics

(a)

(b)

(c) (d)

(e) (f)

Figure 10. Performance comparison between the wizard and the uninformed recovery policy
(* marks a statistically significant difference at p < 0.05)

Wizard Policy

Control Policy

Lower is better

Metric Overall Wizard vs Uninformed Wizard vs Uninformed
(only natives)

Wizard vs Uninformed
(only non-natives)

Task Success (%) (a) 75.1 78.5 � 71.7 85.2 � 85.2 57.4 > 31.6
User Satisfaction (1-7) (b) 3.93 3.87 � 4.00 4.29 � 4.47 2.67 � 2.67

Recovery rate (%) (c) 48.7 50.1 � 46.5 61.0 � 56.4 37.9 � 34.4
Recovery word-error-rate (%) (d) 38.9 35.4 < 44.5 26.6 < 35.7 46.4 < 55.7
Recovery concept utility (e) 2.80 3.01 � 2.58 4.13 � 4.12 1.62 > 0.63
Recovery efficiency (f) 0.41 0.81 > 0.00 1.74 � 1.50 -0.34 > -1.90

Table 5. Performance comparison between the wizard and the uninformed recovery policy
(shaded cells mark differences that are significant at p < 0.05)

and t·ric incorrect concepts. We subtract these from the
actual number of correct (CC) and incorrect (IC) con-
cepts we obtained in the user response, and then we take
the corresponding utilities into account.

7.2 Results

The results of the comparison are shown in Table 5 and
illustrated in Figure 10 (a)-(f). Since performance varies
considerably between the native and non-native users,
we present the breakdown of the differences in these
two populations. In Table 5, the second column shows
the overall performance (both groups together); the third
column shows the overall differences between the wiz-
ard and the control conditions, while columns 4 and 5
show the differences between conditions within the na-
tive and non-native populations. The shaded cells mark
differences that are statistically significant at a p-value
smaller than 0.05. To test for statistical significance we
used t-tests when comparing proportions (e.g. task suc-
cess or recovery rate), and non-parametric Mann-
Whitney U-tests for the other continuous-valued metrics
(their values are not normally distributed).

As Figure 10 and Table 5 illustrate, an overall pat-
tern emerges. The wizard policy does indeed lead to
statistically significant performance improvements on a
number of metrics, but the improvements appear mostly
within the non-native population, i.e. in the group of
users that had more difficulties using the system.

For instance, while no task success improvement can
be detected for native users, there is a large task success
improvement for non-native users (see Figure 10-a).
The average task success rate grows from 31.6% in the
control condition to 57.4% in the wizard condition. This
increase bridges half of the original performance gap
between native and non-native users in the control con-
dition. Despite this increase in task success rate, no sta-
tistically significant differences can be detected with
respect to user satisfaction (Figure 10-b); the small
number of samples we have (one per user) and the large
variance of this metric lead to wide confidence bounds
on the mean estimates and preclude a reliable compari-
son. Nevertheless, the same trend of larger, statistically
significant improvements for the non-native users is
observed again on the local recovery performance met-
rics (Figure 10.c-f). Statistically significant improve-
ments can be detected in the non-native population for
three of these metrics: recovery word-error-rate, recov-
ery concept utility, and recovery efficiency.

We believe the explanation for the observed result
lies in the simple fact that it is easier to improve per-
formance when performance is low (in our case, for the
non-native users). This result also confirms our conjec-
ture from Section 4: improvements in non-understand-
ing recovery performance do indeed translate into sig-
nificant increases in task success for the non-native
population.

7.3 Effect of Policy on Individual Recovery Strat-
egy Performance

Next, we analyzed the effect of the policy on the per-
formance of individual recovery strategies. Our original
hypothesis was that, if the strategies are engaged “at the
right time”, their performance would improve.

