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Abstract 

Statistical machine translation relies heavily 

on the available training data. However, in 

some cases, it is necessary to limit the amount 

of training data that can be created for or 

actually used by the systems. To solve that 

problem, we introduce a weighting scheme 

that tries to select more informative sentences 

first. This selection is based on the previously 

unseen n-grams the sentences contain, and it 

allows us to sort the sentences according to 

their estimated importance. After sorting, we 

can construct smaller training corpora, and we 

are able to demonstrate that systems trained on 

much less training data show a very 

competitive performance compared to baseline 

systems using all available training data. 

1 Introduction 

The goal of this research was to decrease the 

amount of training data that is necessary to train a 

competitive statistical machine translation system 

regardless of the actual test data or its domain. 

“Competitive” here means that the system should 

not produce significantly worse translations 

compared to a system trained on a significantly 

larger amount of data. 

It is important to note that we assume that the 

test data (and its domain) is not known at the time 

we select the actual training data. This means the 

test data has no influence on the selection process.  

Statistical machine translation can be described 

in a formal way as follows: 
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Here t is the target sentence, and s is the source 

sentence. P(t) is the target language model and 

P(s|t) is the translation model used in the decoder. 

Statistical machine translation searches for the 

best target sentence from the space defined by the 

target language model and the translation model.  

Statistical translation models are usually either 

phrase- or word-based and include most notably 

IBM1 to IBM4 and HMM (Brown et al., 1993; 

Vogel et al., 1996; Vogel et al., 2003). Some recent 

developments focused on online phrase extraction 

(Vogel et al., 2004).  

All models use available bilingual training data 

in the source and target languages to estimate their 

parameters and approximate the translation 

probabilities. 

One of the main problems of Statistical Machine 

Translation is the necessity to have large parallel 

corpora available. This might not be a big issue for 

major languages, but it certainly is a problem for 

languages with less resources. To improve the data 

situation for these languages, it is necessary to hire 

human translators at enormous costs who translate 

corpora that can later be used to train statistical 

machine translation systems. 

Our idea focuses on sorting the available source 

sentences that should be translated by a human 

translator according to their approximate impor-

tance. The importance is estimated using the 

unseen n-grams of a sentence to be sorted given 

the sentences that were selected earlier. This means 

the algorithms will try to get the best possible 

unseen n-gram coverage for each newly selected 

sentence. We refine this later by taking the length 

of the respective sentence into account as well. 

2 Motivation 

There are three inherently different motivations for 

the goal of limiting the amount of necessary 

training data for a competitive system that are best 

described by their actual applications. 

2.1 Application 1:  

Reducing Human Translation Cost 

The main problem of portability of SMT systems 

to new languages is the involved cost to generate 

parallel bilingual training data as it is necessary to 

have sentences translated by human translators. 
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An assumption could be that a 1 million word 

corpus needs to be translated to a new language in 

order to build a decent SMT system.  

A human translator could charge in the range of 

approximately 0.10-0.25 USD per word depending 

on the involved languages and the difficulty of the 

text. The translation of a 1 million word corpus 

would then cost between 100,000 and 250,000 

USD. 

The concept here is to select the most important 

sentences from the original 1 million word corpus 

and have only those translated by the human 

translators. If it would still be possible to get a 

similar translation performance with a significantly 

lower translation effort, a considerable amount of 

money could be saved. 

This could especially be applied to low density 

languages with limited resources (compare Lavie 

et al., 2004; McEnery et al., 2000).  

2.2 Application 2:  

Translation on Small Devices 

Another possible application is the usage of 

statistical machine translation on portable small 

devices like PDAs or cell phones. Those devices 

tend to have a limited amount of memory available 

which limits the size of the models the device can 

actually hold and a larger training corpus will 

usually result in a larger model.  The more recent 

approaches to online phrase extraction for SMT 

make it necessary to have the corpus available (and 

in memory) at the time of translation (Callison-

Burch et al., 2005; Zhang and Vogel, 2005). 

Given the upper example, a small device might 

not be able to hold a 1 million word bilingual 

corpus but e.g. only a corpus with 200,000 words. 

The question is now which part of the corpus 

(especially which sentences) should be selected 

and put on the device to get the best possible 

translation system. 

