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Abstract

Current dialogue systems are fairly poor
in generating the wide range of clarifica-
tion strategies as found in human-human
dialogue. The overall aim of this work
is to learn when and how to best employ
different types of clarification strategies in
multimodal dialogue systems. This paper
describes a framework for learning multi-
modal clarification strategies for an in-car
MP3 music player dialogue system. The
framework consists of three major parts.
First we collect data on multimodal clari-
fication strategies in a wizard-of-oz study.
Second we extract feature in the state-
action space to learn an initial policy from
this data. Third we specify a reward func-
tion to refine that policy using extensions
of existing evaluation schemes.

1 Introduction

Clarification strategies ensure and maintain mu-
tual understanding in a conversation, and thus
play a significant role in robust and efficient di-
alogue interaction. Studies of conversations be-
tween people show that there are many different
types of clarification subdialogues, and that people
take into account contextual as well as long term
goals when deciding on their clarification strategy
(Rieser and Moore, 2005). However, very few clar-
ification strategies have been implemented in dia-
logue systems. The overall goal of this work is to
learn when and how to best employ different types
of clarification strategies in multimodal dialogue sys-
tems. This paper describes a framework for learning
multimodal clarification strategies for an in-car MP3
music player dialogue system.

The methodology we are suggesting for learning
a multimodal clarification policy is as follows: First

we bootstrap learning from dialogue data collected
using a wizard-of-oz setup. The state space and
the action set are an extension of that proposed
by (Georgila et al., 2005), with additional features
as proposed in sections 3 and 5. An initial pol-
icy will then be generated using supervised learning
techniques in the information-state update approach
(ISU) to dialogue management (Lemon et al., 2005).
In the ISU approach we are able to represent var-
ious kinds of dialogue features which are necessary
for learning context sensitive and adaptive strate-
gies. The strategy learnt by supervised learning re-
flects average human wizard behaviour. In a next
step the initial learnt policy will then be refined and
optimized by applying reinforcement learning (RL)
to explore the policy space.

RL has been successfully applied to dialogue
strategies which require complex decision making
and exhaustive planning towards reaching a goal.
For instance, RL has been used to optimise confirma-
tion and initiative behaviour (Litman et al., 2000),
and for deciding on the summarisation strategy for
an e-mail agent (Walker, 2000). The central idea
in the use of machine learning in dialogue manage-
ment is to define performance functions (rewards)
for combinations of (dialogue) actions and states at
a particular time, with the goal of finding the policy
(combinations of acts with respect to states) which
maximizes total expected reward (Young, 2000).

Previously, decision theoretic methods
were applied to clarification strategies,
(Horvitz and Paek, 2001). Decision theoretic
approaches only consider the local utility of an
action. We propose that considering “delayed
rewards” in RL in combination with a continuous
expression of locally assigned reward signals is
especially suited for clarification sub-dialogues.

In summary, in order to bootstrap an RL-based
clarification strategy the following steps are required:

• Collect training data that reflects the environ-



ment (as summarised in section 2).

• Extract features in the state-action space to
learn an initial policy (as listed in section 3).

• Compute a reward function to refine that policy
(as described in section 4).

This paper focuses on these 3 steps. In section 5 we
also describe extensions for performance modelling.

2 Data collection in a wizard-of-oz

experiment

2.1 Motivation

In previous work we investigated how humans
ask for clarification in task-oriented dialogue
(Rieser and Moore, 2005). We were able to iden-
tify features influencing human clarification strate-
gies (such as relation to task success, channel quality
and modalities available). We now investigate how
this converts to multi-modal human-machine inter-
action by collecting data on clarification strategies
employed by multiple human wizards in a wizard-of-
oz (WOZ) trial.

2.2 Goal of the experiments

In the larger context of the TALK project1 we devel-
oped an experimental setup to gather interactions
where the wizard can combine spoken and visual
feedback, namely, displaying (complete or partial)
results of a database search, and the user can speak
or select on the screen.