Figure 11 shows the number of times each non-
understanding recovery strategy was engaged by the
wizard. Figure 12 shows the recovery rate for each of
the ten strategies, under the two different conditions.
We were able to establish a statistically significant dif-
ference (p=0.0023, or p=0.023 Bonferroni corrected for
multiple comparisons (Savin, 1980)) only for the Ask-
Repeat strategy. AskRepeat is however the strategy most
often engaged by the wizard. While this strategy ranked
9th when engaged in an uninformed fashion, its per-
formance improved considerably from 33.7% to 53.0%
under the wizard policy and is on par with the other top-
performing strategies such as giving help (TerseYou-
CanSay and Help) or advancing the task by asking a
different question (MoveOn). The same improvement in
the AskRepeat strategy was also detected on the other
three recovery performance metrics.

This result shows that strategy performance can in-
deed be improved by the use of a better recovery policy.
At the same time, the lack of detectable differences in

0

0.2

0.4

0.6

0.8

1

RP
NTFY

DRP
MOVE

YLD
AREP

ARPH
TYCS

HELP
YCS

Control Policy

Wizard Policy

Figure 11. Number of times each strategy
was engaged by the wizard

Figure 12. Impact of policy on individual
strategy performance

*

0

50

100

150

200

RP
NTF

Y
DRP

MOVE
YLD

AREP

ARPH
TYCS

HELP
YCS

the other strategies is somewhat disappointing. In retro-
spect, this result might be explained by the fact that the
decision task the wizard had to perform was quite diffi-
cult, even with access to the full audio signal. To main-
tain the illusion that users were interacting with an
autonomous system, the wizard had to choose one of ten
recovery strategies in a very short time interval: 1 to 2
seconds. This selection task is easier for some of the
strategies than for others. Furthermore, a number of
strategies, such as YouCanSay, Reprompt, and Detaile-
dReprompt, were very rarely engaged by the wizard and
as a result the confidence intervals on their performance
estimates are very wide, and preclude accurate compari-
sons.

8 Towards Learning a Recovery Policy

In the previous section we have established that signifi-
cant improvements in performance can be achieved by
using a better policy with the current set of strategies. In
this section we present a set of preliminary results on
the problem of learning such a policy from data.

We take a simple, decision-theoretic approach. First,
we learn to predict the likelihood of success for each
non-understanding recovery strategy from features
available at runtime. Then, to implement a policy, we
compute the expected utility for each strategy (taking
into account the probabilities and costs for success and
failure), and select the strategy with the maximum ex-
pected utility.

In subsection 8.1, we describe the construction of
predictors for the likelihood of success of each strategy.
Next, in subsection 8.2 we discuss two recovery policies
based on these predictors.

8.1 Predicting the Likelihood of Success for Non-
understanding Recovery Strategies

We use logistic regression models to develop runtime
predictors for the likelihood of success of each non-
understanding recovery strategy.

Data. As training data, we use the turns in which a
non-understanding occurred and the strategy we are
interested in was engaged. The training target value is
the success or failure of the strategy in that particular
case. Success is defined as “the next user turn is cor-
rectly understood by the system”.

Note that for learning we only use data collected in
the control condition, where the non-understanding re-
covery strategies were engaged in an uninformed fash-
ion. The wizard policy might introduce a potential bias
in the distribution of features, which can negatively af-
fect learning and generalization. For instance, if the
wizard never used the AskRepeat strategy when the
number of words in the original non-understood utter-
ance was very large, we will never encounter that set of

circumstances, or see how the AskRepeat strategy be-
haves under those conditions. In this case, the distribu-
tion of the number_of_words feature might be skewed
towards small values, and that might negatively affect
the learning process.

Given the relatively large number of different recov-
ery strategies in the system (10), the number of avail-
able instances to learn from is fairly small – about 60 to
70 invocations per strategy. The small number of sam-
ples further complicates an already difficult learning
problem, since we face a relatively high risk of over-
fitting the training data.

Features. We identified a large number of features
available at runtime which could carry information
about the likelihood of success for various non-under-
standing recovery strategies. The features are collected
from different levels of processing in the spoken dialog
system. For instance, from the speech recognition level
we collected various features characterizing the current
non-understood utterance: the number of words, the
signal and noise levels, the number of and proportion of
words tagged as unconfident by the speech recognizer.
Similarly, from the language understanding level we
collected various features reflecting the quality of the
parse. From the dialog management level we used in-
formation about the dialog state, as well as the history
of the dialog up to that point (e.g. how many previous
consecutive non-understandings we encountered, what
was the average confidence score so far, etc.)

