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Abstract

This paper presents a practical approach to statis-
tical machine translation (SMT) based on syntactic
transfer. Conventionally, phrase-based SMT gener-
ates an output sentence by combining phrase (multi-
word sequence) translation and phrase reordering
without syntax. On the other hand, SMT based on
tree-to-tree mapping, which involves syntactic in-
formation, is theoretical, so its features remain un-
clear from the viewpoint of a practical system. The
SMT proposed in this paper translates phrases with
hierarchical reordering based on the bilingual parse
tree. In our experiments, the best translation was ob-
tained when both phrases and syntactic information
were used for the translation process.

1 Introduction

Statistical machine translation (SMT), originally
proposed by Brown et al. (1993), has evolved from
word-level translation to phrase-level (multi-word,
i.e., flat phrases in this paper) translation (Koehn
et al., 2003; Vogel et al., 2003; Zens and Ney,
2004). In phrase-based SMT, the cost of reorder-
ing words is reduced because the word order in a
phrase is locally changed before translation. How-
ever, reordering phrases is also necessary for accu-
rate translation. Most phrase-based SMT systems
reorder phrases on a flat structure.

Another approach, statistical machine translation
based on tree-to-tree mapping, explicitly involves
syntactic information and hierarchically reordered
words (Graehl and Knight, 2004; Melamed, 2004).
However, these proposals are theoretical, and thus
their features on a practical system remain unclear.

This paper presents a practical method of statisti-
cal MT based on syntactic transfer, which is a kind
of tree-to-tree mapping. Syntactic transfer has been
widely used in machine translation, and it is suit-
able for a language pair whose respective structures
are different (e.g., languages formed by SVO and
SOV). An advantage of our method is that not only
hierarchical reordering but also the flat phrases han-
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dled in phrase-based SMT can be directly applied to
the translation.

The rest of this paper is organized as follows.
Section 2 briefly describes syntactic-transfer-based
MT and its features. Section 3 introduces statistical
models for MT using syntactic transfer. Sections 4
and 5 explain the training and decoding methods,
respectively. Section 6 discusses features of this
method by referring to experiments, and Section 7
discusses related work.

2 Overview of Syntactic-transfer-based
MT

2.1 Syntactic-transfer-based MT

Syntactic-transfer-based MT generates translation
by parsing an input sentence and mapping the in-
put parse tree to output parse trees. Figure 1 shows
an example of the Japanese-to-English translation
process by syntactic transfer.

On a practical level, the mapping of parse trees
is carried out node by node, since it is infeasible to
directly map the entire source tree to the target tree.
For instance, we need the following three transfer
rules in order to translate the Japanese phrase “12
ji” to the English phrase “12 o0’ clock.”

o ‘12/INUM’ < ‘12/CD’
e ‘ji/NOUN’ <= ‘0’ clock/NN’
e (NP — NUM NOUN) < (NP — CD NN)

Statistical machine translation that employs IBM
models (Brown et al., 1993) inserts or deletes words
by using a fertility model and a NULL model. In
syntactic-transfer-based MT, the insertion or dele-
tion of words is automatically carried out by map-
ping of syntactic nodes. For example, when (NP
— basu) is transferred to the NP node in Figure 1,
the determiner ‘the’ is automatically inserted and
(NP — the bus) is generated. In addition, word re-
ordering is represented by the order of child nodes.
Each child node dominates multiple words, so the
phrase order is hierarchically modified by the syn-
tactic transfer.
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Figure 1: Example of Translation Process (Japanese-to-English) by Syntactic Transfer

Source Tree Table

Tree-mapping Table

Target Tree Table

Name | Parent Prob. Children Probs. Name | Parent Prob. Children
o1 s 2% X wa Yep masu ka Source | Backward Forward | Target xl SQ 3% will Xup Yup
62 VP 8T X Yy 6! Het he ! m? VP M Y X
03 VP 85 X ni Yy 0 Ml et g s vP "% Y Xee
94 Np 3t X 9* e s 7w I NP 12577 the Xy
6° NP ¥ X Y : : : w® NP %5 Xg Y
Figure 2: Example of Tables for Syntactic-transfer-based Translation Model
We assume that the syntactic transfer is context-
free. Namely, each sub-tree is independently trans- . Plelf
ferred without any influence from outside of the ¢ = arginax (elf)
sub-tree. = argmax P(e)P(f|e). Q)
e

2.2 Flat Phrases

In the syntactic transfer method, flat phrases are re-
garded as parse trees and handled as ambiguities
during translation. In other words, parsing hypothe-
ses, which are flat phrases and words connected by
context-free grammar rules, are created. The best
hypothesis is selected based on the scoring of SMT.
Note that flat phrases require syntactic labels in ad-
vance in order to create hypotheses (c.f. Sections 4
and 5).

