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Abstract

An EBMT system whose translation exam-
ple unit is a sentence, can produce an ac-
curate and natural translation if translation
examples similar enough to an input sen-
tence are retrieved. Such a system, how-
ever, suffers from the problem of narrow
coverage. To reduce this disadvantage, a
large-scale parallel corpus is required, which
calls for an efficient retrieval method. The
authors propose a method for a sentence-
wise EBMT system to efficiently retrieve the
most similar sentences using the measure of
edit-distance without omissions. The pro-
posed method uses search space division,
word graphs and an A* search algorithm.
The performance of the EBMT system im-
plemented with the method was evaluated
through Japanese-to-English translation ex-
periments using a bilingual corpus compris-
ing hundreds of thousands of sentences from
a travel conversation domain. The EBMT
system achieved a high-quality translation
ability by using a large corpus, and also
achieved efficient processing by using the
proposed retrieval method.

1 Introduction

An Example-Based Machine Translation
(EBMT) system retrieves the translation
examples that are most similar to an input
expression and adjusts the examples to obtain
the translation. The translation example unit
is usually a phrase, and the translations of
phrases are combined into a translation of the
input sentence. Although a phrase looks like
a suitable translation example unit because of
its generality for covering various sentences,
there is a risk of mixing errors or producing
unnatural translations while combining phrases
into a sentence (Somers, 2003). Such risk,
however, can be reduced if the translation
example unit is a sentence. A translation
example similar enough to an input sentence
as a whole results in an accurate and natural
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translation of the input sentence. Of course,
an EBMT system whose translation example
unit is a sentence (hereafter, we call this a
sentence-wise EBMT system), suffers from
the problem of narrow coverage because a
sentence is a longer unit and its generality is
lower. To achieve sufficiently broad translation
coverage by using sentence-wise EBMT, we
must prepare a large-scale parallel corpus and,
therefore, an efficient method is needed to
retrieve translation examples from a large-scale
corpus.

In this paper, we propose a retrieval method
for a sentence-wise EBMT system, whose mea-
sure of similarity is edit-distance. An efficient
retrieval method for EBMT has much in com-
mon with Translation Memory (TM). Research
efforts on TM (Sato, 1992; Cranias et al., 1997;
Planas and Furuse, 1999; Baldwin and Tanaka,
2001) focus on filtering algorithms for sentence
sets and/or matching algorithms between two
sentences. The methods adopting filtering al-
gorithms, first, filter sentences out by using,
for example, a clustering technique that applies
word vectors. Then, for each of the sentences
left as candidates, they repeat the matching
procedure between the two sentences, a candi-
date and the input. Unfortunately, these meth-
ods sometimes omit the most similar sentences
in the filtering process. On the other hand,
this paper proposes an efficient retrieval method
without omissions, as a solution for the problem
of searching for the sentences with the least edit-
distance among a corpus. This method does
not repeat the matching procedure between two
sentences, but proceeds to match the input sen-
tence and sentences in a corpus concurrently,
where the sentences are expressed as a graph.

The following sections give an overview of
the target EBMT system, an overview of the
proposed retrieval method, a description of the
search algorithm of the method, and a perfor-
mance evaluation.



2 Target EBMT System

2.1 Overview

(Sumita, 2003) proposed the Dp-match Driven
transDucer (D®), a sentence-wise EBMT
method, in which translation examples are sen-
tence pairs of source and target languages.
When translating an input sentence, the sys-
tem retrieves the translation examples whose
source sentences are the most similar to the in-
put sentence using the measure of edit-distance.
Translation patterns are then dynamically gen-
erated with consideration of differences between
the input sentence and the translation exam-
ples. D? keeps and retrieves translation exam-
ples that are not abstracted more than the word
sequences given in a corpus. Furthermore, the
changes in the target sentences of translation
examples are kept as small as possible while
translations are generated. Therefore, natural
translations occur if there are examples similar
enough to given input sentences.

2.2 Example Retrieval

Among the processing phases of D3, the exam-
ple retrieval phase tends to take the greatest
portion of the translation processing time. The
function of example retrieval is to find the ex-
amples with the minimum distance in the bilin-
gual corpus. This distance is measured between
word sequences of the input sentence and the
source sentence of an example.

