Microsoft Research Treelet Translation System: IWSLT Evaluation

Arul Menezes and Chris Quirk

Microsoft Research
One Microsoft Way
Redmond, WA 98052

{arulm,chrisqg}@microsoft.com

Abstract

The Microsoft Research translation system is a syntactically
informed phrasal SMT system that uses a phrase translation
model based on dependency treelets and a global reordering
model based on the source dependency tree. These models are
combined with several other knowledge sources in a log-
linear manner. The weights of the individual components in
the log-linear model are set by an automatic parameter-tuning
method. We give a brief overview of the components of the
system and discuss its performance at IWSLT in two tracks:
Japanese to English (supplied data and tools), and English to
Chinese (supplied data and tools).

1. Introduction

The dependency treelet translation system developed at MSR
is a statistical MT system that takes advantage of linguistic
tools, namely a source language dependency parser, as well as
a word alignment component. [1]

To train a translation system, we require a sentence-
aligned parallel corpus. First the source side is parsed to
obtain dependency trees. Next the corpus is word-aligned, and
the source dependencies are projected onto the target
sentences using the word alignments. From the aligned
dependency corpus we extract all treelet translation pairs, and
train an order model and a bi-lexical dependency model.

To translate, we parse the input sentence, and employ a
decoder to find a combination and ordering of treelet
translation pairs that cover the source tree and are optimal
according to a set of models. In a now-common generalization
of the classic noisy-channel framework, we use a log-linear
combination of models [2], as in below:

translation(S.F, A) = argmax{ »), f(S.T)p (3)
T : '
feF

Such an approach toward translation scoring has proven very
effective in practice, as it allows a translation system to
incorporate information from a variety of probabilistic or non-
probabilistic sources. The weights A = { A, }are selected by
discriminatively training against held out data.

2. System Details

A brief word on notation: s and ¢ represent source and target
lexical nodes; S and T represent source and target trees; s and
t represent source and target treelets (connected subgraphs of
the dependency tree). Where the intent is clear, we will
disregard the structure of these elements and consider these

structures to be sets of lexical items: the expression Vie T
refers to all the lexical items in the target language tree T.
Similarly, |T| refers to the count of lexical items in T. We use
subscripts to indicate selected words: T, represents the n™
lexical item in an in-order traversal of T.

2.1. Training

We use the broad coverage dependency parser NLPWIN [3]
to obtain source language dependency trees, and we use
GIZA++ [4] to produce word alignments. The GIZA++
training regimen and parameters are tuned to optimize BLEU
[5] scores on held-out data. Using the word alignments, we
follow a set of dependency tree projection heuristics [1] to
construct target dependency trees, producing a word-aligned
parallel dependency tree corpus. Treelet translation pairs are
extracted by enumerating all source treelets (to a maximum
size) aligned to a target treelet.

2.2. Decoding

We wuse a tree-based decoder, inspired by dynamic
programming. It searches for an approximation of the n-best
translations of each subtree of the input dependency tree.
Translation candidates are composed from treelet translation
pairs extracted from the training corpus. This process is
described in more detail in [1].

2.3. Models

2.3.1. Channel models

We employ several channel models: a direct maximum
likelihood estimate of the probability of target given source,
as well as an estimate of source given target and target given
source using the word-based IBM Model 1 [6]. For MLE, we
use absolute discounting to smooth the probabilities:

c(s,t)— A4
c(s,*)

“)

Py (t]s) =

Here, ¢ represents the count of instances of the treelet pair s,
t) in the training corpus, and A is determined empirically.

For Model 1 probabilities we compute the sum over all
possible alignments of the treelet without normalizing for
length. The calculation of source given target is presented
below; target given source is calculated symmetrically.