One goal of the WOZ experiment was to gather
data on spoken and graphical clarification strate-
gies as employed by multiple wizards and the per-
formance of those strategies. In particular we are
interested in what medium the wizard chooses for
the CR, what kind of grounding level he addresses,
and what “severity” 2 he indicates. The wizards’ re-
sponses were therefore not constrained by a script,
but the wizard can talk freely and choose between
four types of screen outputs which were automat-
ically generated. To get realistic decisions to guide
policy design the wizard only “sees what the systems
sees”, i.e. features which are available for decision
making at system runtime.

1TALK (Talk and Look: Tools for Ambient Linguistic
Knowledge; www.talk-project.org) is funded by the EU
as project No. IST-507802 within the 6th Framework
program.

2Severity describes the number of hypotheses indi-
cated by the speaker: having no interpretation, an uncer-
tain interpretation, or several ambiguous interpretations.

2.3 The in-car MP3 music player domain

For the MP3 music player domain the number of am-
biguities is limited and can (partially) be controlled
for collecting data on these kinds of phenomena. For
instance an ambiguous lexical item such as a title
can either be an album name, a name of an artist, or
a song title. Referential ambiguity can be controlled
via the number of matches in the music database.
Furthermore the in-car application combines spoken
and graphical interaction while the user is driving.
We aim to gain initial insights regarding the differ-
ence in interaction flow under such conditions, par-
ticularly with regard to multimodality.

2.4 Experimental setup

We briefly summarise here some details of the ex-
periments. A full description of the setup can be
found in (Kruijff-Korbayová et al., 2005). The ex-
perimental setup is shown schematically in Figure 1.
There are five people involved in each session of the
experiment: an experiment leader (not shown), two
transcribers, a user and a wizard.

The wizards play the role of an intelligent interface
to an MP3 player and are given access to a database
of information. Subjects are given a set of prede-
fined tasks and are told to accomplish them by using
an MP3 player with a multimodal interface. In a
part of the session the users also get a primary driv-
ing task, using the Lane Change driving simulator
(Mattes, 2003). This enabled us to collect dialogue
data combining primary and secondary tasks in our
experimental setup.

The wizards can speak freely and display the
search results or the playlist on the screen. The users
can also speak, as well as making selections on the
screen. The user’s utterances are immediately tran-
scribed by a typist and also recorded. The transcrip-
tion is then presented to the wizard. We did this in
order to deprive the wizards of information encoded
in the intonation of utterances, and in order to be
able to corrupt the user input in a controlled way,
simulating understanding problems at the acoustic
level. The wizard’s utterances are also transcribed
(and recorded) and presented to the user via a speech
synthesiser.

2.5 Invoking clarification behaviour

2.5.1 Method

In order to invoke different kinds of clarification
behavior we introduced uncertainties on several lev-
els, for example, multiple matches in the database,
lexical ambiguities, and errors on the acoustic level.

To approximate speech recognition errors we used
used a tool that “deletes” parts of the transcribed
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Figure 1: Multimodal Wizard-of-Oz data collection setup for an in-car music player application, using the
Lane Change driving simulator. Top right: User, Top left: Wizard, Bottom: transcribers.

utterances. Due to the fact that humans are able
to make sense of even heavily corrupted input, this
method not only covers non understandings, but wiz-
ards also built up hypotheses, which can lead to mis-
understandings. For the algorithm the word dele-
tion rate varied: 20% of the utterances got weakly
corrupted (= deletion rate of 20%) and 20% were
strongly corrupted (= deletion rate of 50%). In 60%
of the cases the wizard saw the transcribed speech
uncorrupted. Example 1 illustrates the kind of cor-
rupted utterances the wizard had to deal with:

(1) uncorrupted: Zu dieser Liste bitte Track
’Tonight’ hinzufügen.
[Add track ’Tonight’ to this list.]

weak: Zu dieser Liste bitte Track Tonight . . . .
[. . . track ‘Tonight’ to this list.]

strong: Zu dieser . . . bitte Track . . . .
[. . . track ‘Tonight’ to this . . . .]

Whenever the wizard made a CR, the experiment
leader invoked a questionnaire window on the screen,
where the wizard had to classify his CR according to
the primary source of the understanding problem.
The wizards could choose between the options pre-
sented in the first two columns in table 1. Following
the methods described by (Allen and Core, 1997),
binary decision trees were designed to guide the clas-
sification process and training was provided.

