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Abstract
This paper reports the NTT statistical translation system par-
ticipating in the evaluation campaign of IWSLT 2005. The
NTT system is based on a phrase translation model and uti-
lizes a large number of features with a log-linear model. We
studied the various features recently developed in this re-
search field and evaluate the system using supplied data as
well as publicly available Chinese, Japanese, and English
data. Despite domain mismatch, additional data helped im-
prove translation accuracy.

1. Introduction

Recently, phrase-based translation combined with other fea-
tures by log-linear models has become the standard technique
for statistical machine translation. Shared task based work-
shops of machine translation including IWSLT and NIST
Machine Translation Workshops showed which features ef-
fectively improve translation accuracy. However, it remains
unclear whether using of these features all together with our
system is helpful.

One unavoidable problem with statistical approaches is
training data preparation. Since the amount of training data
is generally limited, how to utilize similar monolingual or
bilingual resources is an important research topic in statisti-
cal machine translation.

In this evaluation campaign, we studied the use of a large
number of reportedly effective features with our system and
also evaluated both additional monolingual and bilingual cor-
pus to improve translation accuracies.

2. Log-linear Models

Our system adopts the following log-linear decision rule to
obtain the maximum likely translation:
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denotes a normalization term. Feature function scaling fac-
tors λj are efficiently computed based either on the maxi-
mum likelihood criterion [1] or the minimum error rate crite-

rion [2]. Our system adopts the latter criterion in the experi-
ments.

One advantage of log-linear models is the ability to eas-
ily combine various features relating to translation models,
language models, and lexical reordering models. The feature
details are described in the following sections.

3. Features

3.1. Language Model Features

In statistical machine translation, improving language mod-
els strongly impacts translation accuracy. Especially re-
cently, the power of long-span n-grams and the use of huge
amounts of training data have been reported [3]. In this eval-
uation campaign, we combined several long n-gram language
models as features.

To train language models from various corpora in differ-
ent domains, corpus weighting is necessary to fit the trained
language models to the test set domain. Log-linear models
naturally provide weighting of a language model trained by
each corpus.

We used the following long n-gram language models:

• 6-gram

• Class-based 9-gram

• Prefix-4 9-gram

• Suffix-4 9-gram

All n-grams are based on mixed casing. The prefix-4 (suffix-
4) language model takes only 4-letter prefixes (suffixes) of
English words. Prefix-4 (suffix-4) roughly means the word
stem (inflectional endings). For example, “Would it be pos-
sible to ship it to Japan” becomes “Woul+ it be poss+ to ship
it to Japa+” by prefix-4, and “+ould it be +ible to ship it to
+apan” by suffix-4, where “+” at the end or beginning of
a word denotes deletion. Prefix-4 and suffix-4 are likely to
contribute to word alignment and language modeling, respec-
tively.

3.2. Phrase-based Features

Our system adopts a phrase-based translation model repre-
sented by phrase-based features, which are based on phrase



translation pairs extracted by the method proposed by Och
and Ney [4].

First, many-to-many word alignment is set by using both
one-to-many and many-to-one word alignments generated
by GIZA++ toolkit. In the experiment, we used prefix-4
for word-to-word alignment. Using prefix-4 produced bet-
ter translations than the original form in preliminary experi-
ments.

Next, phrase pairs consistent with word alignment are ex-
tracted. The words in a legal phrase pair are only aligned
to each other and not to words outside. Hereafter, we use
count(ẽ) and count(f̃ , ẽ) to denote the number of extracted
phrase ẽ and extracted phrase pair (f̃ , ẽ), respectively.

We used the following features based on extracted phrase
pairs:

• Phrase translation probability φ(ẽ|f̃) and φ(f̃ |ẽ),
where

φ(ẽ|f̃) =
count(f̃ , ẽ)∑
f̃ count(f̃ , ẽ)

• Frequency of phrase pairs count(ẽ, f̃), count(ẽ), and
count(f̃)

• χ2 value and Dice coefficient of f̃ and ẽ

• Phrase extraction probability of source/target, i.e.,

# of extracted source/target phrases
# of source/target phrases appearing in the corpus

• Phrase pair extraction probability, i.e.,

# of sentences phrase pairs extracted
# of sentences phrase pairs appearing in the corpus

• Adjusted Dice coefficient, which is an extension of the
measure proposed in [5], i.e.,

Dice(f̃ , ẽ)log(count(f̃ , ẽ) + 1)

3.3. Word-level Features

We used the following word-level features, where

w(f |e) =
count(f, e)∑
f ′ count(f ′, e)

,

I is the number of words in the translation and J is the num-
ber of words in the input sentence.