3 Syntactic-transfer-based Statistical MT

In this section, we explain syntactic-transfer-based
MT by using the formalisms of statistical MT.

3.1 Models

Statistical machine translation searches for the best
output word sequence e that maximizes the condi-
tional probability given the input word sequence f.
The following equation is used for the search.
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P(e) is called the language model, and P(fl|e)
is called the translation model. Syntactic-transfer-
based SMT assumes source and target parse trees
as the hidden variables in the translation model, and
translation is done by mapping between the parse
trees.

P(fle) > P(f,F.Ele)

Fe
Y P(f|F)P(FIE)P(Ele), (2)
Fe

Q

where F and £ denote the source and target parse
trees and they yield f and e, respectively.

In this paper, we call P(E|e) the target tree model
and P(F|E) the tree-mapping model from target to
source. Models are assumed to be independent of
each other. The probability P(f|F) is 1.0 by its def-
inition, so Equation 2 is modified as follows.

P(fle) =~ ZP(]—"\S)P(ﬂe). (3)
F.E
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3.2 Bidirectional Transation M odel

The target word sequence é is the same if the prob-
ability of Equation 1 is multiplied by itself. There-
fore, we can obtain a bidirectional translation model
by the following modification.

argmax P(elf)
= argmax P(elf)?
e
= argmax P(e)P(f|e)P(elf). (4)

According to the above representation, the final
score of the translation model is given by multi-
plying the translation model from source to target
(P(e|f), forward translation model) and the transla-
tion model from target to source (P(f|e), backward
translation model). Then, we obtain the score of the
bidirectional translation model by applying Equa-
tion 3 to these models as follows.

(f\e)P(e!f)
= Y P(FIENP(Ee)
FrE
Z P 5// f” F,/|f)
e FY

Q

P(ﬂ) EIF)P(FIE)P(Ele). (5)

Equation 5 is regarded as the score that the source
sentence is translated to a target sentence and then
the target is translated to the same source again. In
other words, the bidirectional translation model in-
cludes backward translation probability. Backward
translation is used for checking the correctness of
MT results (Yasuda et al., 2003), utilizing a feature
that the most incorrect translation cannot restore the
original source sentence. The bidirectional trans-
lation model involves the above feature, so we can
expect the following effects.

e Incorrect translation caused by incorrect pa-
rameters in the models is reduced. *

e Since the model includes the source tree
model, a correct parse tree of the source sen-
tence is derived from the viewpoint of the
source language.

LIf the models were perfect, the bidirectional translation
model would not be necessary. However, our models contain
many incorrect parameters due to inperfect training or rough
approximation, so we employed this approach.
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Equation 5 is nearly equal to the log linear model
(Och and Ney, 2002), in which the feature func-
tions are probabilities of source/target tree models
and tree mapping models, and the weights of the
models are uniform.

3.3 Inside Probability

The source and target tree models can be regarded
as probabilistic context-free grammar (PCFG).
Namely, nodes in the tree are generated indepen-
dently of each other, and the probability of the tree
is computed by the product of the probabilities of a
parent node generating a child node sequence (i.e.,
the inside probability).

P(FIf) = ][ P@), (6)
0:0cF

P(le) = ][ P(). O
el

Here, 6 and 7 denote context-free grammar rules
that construct F and &, respectively.

The probability of the forward and backward
tree-mapping model is computed by the following
equation in the same manner as the inside probabil-
ity. Figure 2 shows an example of these models.

pPElF) = I Plo), (8)

0:0eF,
el

II P@m. )
0:0cF,
TTEE

P(FlE) =

By using the inside probability, the score of the
bidirectional translation model can be computed re-
cursively from that of child sub-trees.

For example, supposing that a bilingual node N*
directly contains K child sub-trees (i.e., N} is the
top node of F that yields £¢, and #° is the CFG rule
of Nj — N N7PK. Ni &%, and ' are those
of the target side), the score is computed by the fol-
lowing equation.

P(Fi|£) P(E'|F) P(FIE) P(E|e')
= II P®P|6)PEO)P()

9:96.7:’:
el

= P(6")P(x'|0") P(0'|x") P ()

. ﬁ P(fi+j’fz’+j)P(5i+j’]:i+j)
,P(]:z‘—kj |gi+j)p(5i+j |ei+j)

j=1
(10)
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Figure 3: Example of Phrase Alignment

Therefore, the score of the bidirectional transla-
tion model can be computed in a bottom-up manner,
so it can also naturally be applied to a bottom-up
parser that parses two languages.