2.3 Application 3:  

Standard Translation System 

Even on larger devices that do not have rigid 

limitations of memory, the approach could be 

helpful. The complexity of online phrase extraction 

and standard training algorithms depends mainly 

on the size of the bilingual training data. Limiting 

the size of the training data with the same 

translation performance on these devices would 

speed up the translations.  

Another problem is that the still widely used 32 

bit machines like the Intel Pentium 4 and AMD 

Athlon XP series can only address up to 4 

gigabytes of memory. There are already bilingual 

corpora in excess of 4 gigabytes available, and 

therefore, it is necessary to select the most 

important sentences from these corpora to be able 

to hold them in memory. (The last issue will 

certainly be resolved by the widespread 

introduction of 64 bit machines which can 

theoretically address 17 million terabytes of 

memory.) 

3 Previous Work 

In general this research can be regarded as an 

example of active learning. This means the 

machine learning algorithm does not just passively 

train on the available training data but plays an 

active role in selecting the best training data. 

Active learning, as a standard method in machine 

learning, has been applied to a variety of problems

in natural language processing, for example to 

parsing (Hwa, 2004) and to automatic speech 

recognition (Kamm and Meyer, 2002). 

It is important to note the difference between this 

approach and approaches to Translation Model 

Adaptation (Hildebrand et al., 2005) or simple sub-

sampling techniques that are based on the actual 

test data. Here, we assume that the test data is not 

known at selection time, so the intention is to get 

the best possible translation system for every 

possible test data. 

4 Description of Sentence Sorting 

4.1 Algorithm 

The sentences are sorted according to the 

following very simple algorithm. 

For all sentences that are not in the sorted list: 
Calculate weight of sentences 
Find sentence with highest weight  
Add sentence with highest weight to sorted list  

4.2 Weighting of Sentences 

The interesting part is the calculation of the 

weight of each sentence. The weight of a sentence 

will generally depend on the previously selected 

sentences. 

As mentioned before, state-of-the-art statistical 

machine translation systems are using word- and 

especially phrase-based translation models. This 

means they align words and phrases in the source 

and target sentences of the training data and use 

these as the building blocks for the final 

translations.  It is obvious that the performance of a 

translation system will then largely depend on the 

word and phrase coverage of the test data.  This led 

us to the first idea to try to optimize the word and 

phrase (or generally n-gram) coverage by just 

using the number of previously unseen n-grams in 

a sentence as its weight. 
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We tried this approach for n-grams up to trigrams. 

This gives the following easy terms for the 

calculation of the weight. 

grams)unseen(# )(
j
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=
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n

The parameter j here determines the n-grams that 

are considered and was set to values of 1, 2 and 3 

in the experiments. These simple weighting 

schemes already show improvements over the 

baseline systems as shown in the later parts of the 

paper, but they have various shortcomings. 

They focus only on improving the coverage but 

do not take the actual translation cost of the 

sentence into account (Translators generally charge 

per word and not per sentence). This leads to the 

fact that longer sentences tend to get higher 

weights than shorter sentences because they might 

contain more unseen n-grams. The focus on 

coverage 1  is certainly very helpful but longer 

sentences are more difficult for the training of 

statistical translation models. 

(When training the translation model IBM1, for 

example, every possible word alignment between 

sentences is considered.) 

To fix these shortcomings, we changed the 

weighting terms to incorporate the actual length of 

a sentence by dividing the number of unseen 

n-grams by the length of the sentence (in words): 

sentence

n

sentence

j

n

grams)unseen(#

 )(
j

weight 1

−

=

∑
=

This changes the weight to – informally 

speaking – “new n-grams per word to translate." 

As noted earlier, the algorithms for training 

translation models in statistical machine translation 

usually work better (and faster) on shorter 

sentences. For this reason, we also tried to divide 

the number of unseen n-grams by the square of the 

length of a sentence which prefers even shorter 

sentences. 

                                                     
1 Please note that although these weighting schemes 

focus exclusively on improving the n-gram coverage,

they are not optimal in this sense. There are situations 

where it is possible to order sentences differently and 

reach 100% coverage earlier than when using this 

algorithm; but this is merely a theoretical issue and 

certainly does not significantly affect the results. 

