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Abstract. Since subsentential alignment is critically important to the translation quality of 
an Example-Based Machine Translation (EBMT) system which operates by finding and 
combining phrase-level matches against the training examples, we recently decided to de-
velop a new alignment algorithm for the purpose of improving the EBMT system’s per-
formance. Unlike most algorithms in the literature, this new Symmetric Probabilistic Align-
ment (SPA) algorithm treats the source and target languages in a symmetric fashion. In this 
paper, we describe our basic algorithm and some extensions for using context and posi-
tional information, compare its alignment accuracy with IBM Model 4, and report on ex-
periments in which either IBM Model 4 or SPA alignments are substituted for the aligner 
currently built into the EBMT system. Both Model 4 and SPA are significantly better than 
the internal aligner and SPA slightly outperforms Model 4 despite being handicapped by 
incomplete integration with EBMT. 

1. Introduction 
The example-based translation system (Brown, 
2000; Brown et al., 2003) used for the experi-
ments described in this paper is internally a 
multiengine system (Frederking et al., 1994) 
consisting of a phrasal EBMT engine and word-
for-word dictionary lookup which are combined 
using a language model-driven lattice search 
equivalent to the decoder used in many statisti-
cal machine translation systems1. The phrasal 
EBMT engine finds all partial matches between 
input sentences and the bilingual training cor-
pus and then uses sub-sentential alignment be-
tween the halves of the retrieved examples to 
determine the corresponding translations. This 
makes the alignment process a critical factor in 
the quality of the system’s translations. 

Incorrect alignments result in missing or ex-
traneous words in the translation hypothesized 
for a particular fragment of the input. This can 

                                                      
1 Other engines can be added to the system, but 

were not for these experiments, and are generally not 
available anyway. 

cause critical information to be omitted, irrele-
vant words to be “hallucinated”, or even invert 
the meaning of the text. Because retrieved train-
ing examples with low confidence alignments 
are not used, lack of a reliable alignment can 
result in the best translation for a given frag-
ment being missed, or even no translation at all 
for that fragment of input. The latter is in fact a 
significant issue in the current implementation 
of EBMT, as it is quite common to have phrasal 
matches for 90% of the input words yet get 
translations for only 75% of the input words – 
the remaining matches did not produce any 
alignments that were considered satisfactory. 

Because we recognized that the existing 
alignment algorithm is a substantial bottleneck 
in the system’s translation performance, we de-
cided to investigate a new algorithm and its ef-
fect on translation quality. In the remainder of 
this paper, we describe the existing aligner, the 
new SPA method, an initial evaluation of its 
alignment quality, how we incorporated the 
method into the EBMT engine, and a task-based 
evaluation of the resulting overall system using 



Kim et al. 

154  EAMT 2005 Conference Proceedings 

the BLEU (Papineni et al., 2002) translation-
quality metric. 

2. Background 
The existing alignment algorithm used by the 
EBMT engine is a very fast but heuristic algo-
rithm based around a correspondence table cre-
ated from bilingual lexicon lookups (Brown, 
1997) with some additional processing to reduce 
ambiguity and fill gaps. When aligning a phrasal 
match, the correspondence table is consulted to 
find words with unique correspondences as an-
chor points, and then the resulting match is ex-
tended on each side until a target language word 
is reached which could not be a translation of 
any word in the source match. All contiguous 
sub-phrases of this largest possible match, which 
also include all anchor points are scored based 
on a weighted sum of various heuristic functions 
such as percentage of words with known corre-
spondences and difference in length between 
source and target, and the highest-scoring sub-
phrase is output as the candidate translation. 

The primary advantage of this method is its 
great speed. By pre-computing the correspon-
dence table and storing it in the indexed corpus, 
the system can perform upwards of 20,000 
phrasal alignments per second on a 2 GHz PC. 
Computing the correspondence table is more 
expensive but, even though it is the most com-
putationally expensive portion of the training, 
still permits indexing of over 1000 sentence pairs 
per second. The main drawback is that align-
ment decisions are based on binary correspond/ 
don’t correspond decisions rather than using 
translation probabilities to decide between am-
biguous alternatives. This makes the dictionary 
of critical importance to the quality of the 
alignments, especially in its selection of cut-offs 
for including translations – low-probability trans-
lations are treated the same as high-probability 
translations by the correspondence table. Fur-
ther, while one or two gaps in dictionary cover-
age for a particular sentence can be handled, in-
sufficient coverage becomes a large problem as 
the size of the training data decreases when 
there is no external bilingual lexicon available. 