The distance between word sequences is de-
fined as dist in Eq. (1), which is the edit-
distance including a semantic factor. In this
equation, Li,py: and Legample Tespectively in-
dicate the number of words in the input sen-
tence and that in the source sentence of the ex-
ample, while I and D denote the numbers of
insertions and deletions, respectively. Substi-
tution is considered as the semantic distance
between two substituted words, described as
SEMDIST. Substitutions are permitted only
between the content words of a common part
of speech. Following this equation, dist is the
total value of insertions, deletions and substi-
tutions normalized by the lengths of the word
sequences. SEMDIST is defined using a the-
saurus and ranges from 0 to 1. Furthermore,
SEMDIST is the division of K (the level of the
least common abstraction of two words in the
thesaurus) by N (the height of the thesaurus)
according to Eq. (2) (Sumita and Iida, 1991).
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If the minimum distance is not small enough,
the examples are not useful for translation.
Therefore, we use a threshold for the distance.
If there are no examples within the given thresh-
old, the retrieval, and furthermore, the whole
translation process fails with no output.

3 Proposed Retrieval Method

The function of our target retrieval process is
to retrieve every sentence whose edit-distance
dist against a given input sentence is the least
and falls within a given threshold, from among
the candidate sentences, which are all of the
source sentences in translation examples. This
distance is defined by the relation of two sen-
tences and can be calculated using DP-matching
(Cormen et al., 1989) between the two sen-
tences. Therefore, the candidate sentences with
the least distance can be found by repeating
DP-matching between a candidate and the in-
put. However, because the procedure of such a
naive algorithm takes time proportional to the
number of translation examples, it is difficult to
implement real-time processing for translation
using a large-scale corpus on ordinary comput-
ers. Consequently, we propose an efficient re-
trieval method using the classification of candi-
dates, word graphs and an A* search algorithm.
This method does not make omissions; that is,
in the definition of the distance dist and a given
threshold, the retrieval result of this method is
the same set of sentences as the case of using
DP-matching sequentially.

3.1 Candidate Set Classification

Candidate sentences are classified by the num-
ber of content words and the number of func-
tional words. This makes it possible to filter
candidates according to the numbers of content
words and functional words in the input sen-
tence and the distance threshold. That is, the
least possible distance can be calculated on the
assumption that all content words are the same
as each other, and all functional words are also
the same as each other. The classes of the least
possible distance greater than the threshold are
filtered out. The smaller the least possible dis-
tance of the class, the sooner the search process
is applied to the class. If a candidate of distance



smaller than the threshold is found in a class,
the threshold is updated with the distance of
that candidate. The smaller threshold can filter
out more classes. Furthermore, the search algo-
rithm in a class, which is described in Sect. 4,
utilizes the precondition that all sentences in a
class have the same number of content words
and the same number of functional words, and
therefore, the same number of words.

3.2 Word Graph

For each group classified by the numbers of con-
tent words and functional words, a word graph
is composed of all candidate sentences in the
class. Figure 1 illustrates an example of a word
graph. The word graph is a directed graph and
has a start node and a goal node. Each possi-
ble path from the start node to the goal node
corresponds to a candidate sentence. Common
word sequences in multiple sentences share the
same edges. The word graph is compressed so
that the number of nodes is the minimum by
the method of converting finite state automata
(Brzozowski, 1962). By using the word graph,
the search process scans all the sentences in a
class concurrently.

Figure 1: Example of Word Graph

3.3 A* Search Algorithm

The result of matching between two word se-
quences is represented as a sequence of substi-
tutions, insertions and deletions. We call the re-
sult a matching-sequence. The search process in
a class is to search for the matching-sequences of
the least distance among all possible matching-
sequences between the input sentence and each
sentence of the class. We use an A* search algo-
rithm (Nilsson, 1971) to solve the search prob-
lem.

Generally in an A* search algorithm, the
state of the least estimated cost is selected
and extended into successor states. In our
search problem, the state means an incomplete
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matching-sequence between the input sentence
and a path from the start node to the goal node
in a word graph.

4 Search

In this section, we focus on the search process
using a word graph. A word graph consists of
nodes and edges, and it has a start node and a
goal node. An edge consists of a word as label,
a source node and a destination node.

