
EAMT 2005 Conference Proceedings 87

A Framework for Interactive and Automatic Refinement of
Transfer-based Machine Translation

Ariadna Font Llitjós, Jaime G Carbonell and Alon Lavie

Language Technologies Institute, Carnegie Mellon University
5000 Forbes Ave.

Pittsburgh PA 15213
USA

aria@cs.cmu.edu

Abstract. Most current Machine Translation (MT) systems do not improve with feedback
from post-editors beyond the addition of corrected translations to parallel training data (for
statistical and example-base MT) or to a memory database. Rule based systems to date im-
prove only via manual debugging. In contrast, we introduce a largely automated method for
capturing more information from human post-editors, so that corrections may be performed
automatically to translation grammar rules and lexical entries. This paper introduces a gen-
eral framework for incorporating a refinement module to rule-based transfer MT systems.
This framework allows to generalize post-editing efforts in an effective way, by identifying
and correcting rules semi-automatically to improve coverage and overall translation quality.

1. Introduction
Although Machine Translation (MT) has ad-
vanced recently for language pairs with large
amounts of parallel data, translation quality has
not yet reached satisfactory levels, especially
not for resource-poor languages with little if
any parallel text to train statistical or example-
based MT systems. Examples of resource poor
languages are Quechua and Mapudungun, which
contrast with languages that have more eco-
nomic, and therefore also electronic, resources,
such as Spanish and English.

Rule-based transfer MT systems are the only
feasible solution for resource-poor scenarios.
Developing and expanding such systems manu-
ally can, however, prove very costly and time
consuming. On the other hand, finding trained
computational linguists with knowledge of re-
source-poor languages is a real challenge. More-
over, if the translation rules are written manu-
ally, no matter how many rules there already
are, coverage and accuracy can always be in-
creased. If they are automatically learned, they
might be either too general or too specific. In
both cases, the translation rules can be refined
to account for new data. The goal of our re-

search is to generalize post-editing efforts in an
effective way, by identifying and correcting rules
semi-automatically in order to improve cover-
age and overall translation quality.

In this paper, we introduce a novel approach
that proposes an MT module for automatically
refining translation rules based on the feedback
provided by bilingual speakers.

There are two main challenges in this ap-
proach. First, the elicitation of accurate correc-
tion information from non-expert bilingual
speakers. Second, the automatic refinement of
existing translation rules, given a corrected and
word-aligned translation pair, and information
about the MT errors.

The approach described in this paper auto-
matically determines the appropriate rule re-
finement operations that need to be applied to a
grammar and a lexicon in order for the system
to output the correct translation, as given by the
native speaker.

The resulting refinements and extensions
can therefore apply not only to the translation
instance corrected by the user, but also to other
similar cases where the same error would be
encountered.

Font Llitjós, et al.

88 EAMT 2005 Conference Proceedings

2. Related Work

2.1. On Post-editing to Improve MT
Post-editing has often been defined as the cor-
rection of MT output by human linguists or edi-
tors. In the case of native and minority lan-
guages on which we are working, the editors
are actually bilingual speakers with no expertise
in linguistics or translation, and their goal is to
evaluate and minimally correct MT output, in a
way that is similar to what has been referred to
as minimal post-editing in the literature (Allen,
2003).

The minimal correction method we are pro-
posing for the task of rule refinement involves
grammar correctness and fluency, in addition to
meaning preservation. Stylistic changes are not
considered minimal post-editing.

Some researchers have looked at ways of in-
cluding user feedback in the MT loop. Su et al.
(1995) have explored the possibility of using
feedback for a corpus-based MT system to ad-
just the system parameters so that the user style
could be respected in the translation output.
They proposed that the distance between the
translation output of the system and the transla-
tion preferred by the user should be propor-
tional to the amount of adjustment to the para-
meters involved in the score evaluation func-
tion, and should be minimized over time. We
could not find, however, any papers reporting
testing of these ideas.