In contrast to this very simple aligner, the 
IBM Model 4 algorithm computes translation 
probabilities, distortion probabilities, and word 
classes for reordering, and uses them to deter-

mine the globally most probable alignments of 
the words in a sentence pair. We selected Model 
4 to compare against our new algorithm be-
cause it is widely used and understood, and an 
implementation was readily available in the 
GIZA++ program in the EGYPT toolkit (Al-
Onaizan et al., 1999). 

3. Symmetric Probabilistic Align-
ment (SPA) 

In sub-sentential alignment, mappings are pro-
duced from words or phrases in the source lan-
guage sentence and those words or phrases in 
the target language sentence that best express 
their meaning. 

An alignment algorithm takes as input a bi-
lingual corpus consisting of corresponding sen-
tence pairs and strives to find the best possible 
alignment in the second for selected n-grams 
(sequences of n words) in the first language. The 
alignments are based on a number of factors, 
including a bilingual dictionary (preferably a 
probabilistic one), the position of the words, punc-
tuation, invariants (such as numbers), and so 
forth. 

For our baseline algorithm, we make the fol-
lowing simplifying assumptions, each of which 
we intend to relax in future work: 

1. A fixed bilingual probabilistic dictionary is 
available. 

2. Contiguous fragments (word sequences) of 
source language text are translated into con-
tiguous fragments in the target language text. 

3. Fragments are translated independently of 
surrounding context. 

3.1. A Baseline Algorithm 
Our baseline algorithm is based on maximizing 
the probability of bi-directional translations of 
individual words between a selected n-gram in 
the source language and every possible n-gram 
in the corresponding paired target language sen-
tence. The reason why we use the probability of 
bi-directional translations is that we are more 
convinced when both side’s fragments agree 
that the other side’s fragment is its translation. 
For example, given a source fragment 

iFS , let’s 

say two target fragments 
kFT  and 

lFT  are 

equally most probable to be 
iFS ’s translation. If 
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we consider opposite directional translations and 
find that 

kFT ‘s the most probable translation is 

iFS and 
lFT ‘s the most probable translation is  

jFS  ( ji ≠ ), we will choose 
kFT  as the transla-

tion of 
iFS . 

No positional preference assumptions are made, 
nor are any length preservation assumptions 
made. That is, an n-gram may translate to an m-
gram, for any values of n or m bounded by the 
source and target sentence lengths, respectively. 
Finally a smoothing factor is used to avoid sin-
gularities (i.e. avoiding zero-probabilities for 
unknown words, or words never translated be-
fore in a way consistent with the dictionary). 

Suppose that we are given a pair of aligned 
sentences S and T where a source sentence S is 

nkii wwwwwS ,...,,...,,...,,: 10 +                (1) 

and the corresponding target language sentence 
T is 

 mljj vvvvvT ,...,,...,,...,,: 10 +                   (2) 

and calculating the translation probabilities be-
tween a source fragment FS  and target frag-
ments in }{ FT . 

Then the segment we try to obtain is the tar-
get fragment TF  with the highest probability of 
all possible fragments of S2 to be a mutual 
translation with the given source fragment, or 

}{maxarg
TFTF =  

            )),...,,...,(( ljjkii vvwwp ++ ↔    (3) 

All possible segments can be checked in O( 2m ), 
where m is the target language length, because 
we will check m 1-word-length segments, m-1 
2-wordlength segments, and so on. If we bound 
the target language n-grams to a maximal length k, 
then the complexity is linear, i.e. km. 

We compute the score of the best possible 
alignment as follows: 

Given a source fragment kii ww +,...,  , a tar-
get fragment ljj vv +,..., , let’s say },...,{ kii ww +  

is the set of the source fragment words and 
},...,{ ljj vv +  is the set of the target fragment 

words. For a source word )0( kaw ai ≤≤+ , we 

define the translation relation probability   as 
follows: 

{ }),...,)(( ljjai vvwTrp ++ ∈   

        )|(max( aibi wvp ++= , lb ≤≤0      (4) 

Then the score of the best alignment is 

T
TT

FFF
ScoreScore

}{
max^ =                           (5) 

where the score can be written as two bi-
directional components 

21 PPScore
TF ×=                                   (6) 

where P1 is the product of the translation prob-
abilities of the source fragment words and P2 is 
the product of the translation probabilities of 
the target fragment words. 