2.5.2 Evaluation of the setup

Results: The corpus gathered with this setup com-
prises 1772 turns and 17076 words. Of the 774
wizard turns 10.2% are CRs, already annotated via

Level Severity Frequency

Contact unsure 10.2%
String level partially unclear 33.3%

totally unclear 13.0%
Relation DB none 14.5%

unsure —
two or more 1.5%

Search results none 1.5%
conflicting 2.9%
too many 15.9%

Table 1: Options for describing understanding prob-
lems as displayed to the wizard

the questionnaire window. In human-human task-
oriented dialogues the frequency of CRs is about half
(Rieser and Moore, 2005), indicating that the setup
is suitable to elicit clarification behaviour. We expect
the total number of clarifications to be even higher
since the questionnaire window was sometimes not
shown to the wizard. 3 The frequency of the un-
derstanding problems (as indicated by the wizard
on the questionnaire window) is presented in the
third column in table 1. One third of the under-
standing problems seem to be caused by partial non-

3There were several reasons for not showing the ques-
tionnaire window. Either the experiment leader deliber-
ately chose not to disturb the wizard, or was undecided
about the request being about clarification, or wasn’t
available at that moment.



understanding on the string level. The second two
most frequent understanding problems are “lexical”
interpretation errors, i.e. the wizard did not know
what to search for, and reference problems caused
by too many matches in the database. 7.25% CRs
were indicated as “other” and for the same number
of times the wizard did not react to the questionnaire
window.

CRs in WOZ vs. human-human dialogues:

In previous work we annotated CRs in the human-
human travel reservation dialogues held via tele-
phone, available as part of the CMU Commmuni-

cator Corpus (Bennett and Rudnicky, 2002) as de-
scribed in (Rieser and Moore, 2005). In both studies
CRs frequently address the acoustic level caused by
bad channel quality (31.0% for Commmunicator

and 46.3% for WOZ). For the WOZ setup acous-
tic problems (set equal to string level problems) are
worse than for human-human dialogues. For human-
human dialogues only 0.03% are complete acoustic
non-understandings whereas, due to our word dele-
tion algorithm, for the WOZ study 13.04% were com-
plete acoustic non-understandings. Partial acoustic
understanding problems where about equal (30.97%
for Commmunicator and 33.3% for WOZ).

In human-human dialogue lexical problems are
rare. In the WOZ study lexical problems were the
third most frequent, reflecting unknown words in di-
alogue systems.

Finally, reference problems are almost twice as
likely for the human-human dialogues as for the
WOZ study (39.8% vs. 20.34%). In the music do-
main correct values for every slot are not as critical as
for travel booking. Examples from the corpus show
that wizards often choose not to clarify an item which
has multiple matches in the DB but would chose a
default value (i.e. based on frequency or popularity).
In future work we will investigate the performance
of this strategy in comparison to asking direct clari-
fication requests.

In sum, we can conclude that this WOZ setup suc-
cessfully invokes a high number of clarification re-
quests while simulating the kinds of errors found in
spoken dialogue systems.

2.5.3 Limitations of the method

Although showing some progress in simulating un-
derstanding problems as they occur in dialogue sys-
tems, this method has several obvious limitations.

• The system’s problems on the acoustic level
caused by imperfect speech recognition are more
severe than simulated by our word-deletion tool.
Parsing strategies employed by dialogue systems

are less robust than the ones by human wizards.

• The overall setup caused a time delay which had
a negative influence on user satisfaction as well
as on the clarification strategy. In the debrief-
ing session all the wizards reported that they
adapted their behaviour. They asked shorter
questions and sometimes dispensed some re-
quests completely.

• The problem sources selected on the question-
naire window cannot be considered completely
reliable. Some of the wizards reported that the
categories were unclear to them or were too
general. Furthermore the pop-up window was
sometimes distracting them from their primary
search task.

For all these reasons a clarification strategy learnt
from human wizards via supervised methods will
only be sub-optimal for dialogue systems. Therefore
we will need to apply RL to optimise the clarification
policies.

3 Extracting context features for

learning

For applying RL we need to define an initial pol-
icy. In most of the work to date the initial strategy
is handcrafted. However, we want to reflect strate-
gies used by human wizards. Elsewhere we show
that mean user satisfaction is fairly high across wiz-
ards (Kruijff-Korbayová et al., 2005), meaning that
we can employ the wizards’ strategies as a baseline.
We therefore use the data collected in the WOZ trail
as training data to bootstrap a policy using super-
vised learning.