Overall the weighting terms can be written as:  

i
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n
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The newly introduced parameter i determines the 

exponent of the sentence length and was set to 0, 1 

and 2 in the experiments. It is certainly possible to 

use higher values for i and j but the results 

indicated that higher values would not produce 

better results. Using this notation we can write the 

three weighting terms as weight0,j, weight1,j, and 

weight2,j. 

The following sections 5 and 6 will give an 

overview over the experiments that were done 

using this approach to sort sentences according to 

their estimated importance. For the first 

experiments in section 5, we translated English to 

Spanish.  The experiments in section 6 translating 

Thai to English were done to validate the positive 

results we saw in the experiments translating 

English to Spanish. 

5 Experiments English-Spanish 

5.1 Test and Training Data 

The training data for the first translations 

consisted of 123,416 English sentences with 

903,525 English words (tokens). This data is part 

of the BTEC corpus (Takezawa et al., 2002) with 

relatively simple sentences from the travel domain. 

The whole training data was also available in 

Spanish (852,362 words). 

The testing data which was used to measure the 

machine translation performance consisted of 500 

lines of data from the medical domain.  

All translations in this task were done translating 

English to Spanish. 

5.2 Machine Translation System 

The applied statistical machine translation 

system uses an online phrase extraction algorithm 

based on IBM1 lexicon probabilities (Vogel et al., 

2003; Vogel et al., 2004). The Language model is a 

trigram language model with Kneser-Ney-

discounting built with the SRI-Toolkit (SRI, 1995-

2005) using only the Spanish part of the bilingual 

training data. This system was also used for the 

validation experiments translating Thai to English.

We applied the standard metrics introduced for 

machine translation evaluation, NIST (Doddington, 

2001) and BLEU (Papineni et al., 2002).  
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5.3 Baseline Systems 

It was necessary for these experiments to have 

different baseline systems in order to compare the 

performance for different training data sizes.  

The baseline system that uses all available 

training data achieved a NIST score of 4.19 

[4.03; 4.35] and a BLEU score of 0.141 

[0.129; 0.154] (95% confidence intervals). 

For the baseline systems, that do not use all 

available training data, we selected sentences 

based on the original order of the training corpus.  

Translation systems trained on this (smaller) data 

give the scores shown in diagram 1 and 2. The 

diagrams clearly show that after a rather steep 

increase of the scores until the translation of 

approximately 400,000 words, the scores increase 

only slightly until they reach the final score for the 

system using all available training data. 
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Diagram 1: NIST scores for Baseline systems 
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Diagram 2: BLEU scores for Baseline systems 

5.4 Coverage Comparison 

As our initial weighting terms weight0,1, 

weight0,2, and weight0,3 focused exclusively on the 

coverage of uni-, bi- and trigrams, we first 

examined the actual coverage the sorted sentences 

would achieve. The diagrams 3 to 6 illustrate the 

coverage for the sentences in the original order and 

in the sorted order according to weight0,1, weight0,2, 

and weight0,3. Please note that the diagrams show 

the percentage of types covered in the training 

data, not the percentage of tokens. 
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Diagram 3: Coverages for sentences in  

original order 
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Diagram 4: Unigram coverage for sentences 

sorted according to weight0,1
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Diagram 5: Uni- and bigram coverage for 

sentences sorted according to weight0,2
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Diagram 6: Uni-, bi- and trigram coverage for 

sentences sorted according to weight0,3
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Diagram 3 shows the rather typical behavior of 

the uni-, bi- and trigram coverage for any training 

data. Figure 4 shows that it is possible to get 100% 

coverage of all unigrams in the training data after 

just translating less than 10% of the sentences and 

less than 10% of the words. This performance is 

not really surprising as the weighting term 

weight0,1, that was used to sort the sentences in 

diagram 4, only focuses on unigrams. The 

diagrams 5 and 6 illustrate, that similar graphs can 

be achieved if the weighting term also equally 

focuses on bi- and trigrams. 

5.5 Translation Results 

Because of the limited space we will only show 

graphs for the NIST scores for each experiment. 

This can be justified as the graphs for the BLEU 

scores showed basically the same behavior. 