These can be further specified as  

1
1

0

)}),,...,{)((max(1
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∈= ∏

=
++

kk

m
ljjmi vvwTrpP ε       (7) 

1
1

0

)}),,...,{)((max(2
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∈= ∏

=
++

ll

n
kiinj wwvTrpP ε      (8) 

where ε  is a very small probability used as a 
smoothing value. 

3.2. Length Penalty 
The ratio of target segment (n-gram) and source 
segment (m-gram) lengths should be compara-
ble to the length ratio of the target sentence and 
source sentence lengths, though certainly varia-
tion is possible. Therefore, we generate a pen-
alty function to the alignment probability that 
increases with the discrepancy between the ra-
tios as n/m is compared to the source/target sen-
tence length ratio. 

Let the length of the source language seg-
ment be i and the length of a target language 
segment under consideration be j. And let the 
dynamic sentence length ratio be ||/|| STR  given a 

source language sentence S and its correspond-
ing target language sentence T in the corpus. 
The expected target segment length is then 
given by ||/||

ˆ
STRij ×= . Further defining an al-

lowable difference AD, our implementation cal-
culates the length penalty 

TFLP  as follows: 

( ) ⎟
⎠
⎞⎜

⎝
⎛= − 1,min

4|ˆ|
AD

jj
FT

LP                              (9) 
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We wanted to ignore target candidate fragments 
which have larger difference than AD and to 
give bigger penalty to the AD-satisfying target 
candidate fragments as they have larger differ-
ence. For equation (9), we tried powers of 2 
through 6 and 4 gives the best results in our ex-
periments. 

The score for a segment including the pen-
alty function is then: 

)1(
TTT FFF LPScoreScore −×←          (10) 

Note that, as intended, the score is forced to 0 

when the length difference  ADjj >− ||
^

. 

3.3. Distance Penalty 

Closely related languages (such as French and 
English) tend to have more similar word orders 
than more distantly-related languages such as 
Korean and English. In the former case, this re-
sults in greater phrase order similarity and con-
sequently similar phrase positions. 

In such a close language pair, we introduce a 
distance penalty to penalize the alignment score 
of any candidate target fragment which is out of 
the expected position range. First, we calcu-
late EC , the expected center of the candidate 
target fragment using 

SFC , the center of the 

source fragment and the dynamic sentence length 
ratio ||/|| STR . 

||/|| STFE RCC
S
×=                                   (11) 

Then we calculate an allowed distance limit of 
the center allowedD  using a constant limit 
value cedisCON tan  and the dynamic sentence 
length ratio 

averageTTR ||/||  where averageT ||  is the 

average target sentence length in the training cor-
pus. 

averageTTcedisallowed RCOND ||/||tan ×=          (12) 

Let actualD  be the actual distance difference be-
tween the candidate target fragment’s center 
and the expected center, and set 

otherwise
DD

Score

DDifScore
Score

allowedactual

F

allowedactualF

F T

T

T
,

)1(

,

2⎪
⎩

⎪
⎨

⎧

+−

≥

←
    (13) 

We also wanted to ignore target candidate frag-
ments which have longer distance than the al-
lowed distance. Equation (13) is derived em-
pirically under the idea of giving bigger penalty 
to more distant target candidate fragments. 

Furthermore, we think that we can apply this 
penalty to language pairs which have lower 
word order similarities. Because there might ex-
ist certain position relationship between such lan-
guage pairs, if we can calculate the expected 
position using each language’s sentence struc-
ture, we can apply a distance penalty to them. 

3.4. Anchor Context 
If the adjacent words of the source fragment 
and the candidate target fragment are transla-
tions of each other, we expect that this align-
ment is more likely to be correct. We boost 

TFScore   with the anchor context alignment score 

pACScore , 

)()( 11 ljkijiAC vwPvwPScore
p ++−− ⇔×⇔=         (14) 

λλ −×← 1)()(
pTT ACFF ScoreScoreScore                 (15) 

Empirically, we found this combination gives 
the best score when 7.0=λ  and it gave a bet-
ter result than 

pT ACTFF ScoreScoreScore ×−+×← )1( λλ          (16) 

4. Experimental Design 
We set up two kinds of experiments. One is to 
measure alignment accuracy and the other is to 
see whether our alignment method actually im-
proves an EBMT system’s performance. 