In this section we define features for annotating
the collected data with features of the state-action
space used for learning an initial strategy. For the
state space we will be following an automatic anno-
tation method introduced by (Georgila et al., 2005),
and many of the features are already automatically
logged by the experimental system.

The data logged per dialogue turn is:

• manually transcribed user speech (online and of-
fline)

• corrupted user speech

• transcribed wizard’s speech (online and offline)

• wizard’s database query

• database query results

• graphical options as presented to the wizard



• graphical option chosen by the wizard for dis-
play

• user clicks

• the CR and primary problem as chosen by wiz-
ard on the questionnaire window

Other features are inferred/computed from the
logs.

3.1 Annotation scheme for CRs

Based on the classification scheme of
(Rodŕıguez and Schlangen, 2004) we developed
a four dimensional scheme to annotate functions
of CRs and the modality used to present those
functions. We are using this annotation scheme to
discover the action set, i.e. the clarification requests,
through annotation.

• Severity: indicates how much was under-
stood by analysing what kind of answer the
CR initiator requests from the addressee.
“Severity” can take the values: content

repetition, content confirmation,

content disambiguation.

• Source: primary source for interpretation un-
certainty as indicated by the CR initiator, tak-
ing the possible values: acoustic, lexical,

syntactic, reference, intuition, etc.

• Extent: the CR initiator points out one part of
the utterance, taking the values: whole, part.

• Modality: modality used, taking the values:
speech, graphics, both.

3.2 Annotation principles for ISU systems

A state in our system is a dialogue information
state as defined in (Lemon et al., 2005). Follow-
ing (Georgila et al., 2005) we divide the types of
information represented in the dialogue informa-
tion state into 5 main levels: dialogue-level, low-
level, task-level, history-level, and reward level.
(Georgila et al., 2005) divide the logging and anno-
tations required into information about utterances,
and information about states. In addition to state
and utterance, we defined features reflecting the ap-
plication environment, e.g. whether the user is driv-
ing, the number of matches from the database query,
how many display templates were generated (if the
database query returned too many matches only the
text option was generated), which one was chosen by
the wizard etc. Note that multimodal features also
need to be annotated. We describe these in section
5 below.

One problem of applying RL in the ISU approach
is the large state space. For initial policy learning we
apply a supervised learning technique, namely max-
imum entropy modelling, which learns how to set
feature weights automatically. This will provide us
valuable information what feature set performs best
in order to reduce the sate space.

4 Performance modelling with DATE

and PROMISE in PARADISE

For applying RL to dialogue design the clarification
problem is reformulated in terms of a Markov Deci-
sion Process (MDP). A MDP is a collection of four
elements: the set of states S, the set of actions A,
the transition probabilities T , and a set of rewards
R, (Sutton and Barto, 1998). How to define S and
A through annotation is described in the previous
section. The n-best results from the probability dis-
tribution we get as an output from the maximum
entropy model defines T for each state-action pair.
Some values for R are already logged or elicited via
user questionnaires. Introducing a reward function
allows us to create or refine the policy using RL.

As the strategies represent in our corpus are
only sub-optimal, RL needs to explore unobserved
state spaces. Such policy exploration is only fea-
sible with simulated dialogues generated through
interaction with a simulated user. Associated
work on user simulation can be found elsewhere
(Schatzmann et al., 2005). In this work we concen-
trate on producing better online reward measures for
unobserved states.

4.1 RL and performance modelling

In RL, the objective of the system is to maximise
the reward it gets for the action choices during the
course of the dialogue. Rewards are defined to reflect
how well a dialogue went, so by maximising the total
expected reward the system optimises the quality of
the dialogue. The difficulty is that, at any point in
the dialogue, the system cannot be sure what will
happen in the remainder of the dialogue, and thus
cannot be sure what effect its actions will have on
the total reward at the end of the dialogue. Thus the
system must choose an action based on the average
reward it has observed earlier when it has performed
that action in states similar to the current one. This
average is the expected future reward. The core com-
ponent of any RL system is the estimation of the ex-
pected future reward (the Q-function). Given a state
and an action that could be taken in that state, the
Q-function tells us what total reward, on average,
we can expect between taking that action and the
end of the dialogue. Once we have this function,



the optimal dialogue management policy reduces to
simply choosing the action (a) which maximises the
expected future reward (E[]) for the current state
(si). The maximised Q-function is what we call a
“value function” (V-function).