In the case of languages with limited data,
such a system is not feasible, though, since there
is not enough data to estimate and train system
parameters. Moreover, we are interested in im-
proving the translation rules themselves, which
in the case of automatically learned grammars
typically lack some of the feature constraints
required for the correct application of the rule,
rather than just tweaking the evaluation parame-
ters, which in their system are conditional prob-
abilities and their weights.

Menezes and Richardson (2001) and Ima-
mura et al. (2003) have proposed the use of ref-
erence translations to “clean” incorrect or re-
dundant rules after automatic acquisition. The
method of Imamura et al. consists of selecting
or removing translation rules to increase the
BLEU score of an evaluation corpus. In contrast

to filtering out incorrect or redundant rules, we
propose to actually refine the translation rules
themselves, by editing valid but inaccurate rules
that might be lacking a constraint, for example.

2.2. On Rule Refinement
The idea of rule adaptation to correct or expand
an initial set of rules is an appealing one and re-
searchers have indeed looked at rule adaptation
for several natural language processing applica-
tions.

Lin et al. (1994) report research on auto-
matically refining models to decrease the error
rate of part-of-speech tagging.

Brill (1993) introduced a new technique for
parsing free text: a transformational grammar is
automatically learned that is capable of accu-
rately parsing text into binary-branching syntac-
tic trees with non-terminals unlabeled. The sys-
tem learns a set of simple structural transforma-
tions that can be applied to reduce error. Brill's
method can be used to obtain high parsing ac-
curacy with a very small training set. Although
small, the learning algorithm does need the
training corpus to be partially bracketed and an-
notated with part-of-speech information, which is
a scarce resource for minority languages.

Even if we had such a small initial annotated
corpus, transforming translation rules is non-
trivial and cannot be done with simple patterns
like the ones proposed in Brill's method.

The rule refinement algorithm proposed here
needs to deal with the lexicon, the syntax and
the feature constraints in the rules.

Corston-Oliver and Gamon (2003) learned
linguistic representations for the target language
with transformation-based learning (Brill style)
and used decision trees to correct binary fea-
tures describing a node in the logical form to
reduce noise.

Yamada et al. (1995) use structural compari-
son (parse tree) between machine translations
and manual translations in a bilingual corpus to
adapt a rule-based MT system to different do-
mains. In order for this method to work, though,
a parser for the target language (TL) needs to be
readily available, which is typically not the case
for resource-poor languages. Moreover, such a
parser must have coverage for the manually
corrected output as well as the incorrect MT
output to compute the differences. The actual

A framework for interactive and automatic refinement of transfer-based machine translation

EAMT 2005 Conference Proceedings 89

adaptation technique is not described in the pa-
per.

In sum, even though adaptation has been re-
searched for MT and other natural language
processing applications before, to this day,
work so far has not attempted to refine the
translation rules themselves, and thus the
framework described in this paper constitutes
an interesting and novel approach to automati-
cally refine and expand MT systems.

3. Automating the Post-editing
process

Current solutions to improve MT output are
limited to manually correcting the output and,
in the best-case scenario, to some post-process-
ing to alleviate the tedious task of manual post-
editing by correcting the most frequent errors
beforehand (Allen & Hogan, 2000). Currently,
there exists no solution to fully automating the
post-editing process.

There are at least two different approaches
one could take in order to do that. First, one
could try to learn post-editing rules automati-
cally from concrete corrections, which has the
advantage of being system independent. With
this approach, however, one cannot generalize
over specific corrections to correct the same
structural error with a different word, say; fur-
thermore, several thousands of sentences would
need to be corrected for the same error.

Alternatively, we could go to the root of the
problem, and try correcting the source of the er-
ror by refining existing translation rules auto-
matically.

This way, by just fixing one or two transla-
tion rules, we can avoid the generation of a
structural error that would otherwise creep in
thousands of sentences. This approach naturally
requires access to translation rules that can be
refined.

Therefore, the approach proposed by this
framework is to attack the core of the problem
and refine the incorrect translation rules them-
selves guided by user corrections. In other
words, we propose to automate post-editing ef-
forts by recycling these corrections back into
the MT system.