• Lexical weight pw(f̃ |ẽ) and pw(ẽ|f̃) [6], where
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• IBM Model 1 score pM1(f̃ |ẽ) and pM1(ẽ|f̃), where
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1
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(Ĩ + 1)J̃

J̃∏
j

max
i

w(f̃j |ẽi)

• Noisy OR gate pNOR(f̃ |ẽ) and pNOR(ẽ|f̃) [7], where
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• Deletion penalty pdel(ẽ, f̃) where
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1 i does not exist s.t.
w(ẽi|f̃j) > threshold

0 otherwise.

3.4. Lexical Reordering Features

We used the following features to control the reordering of
phrases:

• Distortion model d(ai − bi−1) = exp−|ai−bi−1−1|,
where ai denotes the starting position of the foreign
phrase translated into the i-th English phrase, and b i−1

denotes the end position of the foreign phrase trans-
lated into the (i − 1)-th English phrase [6].

• Right monotone model PR(ẽ, f̃) (and left monotone
model PL(ẽ, f̃)) inspired by Och’s scheme [8], where

PR(f̃ , ẽ) =
countR

count(f̃ , ẽ)
,

and countR denotes the number of right connected
monotone phrases.

3.5. Other Features

The following additional features are used.

• number of words that constitute a translation

• number of phrases that constitute a translation



4. Decoder

The decoder is based on word graph [9] and uses a multi-pass
strategy to generate n-best translations. It generates hypothe-
sized translations in a left-to-right order by combining phrase
translations for a source sentence. The first pass of our de-
coding algorithm generates a word graph, a compact repre-
sentation of hypothesized translations, using a breadth-first
beam search, as in [10][11][12][13]. Then, n-best transla-
tions are extracted from the generated word graph using A ∗

search.

The search space for a beam search is constrained by re-
stricting the reordering of source phrases. We have window
size constraints that restrict the number of words skipped be-
fore selecting a segment of the source sequence [6][12]. An
ITG-constraint [14] is also implemented that prohibits the ex-
tension of a hypothesis that violates ITG constraints, which
will be useful for language pairs with drastic reordering, such
as Japanese-to-English and Korean-to-English translations.

During the beam search stage, three kinds of pruning are
performed to further reduce the search space [11]. First,
observation pruning limits the number of phrase translation
candidates to a maximum of N candidates. Second, thresh-
old pruning is performed by computing the most likely par-
tial hypothesis and by discarding hypotheses whose probabil-
ity is lower than the maximum score multiplied with a thresh-
old. Third, histogram pruning is carried out by restricting the
number of hypotheses to a maximum of M candidates. Ob-
servation and threshold pruning are also applied to the back
pointer to reduce the size of the word graph. In pruning hy-
potheses, future cost is also estimated on the fly and then
integrated with the preceding score for beam pruning.

We estimated future cost as described in [13]. Exact
costs for the phrase-based features and word level features
can be calculated for each extracted phrase pair. For the lan-
guage model features, their costs were approximated by us-
ing only output words contained by each phrase pair. The
upper bound of lexical reordering feature costs can be com-
puted beforehand by considering the possible permutations
of phrase pairs for a given input.

After generating a word graph, it is then pruned using
the posterior probabilities of edges [15] to further reduce the
number of duplicate translations for A∗ search. An edge is
pruned if its posterior score is lower than the highest poste-
rior score in the graph by a certain amount.

5. Experiments

To validate the use of the reportedly effective features, we
conducted translation experiments using all features intro-
duced in Section 3. Also, we conducted comparable experi-
ments in both supplied and unrestricted data tracks to study
the effectiveness of additional language resources.

English data sets Corpus size (words)
IWSLT (supplied) 190,177
ATR 1,100,194
WEB 8,482,782
Gigaword 1,799,531,558

Table 1: Monolingual corpora for unrestricted data track

5.1. Corpus Preparation

To obtain comparable results for all source and target lan-
guage pairs, we concentrated on tracks generating En-
glish, i.e., Japanese-to-English, Chinese-to-English, Arabic-
to-English, and Korean-to-English.

The English parts of the corpora are tokenized using
LDC’s standards. For Arabic, it is simply tokenized by split-
ting punctuation and then removing Arabic characters de-
noting “and”. For other languages, supplied segmentation
is used. For unrestricted data tracks, Japanese is segmented
using ChaSen 1, and Chinese is segmented using an LDC
segmenter with lexicon entries gathered from supplied data
and an LDC corpus. Test sets including ASR 1-best are also
re-segmented in the same manner to maintain segmentation
consistency.

We used mixed casing and prefix-4 form for word-to-
word alignment in the phrase extraction. Also, mixed casing
was used for training n-grams.