Q(si, a) ≈ E[
∑

j≥i

r(d, j)|si, a] (2)

System designers have to define a mapping r(d, i)
from a dialogue d to a position in that dialogue i to a
reward value. Previous work applied simple reward
functions such as task completion or some measure
of user effort such as elapsed time or number of user
turns. But it is in general agreed that dialogue sys-
tem design should aim to optimise user satisfaction.
For RL we need a definition of user satisfaction that
can be calculated online.

We now describe a combination of three schemes
used to model user satisfaction for dialogue systems.
The PARADISE framework allows us to combine
multiple evaluation matrices to automatically pre-
dict user satisfaction. DATE is a dialogue tagging
scheme for evaluation which refines cost measures,
and PROMISE defines a framework to compute task
success more dynamically.

4.2 The PARADISE framework

(Walker, 2000) successfully applied the PARADISE
evaluation framework to learn a performance func-
tion (reward) used in reinforcement learning. The
framework posits that user satisfaction is the over-
all objective to be maximised and that task success
and various interaction costs can be used as predic-
tors of user satisfaction. Common measures used in
PARADISE are dialogue efficiency metrics (such as
elapsed time, system turns), dialogue quality met-
rics (such as the mean recognition score), task suc-
cess metrics and other factors that contribute to user
satisfaction (such as task ease, interaction pace, fu-
ture use).

4.3 The DATE scheme

Studies have shown that a more fine-grained model
than the one used by PARADISE is necessary
to evaluate dialogue quality. In a WOZ study
by (Williams and Young, 2004) user satisfaction was
not correlated with turn duration at all. In a study
by (Walker et al., 2001) turn duration is even posi-
tively correlated with user satisfaction. This is be-
cause, for certain dialogues, turn duration seems to
predict task success. The DATE scheme takes into
account such relations by allowing multiple views on
one turn, namely the conversational domain, task
and sub-task level, and the speech act performed. We

Figure 2: Extended PARADISE framework for esti-
mating user satisfaction

extend the DATE scheme to capture user actions, as
described in (Georgila et al., 2005), and for multi-
modal actions as proposed in section 5. Except for
speech acts we have all this information in our sys-
tem logfiles.

4.4 Task-success in PROMISE

A further extension to PARADISE is the PROMISE
framework (Beringer et al., 2002). It suggests infor-
mation bits to deal with non-directed task definitions
and the resulting, potentially uncompleted, tasks in
multimodal dialogues. In PARADISE overall task-
success in defined by an AVM-style definition, being
either 1 or 0. This is reasonable for a task like train
booking (for which PARADISE was developed) but
for other domains a more flexible definition of sub-
task success is necessary. In PROMISE the task de-
scriptions were quite vague (“Plan an evening watch-
ing TV”) and can be accomplished by providing dif-
ferent kinds of information (e.g. a film can be named
by title and channel or by title and time or just by
clicking on the item on a screen). The same is true
for the music domain, so we adopt the PROMISE
framework in our experiments.

In sum, PARADISE allows to estimate user sat-
isfaction automatically by combining features indi-
cating task success and dialogue costs. The aim of
maximising task-success directs learning towards ro-
bust clarification strategies, while the aim of min-
imising costs directs it towards efficient clarification
stratgegies. PROMISE refines the task success mea-
sures by accounting for alternative ways to accom-
plish a (sub-)task. DATE refines the cost measures
by accounting for relations between quantitative and
qualitative features. Figure 2 presents these relations



schematically.

5 Extensions to DATE and

PROMISE

To automatically estimate user satisfaction for the
data collected in the WOZ study we need to account
for costs caused by multimodal speech acts and for
undirected task descriptions. In this section we de-
scribe extensions to DATE and PROMISE that will
allow us to calculate user satisfaction for multimodal
strategies at system runtime.