4. Elicitation of Translation
Correction Information

Even in resource-poor contexts, there is usually
at least one resource available, namely, bilin-
gual speakers. Our approach exploits this fact
and relies on non-expert bilingual users to ex-
tract as much accurate information as possible
to determine error location and cause, which
can then be used by the Rule Refinement (RR)
module.

In order to elicit MT error information from
naïve speakers reliably, we designed and im-
plemented a graphic user interface, called the
Translation Correction Tool (TCTool), that is
intuitive and easy to use and that does not as-
sume any knowledge about translation or lin-
guistics. For details on how the TCTool works
to elicit translation error information, please re-
fer to Font-Llitjós and Carbonell (2004).

A set of English-Spanish user studies showed
that bilingual speakers with no linguistics or
translation skills, are able to use the TCTool to
evaluate and correct MT output with 90% and
72% accuracy, respectively (Font-Llitjós and
Carbonell 2004).

Given the evidence that non-expert bilingual
speaker judgments and corrections of MT out-
put are reliable, automating a rule refinement
mechanism based on this information becomes
an option.1

5. MT Error typology
As part of the initial research mostly based on
English to Spanish translation, a preliminary
MT error typology was defined, and it is shown
in a simplified form in Figure 1.

Figure 1: Initial MT Error Typology

1 To reduce noise, a threshold can be set so that only
if 90% of the speakers agree on any particular cor-
rection is the information considered reliable.

Font Llitjós, et al.

90 EAMT 2005 Conference Proceedings

Not coincidentally, these errors nicely corre-
spond to correction actions that can be per-
formed by bilingual speakers when using the
Translation Correction Tool.

6. Rule Refinement Approach

After eliciting the error-locus, namely the loca-
tion of the error in the translated sentence, and
error-type information from non-expert bilin-
gual speakers, we are half way towards being
able to automatically refine the translation rules
that generated a specific error. The other half
involves using the error information available
to trace back through the incorrect translation
rules and fix them automatically so as to im-
prove coverage and translation quality.

6.1. Formalizing Error Information
In order for any system to apply refinement op-
erations efficiently in an automatic way, we
need to formalize the different kinds of user
corrections and the refinement operations that
they should trigger.

We represent target language (TL) sen-
tences, i.e. translations, as vectors of words
from 1 to n (sentence length), indexed from 1 to
m (corpus length)),...,...(1 nim WWWTL = and
the corrected sentences (TL’) as follows:

),...,...',...('
'1 ncim WWWWTL = where Wi

represents the error, namely the word that needs
to be modified, deleted or dragged into a differ-
ent position by the user in order for the sentence
to be correct; and Wi’ represents the correction,
namely the user modification of Wi or the word
that needs to be added by the user in order for
the sentence to be correct.

Wc represents a word that provides a clue
with respect to what triggered the correction,
namely the cause of the error. For example, in
the case of lack of agreement between a noun
and the adjective that modifies it, as in *el co-
che roja (the red car), Wc should be instantiated
to coche, namely the word that gives us the clue
about what the gender agreement feature value
of Wi, roja, should be. Wc can also be a phrase
or constituent like a plural subject (eg. *[Juan y
Maria] cayó, where the plural is implied by the
conjoined NP).

Wc is not always present and it can be before
or after Wi. They can be contiguous or sepa-
rated by one or more words.

The TCTool is designed so that if such a
clue word were present in the sentence, it would
be easy for a non-expert bilingual speaker to
give us this information.

6.2. Finding Triggering Features
After users correct a word Wi, the RR module
can compare Wi and its correction, Wi’ at the
feature level and try to find out which is the
triggering feature, namely what feature attribute
(or set of attributes, in cases where a correction
fixes two errors) has a different value in Wi and
Wi’.

For RR purposes, we define the difference
between an incorrect word and its correction as
the set of feature attributes for which they have
different values. We can extract the set of fea-
tures and their values from the lexicon.2

We call this the feature delta function and it
can be written as)',(ii WWδ .