For the first evaluation, we tested our align-
ment method on a set of English-French sen-
tences (taken from the Canadian Hansard cor-
pus) and on a set of English-Chinese sentences. 
In both cases, we compared the results of our 
algorithm to human alignments. Although the 
latter may not be perfect and sometimes are 
non-unique, they provide the only answer key 
available for repeatable tests. We report here the 
results in the more challenging of these two test 
sets, English-Chinese, where word order differ-
ences and sentence-length differences are most 
evident. As metrics, we use precision, recall 
and 1F  (the harmonic mean of precision and re-
call). 
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Let us suppose that our answer segment is 
kwww ,...,, 21  and the correct answer (human) 

segment is lhwhwhw ,...,, 21 . Note that correct 
(human) answer may be non-contiguous, but the 
combination of SPA and EBMT to date is only 
capable of using the best contiguous target m-
gram alignment it can find. We compute the re-
call R and precision P as follows: 

l
wjhwcount

R i }){( ∈
=                         (17) 

k
hwwcount

P ji }){( ∈
=                        (18) 

To obtain an average alignment score for evalua-
tion, we 

1. generated all the possible source language 
sentence fragments lengths 3 through 8 from a 
set of 10 test sentences, 

2. aligned those fragments by means of our 
algorithm, and 

3. calculated the metrics given above by com-
parison with the human-aligned answers. 

To have a better intuition of the alignment 
results we obtain for a given language pair (and 
corpus), we introduce the following as baselines: 
“random result”, “positional result”, and “best 
result”. 

The “random result” is a randomly chosen 
target segment regardless of the source segment, 
constrained to be of a length corresponding to 
the source segment normalized by the length ra-
tio of the source and target sentences. 

The “positional result” is a target segment 
whose position in the target language most closely 
matches the position of the source segment. We 
calculate the target segment’s start and end po-
sition using source segment’s start, end position 
and the length ratio of source sentence and tar-
get sentence. In particular, let the source sen-
tence be of length n and the target sentence of 
length m, we expect source position i to corre-
spond to target position j where n

mij ×≅ . 
The “best result” is the best contiguous tar-

get segment extracted from human alignments. 
To get the best result, first, we get human align-
ments for the sentence pairs which will be used 
to evaluate our algorithm. Then we choose a seg-
ment which has the largest harmonic mean value 
among human alignment segments and whole 
segment. Notice that the human alignment may 

not be contiguous, therefore “best alignment” 
represents the best that our algorithm could 
possibly perform. 

For the second evaluation, to minimize the 
initial investment of effort for the EBMT evalua-
tion, we performed a partial integration of the 
SPA and EBMT modules rather than fully in-
corporating SPA into the EBMT engine. In this 
partial integration, SPA is used to annotate the 
training corpus with alignments (both phrasal 
and word-to-word), and the annotations in the 
corpus override the EBMT engine’s internal 
aligner. Phrasal alignments are stored as-is, and 
whenever a partial match against the corpus is 
exactly equal to the source half of such an 
alignment and has a score above a specified 
threshold, the target half is output as the candi-
date translation. The word-to-word alignments 
are used to build a correspondence table (over-
riding the one which would have been built in 
the absence of alignment annotations) and that 
table is consulted as usual to perform align-
ments of matches for which there is no phrasal 
alignment from SPA available. One drawback 
of this arrangement compared to a full integra-
tion is that we are unable to take advantage of 
non-contiguous alignments (however, such align-
ments would also require modifications to the 
decoder which have yet to be implemented). 

This yields the following training regimens 
for the alignment methods. To test the old algo-
rithm, we 

1. build a statistical dictionary from the corpus 
2. index the training text using that dictionary 

To test performance with IBM Model 4 align-
ments, we 

1. train GIZA++ on the training text 
2. annotate the training corpus using Model 4 
3. index the annotated corpus 

To test performance with SPA, we 

1. use GIZA++ to build a dictionary from the 
training text 

2. run the SPA aligner on the training text us-
ing that dictionary 

3. index the annotated corpus generated by 
SPA 

The differently-trained translation systems are 
then each evaluated on the test set using the 
NIST and BLEU metrics. 
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For our EBMT experiments we used a sub-
set of the IBM Hansard corpus available from 
the Linguistic Data Consortium. This corpus is 
divided into files of 10,000 sentence pairs (with 
an occasional garbled or missing line which has 
been removed prior to our use), of which we 
used only files 000 through 099. The training 
data consisted of the first 20,000 sentence pairs 
– essentially files 000 and 001 – for EBMT and 
the first 700,000 English sentences for the lan-
guage model. The development test (“devtest”) 
set used for parameter tuning consisted of the first 
100 sentences of file 040 and the evaluation test 
set consisted of ten segments of 100 sentences 
drawn from files 060 and 080. Segmenting the 
evaluation test set in this manner allowed us to 
perform statistical significance tests. 