As a first measure to guard against over-fitting, we
transformed continuous features into binary features by
using a preset threshold. Furthermore, we eliminated
features that had small class-conditional counts. The
remaining set of features which was used in training is
available as an online appendix (Bohus, 2005).

Models. Since we are interested in predicting the
expected likelihood of success for each strategy (rather
than a binary success or failure), we decided to use
stepwise logistic regression models. These models are
simple, easy to build and incorporate a mechanism for
feature selection. Moreover, as opposed to a number of
other discriminative classifiers, logistic regression pro-
vides good class posterior probability scores (e.g. esti-
mates for the likelihood of success).

In stepwise logistic regression, features (variables)
are added to the model one by one, as long as they in-
crease the likelihood of the data. A feature is accepted
in the model if it produces a data likelihood increase
that is statistically significant with a p-value below a
preset P-accept. At the same time, in each step features
already in the model are tested for exclusion. A feature
is rejected if the resulting model is not significantly
worse, as determined by a preset P-reject. In our case,
we set P-accept=0.05 and P-reject=0.30. Finally, as a
second preventive measure against over-fitting, we
evaluated the model after each regression step using a

leave-one-out procedure and stopped adding features as
soon as the average data likelihood in the leave-one-out
evaluation decreased.

Results. We fitted ten step-wise logistic regression
models, one for each strategy. The results are illustrated
in Table 6. For 5 of the 10 strategies we can build mod-
els which perform better than a majority baseline, on
both a soft (average log-likelihood) and hard (binary
classification) error metric. For the last three models in
Table 6 no features ever entered the regression. In this
case the constructed predictors simply predict a prob-
ability of success equal to the majority baseline in the
training data. In general, the performance of the indi-
vidual predictors is not very good, but this is not sur-
prising given the small number of training instances, the
reduced number of features used, and difficulty of the
prediction task (we are trying to predict in advance
whether or not the next turn is correctly understood,
without any information from that turn.)

8.2 Policies for Recovery

If we can predict for the likelihood of success of each
non-understanding recovery strategy, a recovery policy
is easy to construct: we simply choose the action with
the maximum expected utility:

�
 = argmax { PSUCC(S) · USUCC(S) +

 PFAIL(S) · UFAIL(S) }
where PSUCC(S) is the estimated probability of success
for strategy S, PFAIL(S) = 1 - PSUCC(S) is the probabil-
ity of failure, and USUCC(S) and UFAIL(S) are the utili-
ties of success and failure for strategy S.

We defined two policies. The first policy (max-
recovery-rate) aims to maximize the recovery rate by
choosing the strategy with the maximum likelihood of
success. This is equivalent to using the values USUCC=1
and UFAIL=0 as the utilities for success and failure. The
second policy (max-recovery-efficiency) aims to maxi-
mize the recovery efficiency, as defined in subsection
7.1. In this case USUCC(S) is the average recovery effi-

ciency of strategy S when S was successful (i.e. the
next turn is correctly understood), while UFAIL(S) is the
average recovery efficiency of strategy S when S failed.

To obtain a preliminary estimate for the perform-
ance of these policies, we looked at what happened in
the data from the wizard condition, when the wizard
happened to make the same decisions as our learned
policies would have made. Since the MoveOn strategy
was not available at all points in the dialog, we elimi-
nated it from the learned policies in this analysis (this is
a simple way to avoid the policy deciding to engage the
MoveOn strategy when it is not available). The results
show that, within the subset of instances where the wiz-
ard made the same decision as the max-recovery-rate
policy, the recovery rate performance was 69.8%. At the
same time, the wizard’s overall recovery rate (through-
out the whole wizard dataset) was significantly lower –
50.1%; the overall recovery rate with the uninformed
policy from the control group was 46.5%1. Similarly, on
the instances where the wizard agreed with the max-
recovery-efficiency policy, the recovery efficiency per-
formance was 2.02, significantly larger than the overall
wizard recovery efficiency (0.81), and the uninformed
policy recovery efficiency (0.00).