The resulting δ set can be a single feature at-
tribute, a set of feature attributes, which are all
responsible for the correction, or the empty set.
If the δ set has one or more elements, this indi-
cates that there is a missing feature constraint
for all the attributes in the set. Examples of this
can be found when comparing Spanish varia-
tions for red δ(rojo,roja) = {gender} and eat,
δ(comían,comías) = {person, number}.3

If the δ set is empty, this indicates that the
existing feature set is insufficient to explain the
difference between the error and the correction
and, therefore, a new binary feature is postu-
lated by the RR module, feat1, say. An example
of two words that would not have any attribute
with a differing value is δ(mujer,guitarra) =
{Ø}4, since the lexical entries in our grammar
are not marked for animacy.

Once the RR module has determined the
triggering features, and assuming the user was
able to identify a Wc with the TCTool, it pro-

2 If the lexicon contains roots, some kind of morpho-
logical analyzer is needed to extract the features for
each word.
3 comían is 3rd person plural and comías 2nd person
singular.
4 In Spanish, women and guitar are both singular,
feminine nouns.

A framework for interactive and automatic refinement of transfer-based machine translation

EAMT 2005 Conference Proceedings 91

ceeds to refine the relevant grammar and lexical
rules by adding the appropriate feature constraints
between Wi and Wc.

6.3. Rule Refinement Schemata
In general, if the new refined rule needs to
translate the same sentences as before plus the
corrected sentence, the original rule (R) is sub-
stituted by the refined rule (R’). However, if the
refined rule should only apply to the corrected
sentence, then R bifurcates into a general, de-
fault rule, R1, and a more specific rule, R2.

Figure 2 illustrates the two types of RR op-
erations that we anticipate being able to deal
with our system. If user corrections require a
brand new rule not already in the original
grammar, this is outside the scope of the frame-
work. In this case, in our MT system, an auto-
matic rule learner (Probst et al., 2002) would be
invoked, instead.

In the first refinement schema shown in Fig-
ure 2 (RS1), the original rule is not tight enough,
and needs to be made more specific for all in-
stances of such rule application. A good exam-
ple of this is if the NP rule was missing number
and gender agreement constraints in Spanish;
the noun, adjective and determiner always need
to agree. This requires adding a constraint equa-
tion.

The second rule refinement schema (RS2)
represents the case when the original grammar
rule (GR0) bifurcates into a general rule, GR1,
which should apply by default, and a more spe-
cific rule, GR2, perhaps with a different word
order.

In order to prevent the application of the
general rule (GR1) to the current translation
pair, a blocking constraint is added to it. In the
case of a binary constraint, the RR module
would assign it value −.

 At the same time, the specific rule needs to
be applied in the special cases only, and not in the
general case, and thus the same binary constraint
will also be added to GR2 but with value +.

An instantiation of when it is appropriate to
apply this schema can be found in object pro-
nouns in Spanish. Spanish object pronouns of-
ten appear in a pre-verbal position (I saw you

 *vi te te vi), instead of following the verb
like other object NPs, and thus the VP rule ([V
NP(pron −)]) would need to be bifurcated into a

rule like the original but with a new constraint
to block its application when the object NP is a
pronoun (thus decreasing the ambiguity of the
refined grammar), and a more specific rule with
the order flipped and a constraint enforcing its
application to TL sentences where the object is
realized with a pronoun (VP [NP(pron +) V]).

The constraint added to the more specific
rule (GR2) enforces that the lexical entry be
tagged as + (this is done with the use of =c), so
that if the lexical entry is underspecified with
respect to constr, only the general rule (GR1)
will apply.