In addition to testing the full IBM Model 4 
and SPA algorithms with both phrasal and word-
level alignments, we also tested the perform-
ance when using each algorithm restricted to 
generating pure word-level alignments for cre-
ating the correspondence table used by EBMT’s 
internal aligner (in lieu of having it generate 
that table itself from the bilingual lexicon it ex-
tracted from the training examples). The runs 
using the restriction to word-level alignments 
are identified as “SPA-W” and “IBM4-W”, re-
spectively. 

5. Results and Conclusions 
For comparing the alignment accuracy, we chose 
the positional alignment as the base line – as 
this is the highest baseline we can achieve – and 
the best alignment as the goal. Table 1 shows the 
best result obtained by each alignment method. 
As previously mentioned, “positional” is the base-
line for comparing alignment performance 
while “best” is the best possible selection of 
contiguous fragments. 

Method Recall Precision F1 

random 0.199473 0.231560 0.214323 

positional 0.682276 0.704527 0.693223 

best 0.980430 0.913729 0.945905 

SPA 0.747958 0.701463 0.723912 

IBM4 0.645233 0.745311 0.691670 

Table 1: Chinese-English alignment accuracy results 

After separately tuning several key parameters 
in the EBMT system for each alignment algo-

rithm in use, we obtained the scores shown in 
Table 2. SPA substantially outperforms IBM4 
when each is tuned – but not fully – to the trans-
lation input (as can be seen in the middle col-
umn), and performs marginally better (though 
not statistically significant) than IBM4 on un-
seen material for word-to-word alignments. When 
we see the EBMT performance with word and 
phrase level alignment and word-to-word level 
alignment, SPA is worse than SPA-W for the 
Devtest data set, but better for the Test data set. 
But for IBM4 and IBM4-W, we see IBM4 is 
better for the Devtest data set but worse for Test 
data set. Each difference was marginal and 
phrasal alignment didn’t have big impact on 
EBMT performance and we need to investigate 
why phrasal alignment didn’t improve EBMT 
performance in the future. 

 Devtest Test 
EBMT 0.1563 0.13483 
SPA 0.2259 0.17357 
IBM4 0.2042 0.17085 
SPA-W 0.2271 0.17324 
IBM4-W 0.2019 0.17313 

Table 2: French-English BLEU scores by algorithms 

To see whether the performance is consistent, 
we made another test set (“test2”) mostly drawn 
from file 040 and generated another set of ref-
erence sentences for the source sentences in the 
test2 data set such that each source sentence has 
two reference translations and got EBMT per-
formance with each alignment algorithm. The 
results in Table3 show that IBM4 performs bet-
ter than EBMT’s internal aligner and SPA per-
forms better than IBM4. The scores were ex-
pected to be higher than devtest with two refer-
ence translations. 

 Test2 
EBMT 0.2453 
SPA 0.3027 
IBM4 0.2666 
SPA-W 0.3027 
IBM4-W 0.2874 

Table 3: French-English BLEU scores with two references 

The performance of the EBMT-internal aligner 
is impacted to a large degree by lack of cover-
age in the lexicon it extracted from this rather 
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small training corpus – only two-third of the vo-
cabulary has translations. 

Our hypothesis was that improved alignment 
leads to improved translation. The experimental 
results clearly show that the Symmetric Align-
ment method does lead to better results than the 
EBMT system’s own aligner, as well as the 
IBM model 4 alignments; however, the latter 
difference is not statistically significant on the 
evaluation set. 

6. Future Work 
The corpus used for these experiments was fairly 
small, in large part due to the computational 
expense of running the IBM Model 4 and SPA 
aligners – SPA can produce word-level and phrasal 
alignments for approximately 10,000 sentence 
pairs per hour. We intend to repeat the experi-
ments with a larger training corpus. 

To see if SPA substantially performs better 
than EBMT-internal aligner and IBM4, we are 
going to do more experiments on different lan-
guage pairs and different domain data. 

Further improvements may result from the 
generalized use of phrases and tighter integra-
tion with the dictionary generation process, as 
well as from updates to the EBMT code to per-
mit exploitation of non-contiguous alignments. 
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