4 Training

In the training phase, we assume that parse trees
are given in advance in order to reduce complexity.
Therefore, the problems in the training phase are (1)
extracting corresponding nodes between bilingual
trees (phrase alignment) and (2) estimating proba-
bilities of the source and target tree models and the
tree-mapping model.

4.1 PhraseAlignment

The phrase alignment used here is a similar ap-
proach to acquisition of alignment templates (Och
and Ney, 2004), which extracts phrases based on the
continuity of word alignment. The phrase alignment
in this paper uses not only the continuity of word
alignment but also the constraints of parse trees.
Namely, only phrases that are a part of the source
and target trees are extracted.

Figure 3 shows an example of this phrase align-
ment. The phrases are extracted as follows.

1. First, perform word alignment in both direc-
tions (source to target and target to source). We
use Viterbi alignment of IBM model 4 learned
by GIZA++ (Och and Ney, 2003).

2. Next, extract sure alignments, i.e., those that
agree with Viterbi alignments in both direc-
tions. The alignments that do not agree in both
directions are regarded as possible alignments.
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3. For each combination of the sure alignments,
extract correspondences of syntactic nodes that
only contain the combination and exclude the
other sure alignments. If correspondence is
ambiguous, the correspondence that contains
the most possible alignments is selected.

For example, by focusing on the sure alignments
(2) and (3) in Figure 3, the pair (NP — 12 0’ clock)
and (NP — 12 ji) is extracted as a bilingual phrase
because it only contains (2) and (3) (i.e., it does not
contain the sure alignments (1), (4), (5), and (6)).
However, focusing on the sure alignments (4) and
(5), there are no sub-trees that contain only them
and thus do not contain (1), (2), (3), and (6). There-
fore, the English word sequence “leave at” and the
Japanese word sequence “ni de” are not extracted
as a bilingual phrase. Table 1 shows a list of the
extracted phrases from Figure 3.

The bilingual phrases extracted here are regarded
as the flat phrases. They can be directly applied to
syntactic parsing because they have syntactic labels.

Moreover, the results of phrase alignment main-
tain hierarchy. Using this information, context-free
grammar rules of source and target language are
generated. For example, the bilingual phrase 9 in
Table 1 dominates phrases 8 and 7 in its children.
If phrases 8 and 7 are generalized as non-terminal
symbols, an English grammar rule vP — VB PP and
a Japanese rule vP — PP V are acquired as the tree-
mapping rule.

4.2 Parameter Estimation

In this paper, all probabilities of models are esti-
mated from relative frequencies. For example, a
probability in the source tree model is estimated by
the following equation.

P(0") = P(N{ .. NFEING)

count(]\fjcJrl e N;fK, N})

= : , (11
count(N%) (1)

where count(N) denotes the frequency of the
syntactic node N that appears in a training corpus.
A probability in the target tree model is estimated in
the same way as done for the source tree model.

A probability in the forward tree-mapping model
is estimated from the following equation. The back-
ward tree-mapping model is estimated in the same
way.

count(rt, 6%)

P(r'|0") = :
(m'16%) count(0?)

(12)
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No. Japanese English

1 NOUN — basu NN — bus

2 NP — basu NP — thebus

3 NUM — 12 cp — 12

4 | NOUN — ji NN — o'clock

5 NP — 12ji NP — 120'clock

6 P — ni IN — at

7 PP — 12jini PP — atl2o'clock

8 v — de VB — leave

9 VP — 12jinide VP — leaveat 12 o'clock
10 S — basuwal2jinidemasuka | sQ — will thebusleaveat 12 o' clock

Table 1: Extracted Phrases from Figure 3

Our method does not distinguish between words
and phrases, so the translation probabilities of
words are re-estimated by relative frequencies. No
smoothing is performed in the experiments of this

paper.

5 Decoding

Our method first parses the input sentence. There-
fore, the decoder is realized by a CFG parser sup-
plemented with transfer and generation modules. In
this paper, we utilize a bottom-up chart parser. The
process of decoding is as follows.

1. First, parse the input sentence using the source
tree model in a bottom-up manner.

2. When a sub-tree of the input sentence is built,
refer to the tree-mapping model and the target
tree model and then construct sub-trees of the
output sentence.

3. For each output sub-tree, serialize it and gen-
erate word sequences of the output. The prob-
ability of the output word sequence is given by
the product of Equation 10 and the language
model probability.