Results for term weight0,j

Diagram 7 illustrates the NIST scores for 

systems where the sentences were sorted according 

to weight0,j.  
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Diagram 7: NIST scores for sentences sorted 

according to weight0,j

If the optimization only uses the number of 

previously unseen unigrams to rank a sentence, the 

systems score significantly higher than the baseline 

for very small amounts of training data. But the 

steep increase stops very soon, and the systems fall 

below the baseline but recover towards the end and 

finish on the same scores. The reason for this 

pattern is most probably that the optimization 

achieves a much better coverage for the smaller 

amounts of training data, but after a while, the 

baseline system reaches a similar coverage of the 

testing data and probably has a more meaningful 

language model with more realistic frequencies. 

These problems are clearly fixed by 

incorporating the bi- and trigrams into the 

optimization process. The scores no longer fall 

beyond the scores of the baseline systems but stay 

consistently higher. 

The optimization based on uni- and bigrams 

generally achieves slightly better scores than the 

optimization based on uni-, bi- and trigrams (the 

differences for most data sizes are not statistically 

significant). 

The optimization based on uni- and bigrams 

reaches a NIST score of 4.0 at 200,000 and a NIST 

score of 4.1 at 320,000 translated words. A score 

of 4.0 is only about 5% worse, a score of 4.1 is 

only about 2% worse than the baseline score of 

4.1916 (achieved when training on the whole 

training data). Scores of 4.1 are already in the 

confidence interval of the baseline system, so it is 

highly probable that these systems are not signifi-

cantly worse than the best baseline system. 

Results for term weight1,j

The difference between the term weight0,j and 

weight1,j is the incorporation of the length of a 

sentence. The number of unseen n-grams is divided 

by the number of words in this sentence to get the 

weight for the sentence. 

Diagram 8 illustrates the according NIST scores. 
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Diagram 8: NIST scores for sentences sorted 

according to weight1,j

A comparison with the Diagram 7 shows that the 

NIST scores for the sorting of the sentences 

according to weight1,j are even better than for the 

term weight0,j  

The optimization based on unigrams shows a 

very similar behavior to term weight0,j. We notice 

the same lower scores after about translating 

200,000 words and a score recovery towards the 

end.  

The optimizations based on uni- and bigrams 

and uni-, bi- and trigrams are clearly improved 

compared to weight0,j. 

We also do not see any significant differences 

between the optimization based on uni- plus 

bigrams and the optimization incorporating 
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trigrams, too. The performance is very similar with 

slight advantages for the optimization based on 

uni- and bigrams only. 

In this case a NIST score of 4.0 was already 

reached at 170,000 translated words while 4.1 was 

reached at 220,000 translated words.  

Results for term weight2,j

As explained in section 4.2 we tried to prefer 

shorter sentences in term weight2,j by dividing the 

number of unseen n-grams by the square of the 

number of words in the respective sentence.  

Diagram 9 shows that this did not further 

improve the results achieved using term weight1,j

but gave lower scores. The scores stay below 4.1 

(NIST) up to over 800,000 translated words. 
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Diagram 9: NIST scores for sentences sorted 

according to weight2,j

Relative Improvements 

The maximum relative improvement over a 

baseline system occurs at 40,000 translated words 

with 41% in NIST score improvement for the 

weighting term weight1,2, that overall showed the 

best performance. Diagram 10 gives an overview 

of the improvements for this term. 
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Diagram 10: Relative improvements over the 

baseline using weight1,2 (NIST scores) 

One might argue that the improvement of 41% at 

only 40,000 translated words is irrelevant, as the 

translations will still be very deficient. This might 

be the case, but there are applications where even a 

low quality translation can be helpful (Germann, 

2001).  

Besides that, some translations are surprisingly 

good and show considerable improvements over 

the baseline system (Table 1). The first sentence 

especially demonstrates the improved coverage; 

here for the words “heart”, “beating” and 

“normally”. The word “beating” is unfortunately 

not correctly translated but the final result is still 

much better than the translation of the baseline 

system. 

English  
source

your heart is beating normally. 

Spanish 
reference

su corazón late normalmente. 

Baseline for  
40k words

y tu heart está beating normally.

Best system 
for 40k words

su corazón latía normalmente. 