Pui(tls) =D Pl (5)

let ses

/&

LAZH 2 &b o
thQ /
light re .
was

Figure 1: Aligned dependency tree pair, annotated with
head-relative positions

2.3.2. Target language models

We use both a surface level trigram language model and a
dependency-based bigram language model [7], similar to the
bilexical dependency modes used in some English Treebank
parsers (e.g. [8]).
|T|
Py (T) = lerisurf (T; [T;—2.T;y)
i=1
|T|
Puep (T) = [| Pridep (T | parent(T,))
i=1

(6)

Pisur is @ Kneser-Ney smoothed trigram language model
trained on the target side of the training corpus, and Py;,, is a
Kneser-Ney smoothed bigram language model trained on
target language dependencies extracted from the aligned
parallel dependency tree corpus.

2.3.3. Order model

The order model attempts to assign a probability to the
position (pos) of each target node relative to its head based on
information in both the source and target trees:

Pier (order(T)|S,T) = H P(pos(t, parent(t))|S, T) 7)
teT

Here, position is modeled in terms of closeness to head in the
dependency tree. The closest pre-modifier of given head has
position -1; the closest post-modifier has a position 1. Figure
1 shows an example dependency tree pair annotated with
head-relative positions.
We use a small set of features reflecting local information
in the dependency tree to model P(pos(z,parent()) | S, T):
e Lexical items of ¢ and parent(t).
e Lexical items of the source nodes aligned to ¢ and
head(?).
e Part-of-speech ("cat") of the source nodes aligned to the
head and modifier.
e Head-relative position of the source node aligned to the
source modifier.
These features along with the target feature are gathered from
the word-aligned parallel dependency tree corpus and used to
train a decision tree. [9]

2.34. Other models

In addition to these basic models, we also incorporate a
variety of other information to gather information about the
translation process.

o Treelet count. This feature is a count of treelets used to
construct the candidate. It acts as a bias toward
translations that use a smaller number of treelets; hence
toward larger sized treelets incorporating more context.

¢ Word count. We also include a count of the words in the
target sentence. This feature helps to offset the bias of
the target language model toward shorter sentences.

e Whole sentence Model 1 scores. We provide the system
with both the probability of the whole source sentence
given the whole target sentence and vice versa, as
described in [10]:

P(S\T)=WHZP(SU) ®)

seSteT

e Deletion penalty. As in [11], we approximate the
number of deleted words using Model 1 probabilities
using the following formula, where d is an empirically
determined threshold:

DS.T)=[(seS|VteT.P(t|s)<d) 9)

o Insertion penalty. An approximation of the number of
insertions can be counted in the same manner:

I(S.T)=[{t e T| Vs e S.P(s | 1) <i}] (10)

2.4. Small corpus optimizations

24.1. Model 1 fallback translations

Due to the small size of the training corpus, we found that
misalignments often prevented us from finding treelet
translation pairs for rare tokens, or would lead to very poor
translations. All too often, too much source or target context
would be aligned with the rare word, thus leading to either
untranslated source words in the output, or spurious
additional words in the translation. Absolute discounting of
the MLE channel model helps to solve the latter issue, but
exacerbates the former. To work around this situation, at
runtime we construct single-word treelet translation pairs for
each input node from the top few entries in the Model 1
translation table.

2.4.2. NULL translations

We also create treelets that allow words to be translated as the
empty token, i.e. to be deleted. These NULL translations are
assigned a default MLE probability.

2.5. Corpus specific issues

2.5.1. Data cleanup

We observed in many cases that individual training pairs
consisted of several concatenated sentences in one or both
languages. Since our system parses the source language, we
prefer to process sentences individually; hence we broke these
multi-sentence utterances into individual sentences and used
simple positional heuristics to re-align the sentences.