5.2. Language Models

6-gram language models and class-based/prefix-4/suffix-4 9-
gram models trained by the SRI language modeling toolkit
[16] were used in both supplied and unrestricted data tracks.

We used the following additional monolingual corpora
for language models of unrestricted data tracks: (i) ATR Spo-
ken Language Database publically available from ATR2; (ii)
Web pages crawled from discussion groups and FAQs about
travel; and (iii) English Gigaword corpus from LDC.

As additional bilingual corpora for translation models
of unrestricted data tracks, we used the ATR Spoken Lan-
guage Database for Japanese-to-English translation and the
two largest corpora in the LDC collection, LDC2004T08 and
LDC2005T10, for Chinese-to-English translation. No addi-
tional resources were used for other language pairs. Tables 1
and 2 illustrate the data size of each corpus.

Using the monolingual corpora, a total of 10 n-grams
were trained and used as a feature of log-linear models when
decoding. Table 3 shows the output language perplexity of
each n-gram used in the decoder. On the other hand, Table
4 shows the input language perplexity of the trigram trained
by the supplied corpora. Tables 3 and 4 suggest that the ATR

1http://chasen.naist.jp
2http://www.red.atr.jp/product/index.html



Data sets Language pairs Corpus size
(English words)

IWSLT (supplied) JE/CE/AE/KE 190,177
ATR JE 1,334,852
LDC CE 76,939,292

- AE -
- KE -

Table 2: Bilingual corpora for unrestricted data track

Test sets Japanese Chinese
IWSLT ATR IWSLT LDC

devset1 16.9 29.5 56.6 462
devset2 17.6 32.9 56.1 449
testset 24.5 28.6 50.7 432

Table 4: Input language perplexity of trigram trained by sup-
plied corpora

and IWSLT datasets are similar, WEB is closer to IWSLT
than Gigaword, and that LDC is very different from IWSLT.

Since the collection is enormous in Gigaword, the vocab-
ulary set is first limited to that observed in the English part of
supplied corpus and the ATR database. Then for decoding,
an actual n-gram language model is estimated on the fly by
constraining the vocabulary set to that observed in a given
test set.

5.3. Other Setups

Following one of the best systems [17] in IWSLT 2004, fea-
ture function scaling factors λj are trained using NIST scores
[18] in a loss function of minimum error rate training, and
development set 1 (CSTAR) was used for it.

For Japanese and Korean, ITG constraints of lexical re-
ordering were applied, and for Arabic and Chinese, simple
window size constraints up to 7 were used.

5.4. Results

Table 5 summarizes the overall results of the sup-
plied/unrestricted data tracks. The scores of the table are ob-
tained by the comparable conditions for each language pair
while some are not the same as those released by the orga-
nizer.

“munrestricted” denotes that monolingual corpora
are unrestricted but bilingual corpora are restricted;
“mbunrestricted” denotes that both monolingual and
bilingual corpora are unrestricted.

The table shows that unrestricted data tracks consis-
tently outperform restricted data tracks except for Japanese-
to-English with ASR output. This may be because re-

segmentation of the ASR output produces bad segmentation
because of ASR errors.

“mbunrestricted” is inferior to “munrestricted” in
Chinese-to-English translation whereas the former is better
than the latter in Japanese-to-English translation. This may
be because the additional bilingual resources are similar in
Japanese-to-English but are different in Chinese-to-English
as shown in Tables 3 and 4.

The overall results suggest that our feature design could
not deal with domain mismatch of bilingual corpora but
could deal with small mismatch of monolingual corpora.
While Gigaword differs most from the supplied corpus in
terms of perplexity, as shown in Table 3, its n-gram surpris-
ingly contributes more to translation than other n-grams in
terms of feature function scaling factors of log-linear models.
It would be interesting to study this finding in more detail.

6. Conclusion

The NTT statistical machine translation system in the evalu-
ation campaign is reported. A log-linear model naturally en-
abled weighting of various features including language mod-
els. As a result, we obtained competitive accuracies. The
log-linear model effectively utilized n-grams trained by out-
of-domain corpora, and we improved the translation accu-
racy of the supplied data.

These experiments simply used all available features.
However, feature extraction may additionally improve trans-
lation accuracy. It is worth studying.

Compared to other sites, our results are better in terms
of NIST scores but inferior in terms of BLEU scores. This
is because feature function scaling factors are trained by a
loss function based on NIST scores. We also doubt the over-
fitting of feature function scaling factors. We need to con-
tinue studying both training methods of the scaling factors
and loss functions to improve other translation metrics as
well as NIST scores.
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