5.1 Multimodality in DATE

Annotating the collected data with the DATE
scheme requires that we include another dimension
capturing multimodality. Adding a multimodal di-
mension to the DATE scheme allows us to capture
features which are said to be typical for multimodal
interaction like providing different information si-
multaneously and providing redundant information
across modalities, by relating multimodal “speech”
acts to speaker turns. Consider the example anno-
tated corpus extract in table 3. In turns 2 and 3
the wizard performs two acts within the same dia-
logue turn but in different media. By relating this
information to the task layer we can measure how
multi-tasking speeds up task completion. In turns 4
and 5 the user performs the same speech act twice
in different media. For performance modeling this
phenomenon can be related to task precision.

5.2 Ambiguity in PROMISE

In the PROMISE scheme information bits can be
compared to different sets of slot-value pairs which
need to be filled to accomplish a task. In our domain
we face two challenges. First, it is not clear how
many slots are relevant for a task to be completed.
As some of our task descriptions are quite vague it
is the user’s goal which defines task success. Second,
values specified by the user can have several matches
in the database, i.e. they are ambiguous.

Consider the following example of a task descrip-
tion:

Your little brother likes to listen to heavy
metal music. You want to build him a
playlist including three metal songs. Make
sure you have “Enter Sandman” on the
playlist! Save the playlist under the name
“heavy guys”.

For this task (makePlaylist) there are 7 sub-tasks
to be accomplished, search(item1), search(item2),

search(item3), playlist(name), add(item1,name),

add(item2,name), add(item3,name). With respect
to PROMISE these sub-tasks can be accomplished
by providing different sets of information bits. For
example for search(item1), item1 can be described
by a title, or an album and the track number, or
the track number of a displayed list, or a click on
an item on that list. One of the items is constraint
by a song title. The dialogue designer would
specify the information bits needed as follows:
item1=[title] ∨ [album,track], item2= [title: “

Enter Sandman”]. . . In our domain all of those
values can be ambiguous. For example searching
for the song “Enter Sandman” will return several
matches in the DB. The item can only be defined
by providing another information bit, like album or
artist. Meaning that we have an interplay between
information bits and their values. For ambiguous
items an initially defined information set is not able
anymore to precisely describe task success as we
need another information bit to identify the item.
On the other hand we do not know anything about
the user’s goals. Users might not want to be as
precise and accept “default” values for some slots as
results from the WOZ study do show.

To handle this dilemma we use a localised reward
measure for every instantiated information bit, i.e.
once a slot which is relevant for the task gets filled
and confirmed we assign positive rewards. For com-
puting the final task success we use a flexible backing
off algorithm. Every time an ambiguity is detected
the information bit set which was currently instanti-
ated (i.e. the one of all possible alternative sets whose
information bits is most similar to the currently filled
slots) gets extended with another constraint and the
new set is added to the set of alternative information
bit sets. At the end of the dialogue we “back off” to
the maximal information bit set which got instanti-
ated by the feature-value pairs provided by the user,
considering this set as the “user’s goal”. Figure 3
shows the pseudo-code for computing an extended
definition of task success.

5.3 Implications for the reward measure

Applying estimated user satisfaction as defined by
PARADISE as a reward function will only provide
us with a dialogue-final reward measure which is
less informative and more costly for learning. Some
RL-based systems use the weighted sum of per turn
penalties and some measure of task success as their
reward function, reflecting the idea of the PAR-
ADISE framework but acting more locally.

Given the constraints discussed above the defini-
tion of a reward function is not straightforward. The
local and final task success measures calculated in the



U is user input string
DB is number of matches in the database
Initialize:

task = makePlaylist
makePlaylist = subtask(item1) ∧ . . .∧ subtask(itemN)
item1, . . . , item N = alternativeSetList
alternativeSetList =infoSet1 ∨ infoSet2 ∨ . . .∨ infoSetN
infoSet1, infoSet2, . . . , infoSetN = infoBit1 ∧ infoBit2 ∧ infoBitN

For every U:
value = Parse(U)
If (DB != 0):

newSet = currentSet.add(infoBit)
alternativeSetList.add(newSet)

For every infoSet in alternativeSetList:
try to instantiate infoSet
currentUserGoal = infoSet instatiated

Figure 3: Pseudo-code for update task success

modified PROMISE framework overcome the diffi-
culty of using purely delayed rewards. However the
relationship between speech acts and task comple-
tion as modelled by DATE also needs to be reflected
in the reward measure. A way to communicate com-
plex information in RL is to apply policy shaping.
The idea behind shaping is to augment the under-
lying reward structure with more informative local
rewards, represented by a shaping function F which
is a representation of a bias reflecting prior domain
knowledge (Laud and DeJong, 2002). The result is
faster learning at the cost of more uniform explo-
ration across policies.