Japanese to English: Our Japanese parser prefers to do its
own word-breaking, so we removed all spaces from the word-

Table 1: Summary of results under a variety of configurations.
Final submission results are shown in boldface. Best results in each category are shown in italics

BLEU-4 /NIST
System 2003 2004 Final Final w/
Devset Devset Verbatim
Japanese to English (best NIST parameters)
Baseline 48.8/8.7 | 48.4/84 | 39.3/74 39.6/74
Learned normalization 49.6/9.1 | 489/9.1 | 40.3/8.2 41.1/8.2
Hiragana normalization 49.7/9.2 1493/9.2 | 40.1/8.0 40.6 / 8.0
Japanese to English (best BLEU parameters)
Baseline 49.5/7.1 | 48.1/73 | 39.6/6.7 40.1/6.8
Learned normalization 49.0/86 | 492/86 | 42.1/7.7 42.9/7.8
Hiragana normalization 51.0/88 | 503/85 | 40.8/7.4 41.2/74
English to Chinese
14.6/3.8 | 17.3/44 | 22.0/6.5 20.6 /5.2

broken Japanese text. We also found it advantageous to
remove (after parsing) certain lexical items, such as the topic
marker (“1%”), the politeness prefix “ffl”, and the modal
expression “?OT7 . And finally we normalize the sequence
of a question particle and a period (“7>, ”) into a single
question mark character (“?”).

2.5.2. Japanese character set normalization

Japanese is commonly written in a combination of three
distinct writing systems: kanji (ideographic), hiragana
(syllabic), and katakana (syllabic). In most situations, there is
a canonical spelling of a lexical item; however certain items
admit multiple spellings (e.g. <7ZSVV TEW or DMV FEREA/5
7Y EH A). Such ambiguity exacerbates the data sparsity
problem already evident in the small training corpus. In
addition the distribution of hiragana to kanji spellings in the
final testing data is noticeably different than that of the
training set and development sets. We establish a baseline and
propose two corrections for this situation.

Baseline: No normalization. In this version of the system,
no character set normalization is performed.

Method 1: Hiragana normalization. After parsing the
input, we look up the dictionary headword of each node in the
tree, and, if present in the dictionary, replace that lexical item
with its lemmatized Hiragana form. The mapping is lossy in
that distinct words with different kanji representations but
identical hiragana representations are conflated. Also
morphological endings on words are lost.

Method 2: Learned normalization. We observed that
between the old (unbroken) and new (word-broken)
distributions of the training data a significant number of
character set changes had been made to the data, in addition
to the word-breaking. We wused these differences to
automatically acquire a character-set normalization table that
was then applied to test and training data.

2.5.3. Verbatim translations

This corpus contains large amount of repetitive phrases; to a
large extent, this comes with the domain. Basic travel
expressions are commonly short, simple phrases like “all
right” or “thanks”. To minimize errors on such stock phrases,
we introduce a verbatim component, a type of translation
memory. Ifthe input sentence matches the source segment of

a training pair, we return the target side of the training pair as
the translation.

2.6. Parameter training and tuning

There are several types of tunable parameters. First we have
A, a 12 dimensional weight vector: one real-valued weight for
each feature function. This weight vector is determined by
maximization of the BLEU score using n-best lists [12].

However, there are a variety of other parameters that
cannot be tuned via n-best lists; instead these are optimized
by grid search on BLEU score.

e Maximum treelet size: keep treelet translation pairs up
to s nodes (for both JE and EC, the optimal value was 9).

e Treelet translation pair pruning cutoff: explore only
the top k treelet translation pairs per input node (JE: 9;
EC: 6).

e Decoder beam width: keep only n best translated
subtrees per input subtree (JE: 15; EC: 12).

e Exhaustive ordering threshold: fall back to greedy
ordering when the count of children whose order is
unspecified exceeds this limit; see [1] for details (JE: 7;
EC: 6).

e MLE channel model discount (JE and EC: 0.7).

e Deletion and insertion penalty cutoffs (JE and EC: 0.1).

e Default NULL translation probability (JE: 0; EC: 0.1).

3. Discussion

We present results in two tracks: Japanese to English
(supplied data and tools), and English to Chinese (supplied
data and tools). Table 1 summarizes the results in these
categories. Several trends are worthy of note.

First, it seems that kanji/hiragana normalization is an
important component of Japanese to English translation.
Unfortunately the more promising of the two methods on the
development sets turned out to be less effective on the final
training set.