While we view these results as promising, we would
like to point out a potential problem in this type of
evaluation. Given that both the wizard and the learned
policy strive to maximize performance, the distribution
of the subset of non-understandings where they agree
might not be representative for the true distribution of
non-understandings – these might be the cases where
it’s easier to tell which strategy should be used to re-
cover. Ultimately, a new user study where the system
runs with the learned policy is required in order to
robustly evaluate its performance.

1 If we also eliminate the MoveOn strategy from the as-

sessment of the overall wizard and control performance, the
numbers become 46.6% for the wizard condition and 44.0%
for the control condition.

Average data log-likelihood Hard error rate (%) Strategy # training
instances

Majority
Baseline

Leave-one-
out perf.

Avg. log-lik.
increase

Majority
Baseline

(error rate)

Leave-one-
out perf.

(error rate)

Relative
reduction in
error rate

DetailedReprompt 61 -0.6626 -0.6330 0.0296 37.7% 34.4% 8.7%
Reprompt 67 -0.6930 -0.6645 0.0286 49.2% 32.8% 33.3%
TerseYouCanSay 46 -0.6846 -0.6576 0.0270 43.5% 32.6% 25.0%
MoveOn 90 -0.6508 -0.6357 0.0151 35.6% 30.0% 15.6%
YouCanSay 70 -0.6927 -0.6729 0.0199 48.6% 34.3% 29.4%
AskRepeat 89 -0.6391 -0.6389 0.0002 33.7% 33.7% 0.0%
Help 65 -0.6788 -0.6776 0.0012 41.5% 46.1% -11.1%
AskRephrase 67 -0.6921 - - 47.8% - -
Notify 56 -0.6518 - - 35.7% - -
Yield 64 -0.6211 - - 31.2% - -

Table 6. Performance of success predictors for the 10 non-understanding recovery strategies

9 Conclusion

The work described in this paper is part of a larger re-
search program (Bohus, 2004) aimed at endowing spo-
ken dialog systems with better error handling capabili-
ties. In an effort to shed more light on non-understand-
ings, we performed an empirical analysis of these errors
and ten associated recovery strategy, based on a corpus
of dialogs collected with a mixed-initiative spoken dia-
log system for making conference room reservations.

An error source analysis has confirmed that a large
number of non-understandings (and misunderstandings)
can be blamed on speech recognition errors. Neverthe-
less, a significant number of non-understandings
(~30%) stem from requests for inexistent application
functionality, user corrections, and out-of-grammar ex-
pressions. At the same time, users are not always aware
of the full functionality provided by the system. We
believe these language-domain errors can be addressed
by better steering the users into the application’s space.
In this vein, we plan to explore more carefully the de-
sign and use of you-can-say help messages. Currently
these messages inform users about possible ways to
answer the current question. In the future, we plan to
investigate the possibility of providing information
about other options available at this point in the dialog.
This raises an interesting design issue, since the number
of different options available to the user can be fairly
large in a mixed-initiative spoken dialog system. A tar-
geted-help approach (Gorrell et al., 2002) may provide a
potential solution to this problem. A second path we
intend to explore is issuing you-can-say messages pre-
emptively (e.g. without waiting for a non-understanding
to happen) if we can detect that the user belongs to a
“problematic” population such as non-native speakers,
first time users, etc.

We have also confirmed that non-understandings
exert a negative impact on task success, and we have
quantified this impact. Models discussed in Section 4
revealed that the effect of non-understandings on task
success is marginal when the frequency of non-
understandings is below 10-15%, but increases fast after
that. Similarly, we found that the effect of the non-
understanding recovery rate on performance is greatest
when the recovery rate is below 60-70%, and smaller
once we are above that limit. While the specific num-
bers might differ across applications and domains, we
expect that the nature of the relationship remains simi-
lar. The type of analysis we presented in Section 4 can
provide useful information for focusing future develop-
ment efforts. In our domain, it indicates that improve-
ments in the non-understanding recovery rate are likely
to lead to significant increases in task success, espe-
cially for non-native users (where the non-understand-
ing rate is relatively high, and the non-understanding
recovery rate is relatively low).