4.1 State Space Representation

We represent the search problem using the state
structure, operators and the definitions of initial
state and goal state.

4.,1.1 State

A state has four attributes: paths, node, input
and trans, whose contents are as follows.

e paths : List of partial matching-sequences.

e node : Node in the word graph indicat-
ing that matching has proceeded until this
node.

e input : Partial word sequence of the input
sentence not used for matching yet.

e trans : Indicator of operators available to
this state.

An exact match, a substitution, an inser-
tion and a deletion in matching-sequences of the
paths are represented as records including a la-
bel and a word or words: (E, word), (S, graph
word, input word), (1, input word) and (D, graph
word) respectively. The cost of a state is the cost
of an arbitrary matching-sequence in the paths,
where matching-sequences have the same cost.
The cost of a matching-sequence is the sum of
costs of the records in it. The costs are defined
as 0 for an E record, 1 for an I record, and 1 for a
D record. The cost for an S record is defined as
twice the semantic distance between the words
in the record, except that it is a small positive
value when the distance is 0. ' The small value

gives us the minimum cost of an S record.

4.1.2 Operators

A state is expanded into a successor state by
an operator. Five operators are defined as fol-
lows. While each T-operator and I-operator is
applied to a state, each of the operators, E, S
and D is applied to a combination of a state and

!This exception is set up in order to distinguish syn-
onymy from identity.



an edge. In the following description, each oper-
ator is applied to a state s, if necessary, with an
edge e, and s is expanded into a successor state
s'. For each operator, we describe the condition
where the operator can be applied, and the suc-
cessor state to be generated as the result of the
application.

¢ T-operator :

— condition :
S-operator.

s.trans is E-operator or

— result : s'.trans = selection from S-
operator and NIL (described below) if
s.trans is E-operator, NIL if s.trans is
S-operator.

Other attributes of s’ are the same as
those of s.

¢ E-operator— :

— condition : s.trans is E-operator,
and s.input is not empty,
and e.source is s.node,
and e.label and the head of s.input are
identical.

— result : s'.paths is generated by
adding an E record to each element of
s.paths.
¢ .node = e.destination.
¢'.input is generated by deleting the
head of s.
¢’ trans = selection from E-operator,
S-operator and NIL (described below.)

e S-operator :

— condition : s.trans is S-operator,
and s.input is not empty,
and e.source is s.node,
and elabel and the head of s.input
are content words of the same part of
speech but not identical,
and the semantic distance between
these two words is smaller than 1.

— result : s'.paths is generated by
adding an S record to each element of
s.paths.
¢’ .node = e.destination.
s.input is generated by deleting the
head of s.

s’ trans = selection from E-operator,
S-operator and NIL.

¢ I-operator :
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— condition : s.trans is NIL,
and s.input is not empty.

— result : s'.paths is generated by
adding an I record to each element of
s.paths.
s'.node = s.node
s’input is generated by deleting the
head of s.
¢’ trans = selection from E-operator,
S-operator and NIL.

e D-operator :

— condition : s.trans is NIL,
and s.paths includes such an
matching-sequence whose last record
is not an I record,
and e.source is s.node.

— result s'.paths is generated
from s.paths: first such matching-
sequences, whose last records are I
records, are deleted; second a D record
is added to each matching-sequence
left.
s’.node = e.destination.
s’.input = s.input.
¢’ trans = selection from E-operator,
S-operator and NIL.

In the definitions above, the selection from S-
operator and NIL means S-operator if there is a
possibility that S-operator can be applied to s,
and NIL otherwise. We judge that the possibil-
ity exists if the head of ¢’.input is a content word
and there is an edge whose source is s'.node
and whose label has the same part of speech
but is not identical to the head of s'.input.
The selection from E-operator, S-operator and
NIL means E-operator if there is an edge whose
source is s’.node and whose label is the head of
s’.input, and otherwise, the same as the selec-
tion from S-operator and NIL. T-operator does
not proceed to the actual matching process, but
controls the application order of other operators
through the trans attribute.

The second condition of D-operator prohibits
a D record after an I record. That is, we make
it a rule to put a D record before an I record in
a sequence of I and D records in order to avoid
the redundancy of the multiple appearance of
substantially the same matching-sequences.