English  
source

a little bit, but not much. 

Spanish 
reference

un poco, pero no mucho.

Baseline for  
40k words

un poco excesivo, pero servirá 
mucho

Best system 
for 40k words

un poco, pero no mucho

English  
source

i have herpes?

Spanish 
reference

¿tengo herpes?

Baseline for  
40k words

podría darme herpes?

Best system 
for 40k words

tengo herpes?

Table 1: Example translations at  

40,000 translated words 

6 Experiments Thai-English 

We applied the weighting algorithm to another 

task in order to validate the positive results. 

The task here is to translate Thai to English in 

the medical domain. We used the weighting term 

weight1,2 as it showed the best results in the 

previous experiments. This means the weight of a 

sentence is calculated as the number of previously 

unseen uni- and bigrams divided by the length of 

the sentence. 
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6.1 Test and Training Data 

The whole training corpus for these experiments 

had 59,191 sentences with 457,736 English words 

from the medical domain. The training data was 

also available in Thai with 422,692 words.  

The Test Data consisted of 496 lines, also taken 

from the medical domain. 

6.2 Baseline Systems 

Table 2 shows different Baseline scores for these 

systems. Even with more than 43,000 sentences – 

more than two-thirds of the whole data – the scores 

are still 28% (NIST) and 40% (BLEU) lower than 

if all training data is used. 

#sentences #English 
words 

NIST BLEU 

38,000 306,231 4.30 0.172 

43,000  345,773 4.29 0.176 

59,191 457,736 5.99 0.294 

Table 2: Scores for Baseline systems  

Thai – English 

6.3 Results 

The NIST and BLEU scores in Table 3 clearly 

indicate that the sorted sentences achieve 

significantly better results than the baseline 

systems. The system trained on only 10,000 

sentences clearly outperforms the NIST score of 

the baseline systems trained on 43,000 and 38,000 

sentences and reaches an only slightly lower 

BLEU score. 

At 30,000 sentences the NIST score is only 2% 

lower than the highest score with the BLEU score 

being only 7% lower.  

This shows overall that we can get very similar 

results on a different task and language pair. 

#sentences #English 
words 

NIST BLEU 

5,000 43,040 4.11 0.104 

10,000 82,997 4.84 0.169 

20,000 187,595 5.79 0.263 

30,000 319,405 5.86 0.274 

40,000 395,374 5.92 0.280 

59,191 457,736 5.99 0.294 

Table 3: Scores for Experiments  

Thai - English 

7 Future Work 

The presented weighting schemes could 

certainly incorporate other features of the original 

training data.  

It could be useful to include the actual frequency 

of an n-gram into the weighting of a sentence. 

Preferring the more frequent words could help 

because they will cover a higher percentage of the 

training corpus. On the other hand, less frequent 

words will have a higher information gain 

(especially important for the NIST score), so it 

could also be useful to give higher weight to less 

frequent words. This will certainly be interesting to 

investigate. 

The presented schemes “try” to cover every 

n-gram (up to a certain n) once and then do not 

consider it anymore. It might be helpful to have a 

goal of covering every n-gram k times to get better 

estimates of translation probabilities. 

Another possible improvement could be to 

consider the actual coverage situation when 

weighting the sentences. If the coverage is still 

very low, it might be more important to cover 

unigrams (to at least get the words right) while it 

might be more important to cover bigrams in later 

stages. 

It might be reasonable for some applications to 

also consider the target language part of the 

training data when sorting the sentences. This is 

certainly not possible if the goal is to limit the 

effort for human translators and the target 

sentences are not even available at selection time. 

It could however be incorporated in the selection 

of training data for small devices because here the 

translations will already be available. 

8 Conclusions 

We presented weighting schemes to sort training 

sentences for statistical machine translation 

according to their importance for the translation 

performance. The weighting mainly tries to 

improve the n-gram coverage while taking the 

sentence length into account.  

The best performance is realized using the 

number of previously unseen uni- and bigrams and 

dividing this by the length of the respective 

sentence.  

Using the sorted training data, we were able to 

achieve similar NIST and BLEU scores with 

considerably less data. 

These results can be used in different 

applications ranging from low cost portability to 

translation systems on small devices.  
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