Next, we compared the individual performance of
the ten different recovery strategies. The results show
that, when engaged without any prior knowledge, the
best performing strategies in our domain are: (1) ad-
vancing the conversation by ignoring the non-
understanding and trying an alternative dialog plan
(MoveOn), and (2) providing help messages containing
sample responses for the current system question. The
high performance of the MoveOn strategy corroborates
prior evidence from a wizard-of-oz study (Skantze,
2003) which showed that human operators often do not
signal non-understandings, but rather try to advance the
task by asking different questions. In the future, we plan
to explore in more detail the potential uses of this strat-
egy, as well as its pitfalls. Specific issues we plan to
investigate include identifying more situations in which
this strategy is applicable, studying the extent to which
this strategy can be decoupled from the system’s task,
and developing more appropriate metrics for assessing
its performance.

In the final part of this paper we shifted our attention
to the recovery policy. We showed that a more informed
policy for engaging the non-understanding recovery
strategies (implemented by a human wizard) led to sig-
nificant improvements in task success, as well as a
number of other local performance metrics. The im-
provements occurred mostly within the non-native
population, i.e. the group of users who had more diffi-
culties in using the system.

Finally, we reported a set of preliminary results with
respect to learning a recovery policy from data. We used
features available at runtime from various levels in the
dialog system to build predictors for the likelihood of
success of each non-understanding recovery strategy.
For five of the strategies, the learned predictors perform
better than a majority baseline. Based on these predic-
tors, we constructed two policies: one aims to maximize
the recovery rate, the other aims to maximize the recov-
ery efficiency. Preliminary estimates indicate that these
policies are expected to outperform both the wizard and
the uninformed policy. While these experiments were
conducted with very few training instances and an em-
pirical validation of the learned policy is still necessary,
we find these results encouraging as they indicate the
feasibility of using a learning approach for deriving a
non-understanding recovery policy from data.

Acknowledgements
This work, part of the CALO project, was supported by
DARPA grant NBCH-D-03-0010. The content of the
information in this publication does not necessarily re-
flect the position or the policy of the US Government,
and no official endorsement should be inferred. The
authors would like to thank Antoine Raux, Valerie Ven-
tura, Mihai Rotaru, the members of the “Dialogs on
Dialogs” group, as well as the anonymous reviewers for

helpful suggestions and feedback. Last but not least, we
would like to thank the workshop organizers and pro-
gram committee for the opportunity to combine our two
accepted submissions into a single longer paper format.

References
Benjamini, Y., and Hochberg Y. 1995. Controlling the false

discovery rate: a practical and powerful approach to mul-
tiple testing. Journal of the Royal Statistics Society, B, 57,
289–300.

Bohus, D., Rudnicky, A., 2003. RavenClaw: Dialogue Man-
agement Using Hierarchical Task Decomposition and an
Expectation Agenda” , in Proceedings of Eurospeech 2003,
Geneva, Switzerland

Bohus, D., 2004. Error Awareness and Recovery in Task-
Oriented Spoken Dialog Systems, Ph.D. Thesis Proposal,
Carnegie Mellon University, Pittsburgh, USA.

Bohus, D., 2005. Web page with auxiliary information for the
investigation into non-understandings errors and recovery
strategies, www.cs.cmu.edu/~dbohus/nonu_investigation/

Bohus, D., Rudnicky, A., 2005. A Principled Approach for
Rejection Threshold Optimization in Spoken Dialog Sys-
tems, submitted to Interspeech-2005, Lisbon, Portugal

Carpenter, P., Jin, C., Wilson, D., Zhang, R., Bohus, D., Rud-
nicky, A., 2001. Is This Conversation on Track?, in Pro-
ceedings of Eurospeech-2001, Aalborg, Denmark

Choularton, S., Dale, R., 2004. User Responses to Speech
Recognition Errors: Consistency in Behavior across Do-
mains, in Proceedings of SST-2004.

Choularton, S., 2005. Investigating the Acoustic Sources of
Speech Recognition Errors, submitted to Interspeech-2005,
Lisbon, Portugal

Clark, H.H. 1996. Using Language. Cambridge Univ. Press.

Goldberg, J., Ostendorf, M., Kirchhoff, K., 2003. The Impact
of Response Wording in Error Correction Subdialogs, in
Proc. of ISCA Workshop on Error Handling in Spoken
Dialogue Systems, Chateau d’Oex Vaud, Switzerland,
2003.