4. Merge the listed output word sequences so that
the input word sequence and the syntactic la-
bels of the trees are identical. Then, the top n
sequences of the highest scores are kept as the
translation results.

5. Repeat Steps 1 to 4 until the entire input sen-
tence is parsed.

Figure 4 shows an example in which the Japanese
partial sentence “12 ji ni de” is translated into En-
glish. If the parsing result of the input sentence is
ambiguous, or there are multiple mappings, each in-
put tree is mapped one by one, and the listed output
(partial) sentences are merged in Step 4. Through
this process, not only the output sequence but also
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the syntactic labels of the input and output are ac-
quired, so the decoder can parse and transfer the
higher structure.

If the parsing of the input (or output) sentence
fails, the decoder extracts partial translations from
its agenda and sequentially outputs the translations
whose products of the probabilities are the highest.

6 Experiments

We evaluate the proposed method through Japanese
to English translation.

6.1 Experimental Settings

Corpora: The corpus used here is the Basic
Travel Expression Corpus (BTEC) (Takezawa et
al., 2002; Kikui et al., 2003). This is a collec-
tion of Japanese sentences and their English trans-
lations based on expressions that are usually found
in phrasebooks for foreign tourists. The corpus size
is shown in Table 2. IWSLT in Table 2 is a corpus
used in the evaluation campaign of the International
Workshop on Spoken Language Translation (Akiba
et al., 2004), which is a subset of BTEC. The test
set is the same as that of IWSLT. 2

Training: Word alignment was acquired from the
Viterbi alignment of IBM model 4 using GIZA++
(Och and Ney, 2003). Charniak (2000)’s parser was
used for English parsing, and a rule-based phrase
structure parser developed in-house was used for
Japanese parsing in the training phase.

Word bigram and trigram models learned by
CMU-Cambridge Statistical Language Modeling
Toolkit (Clarkson and Rosenfeld, 1997) formed the
language model.

Evaluation Metrics. We used BLEU (Papineni et
al., 2002), NIST (Doddington, 2002), and mMWER
(multiple Word Error Rate, (Nief3en et al., 2000))

2In these experiments, we arranged numerical words into
numbers (e.g., “fifty/CD one/CD” — ‘51/CD’), so the number
of words is different from that of IWSLT.
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Step 4

A
leave at 12 o’ clocl

|eave at noon
leave 12 o' clock

search decoder, Pharaoh, developed by USC ISI
(Koehn et al., 2003) 3. The same phrase set as
used by the proposed method was used for de-

In comparing the methods, the best result was
obtained by the proposed method, which uses syn-
tax and flat phrases for decoding, for both BTEC

Step 1 Step 2 Step 3
N A ; VB PR
12jini  de leave at 12 o'clock leave at 12 o’ clock
exit at noon leave at noon
start to12o'clock exit at 12 o'clock
NP ni oy B b
12ji de leave 12 0'clock leave 12 o' clock
exit noon |leave noon
start exit 12 o' clock
12 jini d '\'jgg_vg_g_t_%_z_ o'clock [eaveat 12 o'cl ockJ
Figure 4: Example of Decoding
Set Name | Item Japanese English
BTEC # of Sentences 152,170
(Training) | # of Words 1,178,419 1,103,600
# of Diff. Words 16,686 10,669 coding. 4
IWSLT # of Sentences 20,000
(Training) | # of Words 188,533 182,018
# of Diff. Words 8,652 6,133
Test # of Sentences 500 —
# of Words 4,018 —
# of Diff. Words 888 —

Table 2: Corpus Size

metrics for the automatic evaluation. For the sub-
jective evaluation, an English native classified the
translations into the four ranks of A: Perfect, B:
Fair, C: Acceptable, and D: Nonsense (Sumita et
al., 1999). Note that a lower score denotes a bet-
ter translation in the mMWER metric.

6.2 Results

6.2.1 Trandation Quality

First, we measured the translation quality of the pro-
posed method. The results are shown in Table 3. In
order to measure the effect of syntactic transfer and
flat phrases independently, two alternative methods
were applied:

e Flat phrases were excluded from the translation
model (w/o phrases). Only the most primitive
rules were applied to decoding.

e Decoding was performed without syntactic in-
formation. We used the phrase-based beam
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and IWSLT by all metrics. The quality of the pro-
posed method without flat phrases is better than that
of Pharaoh. We suppose that this is due to using
the bidirectional translation model. However, in
syntactic-transfer-based M T, we can simultaneously
utilize flat phrases and syntax, so both approaches
should be used to improve translation quality.