4.1.3 Initial State and Goal State
In the initial state, the paths attribute is a list

of an empty matching-sequence, the node at-
tribute is the start node, the input attribute is



the whole word sequence of the input sentence,
and the trans attribute is the E-operator. A
goal state is such a state whose node attribute
is the goal node and whose input attribute is
empty.

4.2 Search Algorithm

From the state space formed using the defini-
tions of the initial state, the operators and the
goal states, we search for the goal states of the
minimum cost. As an initial condition, an upper
limit of cost is given, which is a given distance
threshold multiplied by the sum of the lengths
of the input sentence and a candidate sentence
in the word graph.

4.2.1 Evaluation Function
We define the evaluation function f* as follows.

f(s) = g(8) + h™(s)

g(s) is the cost from the initial state to the
state s, which equals the cost of state and can
be calculated from s.paths. If s is a goal state,
f*(s) = g(s). h*(s) is the lower limit of cost
that is taken from the state s to a goal state.

All sentences in a word graph have the same
number of content words and the same num-
ber of functional words. Therefore, we can tell
the numbers of content words in the input sen-
tence, content words in the word graph, func-
tional words in the input sentence, and func-
tional words in the word graph, which are un-
treated in the state s. Here, these numbers are
represented as Cinput, Coraphs Finput and Fyrapn
respectively. The lower limit of cost based on
the numbers of untreated words is expressed as

R'(s) below.

h’(8) = |C{np1;t = Cgraph| + |-Fm;mt - Fgraphl

Furthermore, on the assumption that one of
the operators E, S, I and D is applied to the
state s where the application of T-operator pre-
cedes if necessary, the lower limit of the cost
from s to a goal state is expressed as h”(s,0)
where o indicates an operator. The value of
h"(s,0) is as follows for each operator of o.

» E-operator : A/(s).

e S-operator : h'(s) plus the minimum cost
of an S record.

e I-operator |(Cinguz — 1) — Cgrapn| +
| Finput — Fyrapn| 4 1 if the head of s.input
is a content word, |Cinput— (?gmph| 1
|(Finput — 1) — Fgrapn| + 1 otherwise.
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e D-operator :

H.+1 if there is no edge whose source
is s.node and whose label is a functional
word,
H¢+1 if there is no edge whose source is
s.node and whose label is a content word,
1 plus the minimum value between H,. and
H; otherwise, where
He= |Cinput — (Cyraph — 1)

+ |-F}nput = Fgraph|v
Hy= |Cinput — Cgrapb|

+ | Finput — (Fgraph — 1)|-

By using these values, h*(s) is defined as: 1)
h"(s,E-operator) if s.trans is E-operator; 2) the
minimum value among h"(s,S-operator), h”(s,I-
operator) and h"(s,D-operator) if s.trans is S-
operator; and 3) the minimum value between
Rh"(s,J-operator) and h"(s,D-operator) if s.trans

is NIL.

4.2.2 Algorithm

The search algorithm is described below, where
OPEN is a list of unexpanded states and
CLOSED is alist of expanded states. The same-
ness of states in (5) means that two states are
the same if they have the same value for each
attribute except the paths.

1. set the value of cost upper limit and let
OPEN be a list including the initial state
alone.

2. terminate unless OPEN has a state of cost
within the cost upper limit.

3. remove a state s of the least value of f*

from OPEN and put s into CLOSED.

4. if s is a goal state, keep s as a solution,
change the value of cost upper limit with
the cost of s and return to (2).

5. expand s into all of its successor states and
for each successor state &', if f*(s’)is within
the cost upper limit, branch by the condi-
tions:

(a) if there is no same state as s’ in either

OPEN or CLOSED, put s’ into OPEN;

(b) if there is the same state as s’ whose
cost is larger than that of s’ in OPEN
or CLOSED, remove the same state
and put s’ into OPEN;



(c) if there is the same state as s’ whose
cost equals that of s’ in CLOSED, re-
move the same state and put s’ into
OPEN;

(d) if there is the same state as s’ whose
cost equals that of &' in OPEN, add
¢’ .paths to the paths of the same state.

6. return to (2).