Gorrell, G., Lewin, I., Rayner, M., 2002. Adding Intelligent
Help to a Mixed Initiative Spoken Dialogue System” , in
Proceedings of ICSLP-2002, Denver, CO.

Hone, K., Graham. R., 2000. Towards a tool for the Subjective
Assessment of Speech System Interfaces (SASSI), in Journal
of Natural Language Engineering, 6:287-303, 2000, Cam-
bridge University.

Krahmer, E., Swerts, M., Theune, M., Weegels, M., 1999.
Error Detection in Human-Machine Interaction, Speaking.
From Intention to Articulation, MIT Press, Cambridge,
Massachusetts, USA

Litman, D., Hirschberg, J., Swerts, M., 2000. Predicting
Automatic Speech Recognition Performance Using Pro-
sodic Cues, in Proc. of NAACL-2000, pp. 218-225, Seattle,
USA

Myers, R., Montgomery, D., Vining, G., 2001. Generalized
Linear Models: With Applications in Engineering and the
Sciences, Wiley-Interscience, ISBN 0471355739

Paek, T., Horvitz, E. 2000. Conversation as Action Under
Uncertainty, in Proceedings of the 16th Conference on Un-
certainty in Artificial Intelligence

Raux, A., Langner, B., Bohus., D., Black, A.W., Eskenazi, M.,
2005. Let’s Go Public! Taking a Spoken Dialog System to
the Real World, submitted to Interspeech-2005, Lisbon,
Portugal

RoomLine, 2003 –http://www.cs.cmu.edu/~dbohus/RoomLine

Rotaru, M., Litman, D., 2005. Interactions between Speech
Recognition Problems and User Emotions, submitted to In-
terspeech-2005, Lisbon, Portugal

San-Segundo, R., Pellom, B., Ward, W., 2000. Confidence
Measure for Dialogue Management in the CU Communica-
tor System, in Proc. of ICASSP-2000, Istanbul, Turkey

Sanders, G., Le, A., Garofolo, J., 2002. Effects of Word Error
Rate in the DARPA Communicator Data During 2000 and
2001, in Proceedings of ICSLP-2002, Denver, CO, USA

Savin, N E, 1980. The Bonferroni and the Scheffe Multiple
Comparison Procedures, in Review of Economic Studies,
Blackwell Publishing, vol. 47(1), pages 255-73.

Shin, J., Narayanan, S., 2002. Analysis of User Behavior un-
der Error Conditions in Spoken Dialogs, in Proceedings of
ICSLP-2002, Denver, CO, USA

Skantze, G., 2003. Exploring Human Error Handling Strate-
gies: Implications for Spoken Dialogue Systems, in Proc. of
ISCA Workshop on Error Handling in Spoken Dialogue
Systems, Chateau d’Oex Vaud, Switzerland, 2003.

Swerts, M., Litman, D., Hirschberg, J., 2000. Corrections in
Spoken Dialogue Systems, in Proc. of the 6th International
Conference of Spoken Language Processing (ICSLP-2000),
Beijing, China, October 2000.

Theta, 2004. Theta: A Small Footprint Text-to-Speech Synthe-
sizer, Cepstral LLC, Pittsburgh, PA, 2004,
www.cepstral.com

Tomko, S., 2004. Improving User Interaction with Spoken
Dialog Systems via Shaping, Ph.D. Thesis Proposal, Car-
negie Mellon University, Pittsburgh, USA

Walker, M., Passonneau, R., Boland, J., 2001. Quant-itative
and Qualitative Evaluation of the DARPA Communicator
Spoken Dialogue Systems, in Proceedings of ACL’2001.

Walker, M., Litman, D., Kamm, C., and Abella, A. 2002.
Evaluating Spoken Dialogue Systems with PARADISE:
Two Case Studies, in Computer Speech and Language, 12-
3

Ward, W., Issar, S., 1994. Recent Improvements in the CMU
Spoken Language Understanding System, in Proceedings of
the ARPA Human Language Technologies Workshop,
March 1994, 213-216