For our task we still lack knowledge of how the
relation between multimodal speech acts and cost
features is to be defined. Dynamic shaping allows
us to specify a shaping function even if prior knowl-
edge is uncertain. The parameters of F are adjusted
through initial observation of world interactions via a
mediating explanation, i.e. the specified relationship.
RL then proceeds as before.

6 Discussion and future work

To this point we have not addressed the problem
of how to account for more user-centred qualitative
features in defining the reward function, nor how to
account for the additional cognitive load imposed by
the driving task. We hope to further improve the
predictive power of our model of user satisfaction
by adding user “emotions”, which we conjecture are
continuous expressions of reward. By giving imme-
diate reward/punishment for some dialogue actions
we also hope to learn a clarification strategy that
will react to user frustration and stress more quickly.
Especially for dialogues in the in-car domain this
will be valuable information. Subjects reported in

the debriefing session that some multimodal feedback
strategies were imposing a high cognitive load when
driving.

For example, we initially propose annotating
simple user expressions of positive and negative
feedback, such as “great”, “thank you”, “damn”
etc. and use these as immediate reward sig-
nals. We plan to test this hypothesis on Comm-

municator data, which is already annotated with
task completion reward signals (Lemon et al., 2005;
Georgila et al., 2005).

7 Conclusion

We have presented a data collection and annotation
framework to collect a corpus suitable for reinforce-
ment learning of multimodal clarification strategies.
We described a wizard-of-oz setup used to gather the
data for learning, for an in-car music player dialogue
system where driving is the primary task, and di-
alogue is secondary. We explained the constraints
that reinforcement learning places on the corpus and
its annotation, and we briefly explained how to com-
bine reinforcement learning methods with the infor-
mation state update approach to dialogue manage-
ment (Lemon et al., 2005).

To model user satisfaction we proposed an ex-
tended metric of dialogue quality and task-success
based on two existing schemes, namely DATE,
(Walker and Passoneau, 2001), and PROMISE,
(Beringer et al., 2002). We also proposed extensions
to the DATE scheme to cover multimodal dialogue
acts. We argued that the more flexible definition of
task success in PROMISE is needed to account for
non-directed task definitions and ambiguity. Finally
we discussed implications for formulating the reward
function using policy shaping and provided an out-



look on “emotion” tagging for learning clarification
strategies.
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Dialogue level Low level Task level History level Reward level

• dialogue
act

• corrupted
user string

• key word
deletion
rate (KDR)

• wizard out-
put string

• modality

• salient NPs

• salient VPs

• user driving

• time de-
lay

• DB query

• graphical
templates
generated

• graphical
templates
displayed

• user
clicks

• task/
subtask-
type

• DB
matches

• number
of DB
matches

• changes
to filled
slot
values

• user goals

• cumulative filled
slot values

• number of clarifi-
cations

• last N user dia-
logue acts

• last M system dia-
logue acts

• number of aban-
doned (sub)tasks

• dialogue duration

• number of turns

• average/min/max
KDR

• last X system
modalities

• last Y user modal-
ities

• task com-
pletion
(actual and
perceived)

• task satis-
faction

• dialogue
duration

• number of
turns

• user satis-
faction

• Paradise
evaluation
metrics

Table 2: ISU context features + reward annotations

ID Utterance Speaker Modality Speech act Task Domain
1 Please play “Nevermind”. user speech request play song about task
2 Does this list contain the

song?
wizard speech request info play song about task

3 [shows list with 20 DB
matches]

wizard graphic present info play song about task

4 Yes. It’s number 4. user speech provide info play song about task
5 [selects item 4] user graphic provide info play song about task

Table 3: Example corpus extract showing extended DATE annotation capturing multimodality
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