4.2.3 Optimization

Word graphs tend to have the a larger number
of edges originating from the start node than
edges originating from another node. Therefore,
when D-operator is applied to a state whose
node attribute is the start node, many successor
states are generated consuming processing time,
which is the case when the head of a matching-
sequence is a D record. We prepare a series
of pseudo edges and nodes originating from the
start node to avoid the generation of a large
number of successor states. This time, when D-
operator is applied to a state whose node is the
start node, the state is expanded to a successor
state whose node is the first pseudo node. The
first pseudo node is the source of edges whose la-
bels are the second words of candidate sentences
and the edges flow into the ordinary network. A
state of the first pseudo node is expanded into
a state of an ordinary node by E-operator or S-
operator and into a state of the second pseudo
node by D-operator. It can be deduced from
the possible maximum distance threshold how
many steps of pseudo nodes we should prepare.
On the condition that the length of a candi-
date sentence is L and the length of the series
of D records on the head of a matching-sequence
is d, the input sentence with the least possible
distance is the sentence made from the candi-
date by deleting d words in the head. Then
the distance is d/((L — d) + L). If this distance
is greater than the maximum distance thresh-
old @, we can give up the search. Therefore,
d/((L —d)+ L) < O is the constraint on d and
it deduces d < 20L/(1 + ©). The maximum
integer of d on this condition is the number of
steps of pseudo nodes we should prepare.

5 Evaluation

We evaluated the performance of D?® imple-
mented with the proposed retrieval method
through experiments on Japanese-to-English
translation in a travel conversation domain us-
ing a large-scale corpus.
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5.1 Experimental Conditions

We employed a Japanese-and-English parallel
corpus, the Basic Travel Expression Corpus
(BTEC) (Takezawa and Kikui, 2003). BTEC is
a collection of Japanese sentences and their En-
glish translations usually found in phrase-books
for foreign tourists. The statistics of the corpus
are shown in Table 1. For the experiments, a
training set of 304,340 sentence pairs and a test
set of 510 Japanese sentences were extracted
from the corpus. We also used training sets of a
half, a quarter, an eighth or a sixteenth the size
of the original training set, where a larger set
included a smaller set. We call the size of the
original set 300K, and others 150K, 75K, 38K
and 19K.

Table 1: Statistics of the Corpus

Japanese English

# of sentences 404,022
# of words 2,870,280 2,473,711
avg. sentence length 7.10 6.12
vocabulary size 33,288 22,378

To evaluate translation quality, we employed
objective measures and a subjective measure.
The objective measures used were the BLEU
score (Papineni et al., 2002) and Multi-reference
Word Error Rate (mWER) (Ueffing et al.,
2002). Sixteen references were used for these
measures. Achieving a higher score by BLEU
and a lower score by mWER means that the
translation results can be regarded as more ad-
equate translations.

For the subjective measure (SM), each trans-
lation result was graded into one of four ranks
by a bilingual human translator who is a native
speaker of the target language, American En-
glish. The four ranks were (A) Perfect: no prob-
lem in either information or grammar; (B) Fair:
easy-to-understand with some unimportant in-
formation missing or flawed grammar; (C) Ac-
ceptable: broken but understandable with ef-
fort; and (D) Nonsense: important information
has been translated incorrectly (Sumita et al.,
1999). In the experimental results, we present
the SM as the cumulative relative frequencies of
the evaluation ranks: A, AB and ABC. ABCD
is shown as an output rate.

We used thesauri whose hierarchies are based
on the Kadokawa Ruigo-shin-jiten (Ohno and
Hamanishi, 1984), to calculate the semantic dis-
tances. We used a personal computer with Pen-
tinm4/2GHz and Allegro Common Lisp 6.2.