Secondly, we find surprisingly mixed results from using
verbatim translations. While their addition has a small but
respectable impact on Japanese to English translation (which
uses 16 reference translations), the impact is strongly negative
on English to Chinese translation (which uses only 1
reference). Most likely this is because, even though the

translations obtained in this manner are almost definitely
good translations, they may not match the single reference.
Finally, we note the tradeoff between optimal BLEU
scores and optimal NIST scores in Japanese to English
translation. While the NIST score has a harsh brevity penalty,
BLEU is much more tolerant of very short translations, hence
some systems may produce misleadingly large BLEU scores
by producing very short translations. Considering both
metrics simultaneously helps to identify when this situation is
occurring. In this evaluation we observe this to be a major
issue across all the participants. For example, in the Japanese
to English Supplied Data track, ordering systems by NIST
score vs. BLEU score produces a significantly different
ranking. The system that ranks first by BLEU drops to fifth
when ranked by NIST, whereas the systems ranking first and
second by NIST drop to third and sixth place by BLEU.

4. Acknowledgements

We would like to thank Hisami Suzuki and Chris Brockett for
suggestions and improvements to the Japanese analysis
components; Kevin Duh for analysis of Chinese output;
Robert C. Moore for suggestions on smoothing; and the
IWSLT organizers, especially Chiori Hori and Mattias Eck,
for their feedback and assistance throughout the evaluation.

5. References

[1] Quirk, C., Menezes, A., and Cherry, C., "Dependency
Tree Translation: Syntactically Informed Phrasal SMT",
Proceedings of ACL 2005, Ann Arbor, MI, USA, 2005.

[2] Och, F. J., and Ney, H., "Discriminative Training and
Maximum Entropy Models for Statistical Machine
Translation", Proceedings of ACL 2002, Philadelphia,
PA, USA, 2002.

[3] Heidorn, G., “Intelligent writing assistance”, in Dale et al.
Handbook of Natural Language Processing, Marcel
Dekker, 2000.

[4] Och, F. J., and Ney H., "A Systematic Comparison of
Various Statistical Alignment Models", Computational
Linguistics, 29(1):19-51, March 2003.

[5] Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J.,
"BLEU: a method for automatic evaluation of machine
translation", Proceedings of ACL 2002, Philadelphia, PA,
USA, 2002.

[6] Brown, P. F., Della Pietra, S., Della Pietra, V. J., and
Mercer, R. L., "The Mathematics of Statistical Machine
Translation: Parameter Estimation", Computational
Linguistics 19(2): 263-311, 1994.

[7] Aue, A., Menezes, A., Moore, R., Quirk, C., and Ringger,
E., "Statistical Machine Translation Using Labeled
Semantic Dependency Graphs." Proceedings of TMI
2004, Baltimore, MD, USA, 2004.

[8] Collins, M., "Three generative, lexicalised models for
statistical parsing", Proceedings of ACL 1997, Madrid,
Spain, 1997.

[9] Chickering, D.M., "The WinMine Toolkit", Microsoft
Research ~ Technical ~ Report MSR-TR-2002-103,
Redmond, WA, USA, 2002.

[10] Och, F. J., Gildea, D., Khudanpur, S., Sarkar, A.,
Yamada, K., Fraser, A., Kumar, S., Shen, L., Smith, D.,
Eng, K., Jain, V., Jin, Z., and Radev, D., "A Smorgasbord
of Features for Statistical Machine Translation".
Proceedings of HLT/NAACL 2004, Boston, MA, USA,
2004.

[11] Bender, O., Zens, R., Matsuov, E. and Ney, H.,
"Alignment Templates: the RWTH SMT System". IWSLT
Workshop at INTERSPEECH 2004, Jeju Island, Korea,
2004.

[12] Och, F. J., "Minimum Error Rate Training for Statistical
Machine Translation", Proceedings of ACL 2003,
Sapporo, Japan, 2003.