6.2.2 ParsingFailure

Since syntactic-transfer-based MT performs pars-
ing, a higher structure could not be built if the pars-
ing failed to build the lower structure due to the
lack of grammar rules. In this experiment, 42 sen-
tences (8.4%) showed failed parsing in BTEC, and
110 sentences (22%) had failed parsing in IWSLT.

Figure 5 shows that the subjective quality distin-
guished parsing success and failure in the case of
BTEC. The quality is clearly better when the pars-
ing succeeded, and no translation became perfect
when the parsing failed.

3http://www.isi.edu/licensed-sw/pharach/

4The weights of models for Pharaoh are experimentally de-
termined to minimize mMWER by using a development set of
BTEC. Uniform weights are used for the proposed decoder, and
the 20-best is set.
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Automatic Evaluation Subjective Evaluation
Training Set System mWER BLEU NIST A A+B  A+B+C
BTEC Proposed System (w/ phrases) 0288 0.638 10.18 | 68.2% 76.6% 83.0%
Proposed System (w/o phrases) | 0.334 0566 9.20 | 62.0% 72.6% 78.8%
Pharaoh (w/ phrases) 0372 0530 9.72 | 55.4% 66.0% 75.6%
IWSLT Proposed System (w/ phrases) 0476 0414 838 | 434% 55.0% 63.8%
Proposed System (w/o phrases) | 0.478  0.387 8.01 | 41.6% 53.8% 63.0%
Pharaoh (w/ phrases) 0523 0382 7.65 | 32.0% 458% 58.2%
Table 3: Translation Quality (Japanese-to-English)
Training Set | Parsing Subjective Evaluation: Ranking Ratio
SO%ngr?tl.l : (68%) E(S%) (6%)4 m
rec | S P aé‘%> el
Py 0 S0 (64% OD/

Figure 5: Subjective Evaluation According to Parsing Success/Failure (in Proposed Method with Phrases)

Koo

Proposed (w/o Phrases)
0.48F

0. 4710Proposed (w/ Phrases)

100
N-best (Beam Width)

1000

Figure 6: Changes of Translation Quality Accord-
ing to N-best Size (NWER)

In contrast with monolingual parsing, our method
experiences parsing failure more frequently because
(1) both the source and the target sentences must be
parsed, and (2) only grammar rules on one side of
the translation equivalence can be applied to pars-
ing. Reduce parsing failure is a task that must be
accomplished to improve translation quality.

6.2.3 Trandation Quality Accordingto N-best
Size

Figure 6 shows the changes in the multiple word
error rates according to the n-best size in the case
of IWSLT. The translation quality by Pharaoh im-
proved along with the expansion of the beam width.
In the proposed methods, the quality was nearly
fixed to the n-best size.

Generally, beam search decoders decode from the

head or tail of the sentence. On the other hand,
a syntactic-transfer-based decoder decodes the in-
put sentence from the content words composing
the base NP phrases, while functional words are
transferred later. The translation of most functional
words cannot be determined until content words are
translated. We assume that this explains how good
translations could be obtained even with a small n-
best size.

7 Reated Work

Statistical machine translation that employs syntax
has been proposed as outlined below.

Yamada and Knight (2001) and Charniak et al.
(2003) proposed translation and language models in
which the input sentence is mapped to the output
parse tree. Even though they only used parse trees
for one side, while we use both sides, a syntax-based
language model would improve the fluency of trans-
lation.

Graehl and Knight (2004) and Melamed (2004)
proposed theoretical models that employ parse trees
of source and target languages. Our proposed
method is a realization of these methods.

On the other hand, Koehn et al. (2003), Vogel
et al. (2003), and Zens and Ney (2004) proposed
phrase-based statistical MTs that do not use syn-
tactic information. Koehn et al. (2003) reported
that the translation quality was degraded if flat
phrases were constrained by parse trees in the train-
ing phase. However, as we mentioned above, syn-
tactic information would improve translation qual-
ity if it were used in the decoding phase.
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8 Conclusions

This paper presented a syntactic-transfer-based
method of statistical MT. The proposed method can
combine the syntax and flat phrases used in phrase-
based SMT. Experiments verified that translation
quality improved by combining syntactic transfer
and flat phrases.

Since a syntactic-transfer-based decoder decodes
an input sentence from content words to functional
words, high-quality translation can be obtained even
if the n-best size is small.

The uniform weights of the models were used in
this paper. We will attempt to optimize the weights
using the log-linear model.
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