Table 2: Training Corpus Size and Performance (6 is the distance threshold)

SM (%) output | time (msec)
6 | size | mWER BLEU A AB ABC | rate (%) | avg. max.
19K | 0.4596 0.5448 | 53.7 659 71.0 825 | 62 550
38K | 0.4108 0.5967 | 58.2 70.6 75.1 863 85 930
1/3 | 75K | 0.3833 0.6295 | 64.7 74.1 79.0 88.8 | 121 1,690
150K | 0.3401 0.6554 | 71.2 804 83.3 91.8 | 218 3,310
300K | 0.3198 0.6508 [ 71.2 81.8 84.5 93.3 | 320 6,650
19K | 0.5060 0.4852 | 51.0 61.6 64.1 22 31 390
38K | 0.4583 0.5579 [ 55.1 65.9 68.8 776 | 41 680
1/4 | 75K | 0.4150 0.6413 | 63.1 71.8 75.1 822 | 53 530
150K | 0.3602 0.6775 | 70.2 78.4 80.2 86.5 | 96 1,600
300K | 0.3349 0.6678 | 70.4 80.2 82.2 89.4 | 133 2,040
5.2 Performance Ty 640 ' ' '
Table 2 shows the evaluation of translation re- é 300 | :mggﬂg:gj ﬁ _:_
sults using the distance thresholds (6) of 1/3 9
and 1/4. This table displays the relationship B 160 3
between training corpus size and performance, ';
i.e., translation quality, output rate and pro- = 80 T
cessing time. Translation quality increases as @ 40 L it ]
the corpus size increases, where the subjective §
measure and objective measures roughly corre- a 20 . . :
spond to each other. When using the lower dis- 19 38 75 150 300

tance threshold, the processing time is clearly
shorter although the output rate naturally de-
creases. Under three conditions, i.e., the con-
ditions of using the distance threshold of 1/3
and the 150K or 300K corpus, or the distance
threshold of 1/4 and the 300K corpus, the rate
of rank A exceeds 70% and that of AB reaches
above 80%. Under all the conditions, the av-
erage processing time is less than 0.4 second.
Under the condition of using the threshold of
1/4 and the 300K corpus, where the translation
quality is high, the average processing time is
about 0.1 second and the maximum time is 2
seconds, indicating that the proposed retrieval
method achieves efficient processing.

Figure 2 illustrates the relationship between
corpus size and average processing time with
axes of logarithmic scale. Although the process-
ing time increases as the corpus size increases,
the increasing scale is not linear but about a
half power of the corpus size.

5.3 Comparison with DP-matching

We compared the proposed graph-based re-
trieval method with naive methods repeating
DP-matching. We prepared three methods
called Simple-DP, Class-DP and Pruning-DP.
Simple-DP uses a hash table to retrieve exactly
matched sentences, and if there are no such sen-
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Training Corpus Size (K)

Figure 2: Training Corpus Size and Processing
Time

tences, repeats DP-matching for an input sen-
tence against all different source sentencesin the
corpus to find the sentences with the minimum
distance. Class-DP improves upon Simple-DP
by using the candidate set classification de-
scribed in Sect. 3.1. Pruning-DP improves upon
Class-DP by aborting a DP-matching procedure
as soon as the distance between the two con-
cerned sentences is proved to be greater than
the minimum distance so far or the threshold.
These three methods and the proposed method
retrieve the same set of similar sentences for a
given input sentence. In the experiment, we ex-
ecuted translations using the retrieval methods
and compared their processing time, where the
distance threshold used was 1/3.

Table 3 shows the average processing time for
each method. Pruning-DP actually improves
upon Simple-DP and Class-DP. However, the
proposed method far exceeds Pruning-DP. The
proposed method is 8.7 times as efficient as
Pruning-DP on the 19K corpus and 12.4 times



Table 3: Comparison with DP-matching-based Methods on Average Processing Time (processing
time for each method is represented with the unit of milli-second)

corpus size 19K 38K 75K 150K 300K
different sentence#t | 15,923 29,785 54,657 97,116 199,664
Simple-DP 2,752 4,815 8,101 12,731 26,189
Class-DP 1286 2,233 3813 6,045 10,925
Pruning-DP 539 880 1,449 2,310 3,961
Proposed method 62 85 121 218 320

on the 300K corpus.

6 Conclusion

We reported on a retrieval method for
a sentence-wise EBMT system using edit-
distance, and the evaluation of its performance
using a large-scale corpus. In experiments for
performance evaluation, we used a bilingual cor-
pus comprising hundreds of thousands of sen-
tences from a travel conversation domain. Ex-
perimental results show that the EBMT sys-
tem achieved a high-quality translation ability
by using a large corpus, and also achieved effi-
cient processing by using the proposed retrieval
method.
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