Grammar
Refine
RS1: GR0 GR1 [=GR0 + constr]

Cov(GR0) > Cov(GR1)
Bifurcate
RS2: GR0 GR1 [=GR0 + constr = −]

 GR2 [≈GR0 + constr =c +]

 Cov(GR0) ≤ Cov(GR1&GR2)

Lexicon
Refine
RS3: Lex0 Lex1 [=Lex0 + constr]
Bifurcate
RS4: Lex0 Lex1 [=Lex0 + constr = −]

 Lex2 [≠ TLword + constr = +]

RS5: Ø Lex1

Figure 2: Main types of Refinement Schemata (RS) for
grammar rules (GR) and lexical entries (Lex), and

their effect on the rule's coverage (Cov).

The reason the coverage (Cov) of GR0 might be
smaller than the coverage of GR1 plus GR2 in
RS2 is that the modification undergone by GR2
might allow different kinds of TL sentences to
be correctly generated.

The first lexical refinement schema is equi-
valent to the first grammar schema. One possi-
ble instantiation of SR3 is when adding a con-
straint (feat0 = +) to all animated nouns, such
as woman, boy, Mary, and in contrast with
trees, book and feather, which basically distin-
guishes nouns with animate referents from
nouns with inanimate referents.

The reason we might want to do something
like this, is that in Spanish animacy is marked
explicitly in the sentence in front of the object
NP (e.g. I saw Mary Vi a Maria).

Font Llitjós, et al.

92 EAMT 2005 Conference Proceedings

RS4 adds a missing sense to the lexicon.
Namely, the translation of an SL word required
for a sentence is not the one in the lexicon, but a
different one. In this case, the RR module bi-
furcates Lex0 into Lex1 and Lex2 and changes
the TL side of Lex2 to match the translation
proposed by the user. For example, if bilingual
speakers were given Wally plays guitar
*Wally juega guitarra, they would correct the
translation of plays and change juega into toca,
which is the right sense for play+[instrument] in
Spanish. If the lexicon only had an entry for
[plays] [juega], then RR6 would apply and
generate a new entry [plays] [toca] with the
same feature constraints, but with the TL word
modified.

Finally, RS5 represents the schema required
for out-of-vocabulary words, i.e. there is no le-
xical entry for the SL word aligned to it, and thus
the system does not output a translation for it.

7. Refinement Coverage
In order to determine the refinement space, we
organized the rule refinement cases according
to the type of action users can perform to cor-
rect a sentence using the TCTool (add, delete or
modify a word, change word order), and then
according to what error information is available
to the RR module at refinement time.

The tree in Figure 3 sketches the different
Rule Refinement conditions identified so far.

Figure 3: Different Rule Refinement cases, given
TCTool correction actions and error information

available.

When the user identifies a triggering word, in-
dicated as “+Wc” in Figure 3, there usually is a
fully automatic way to refine the appropriate
rules, even though further interaction with users
might make the refinement more robust. Most
cases where the user did not identify a trigger-
ing word (“−Wc”) will require some amount of

further user interaction to be solvable, possibly
using Active Learning techniques to minimize
the number of translation pairs that the user
needs to correct.

When there is an alignment to the corrected
word, this is indicated with “+al” in the tree
above; “−al” indicates lack of alignment to the
corrected word.

8. Rule Refinement Module
The philosophy behind the RR module is to ex-
tend the grammar to account for exceptions not
originally encoded in the translation rules, to
make overly general rules more specific so as to
reduce grammar ambiguity, and to correct rule
errors.

In the case of automatically learned gram-
mars, the RR module also has the role of adding
missing constraints to the context-free rules that
need them.

Given specific user feedback, the RR mod-
ule will first use the parse tree produced by the
transfer engine5 to trace back to the rules and
lexical entries that applied and, if it has all the
information required, it will determine the type
of refinement required to fix the rules. If it
needs to add a feature constraint between two
positions, a rule covering those positions must
already exist in the grammar. If such a rule does
not exist in the grammar, the RR module cannot
perform any refinements and just feeds the
user-corrected SL-TL pair back to the Rule
Learner as a new training example.

The refinement schemata defined in Figure 2
will work when considering user corrections in
isolation. However, when users perform more than
one correction action allowed by the TCTool to
address a single MT error, it becomes very hard
to automatically detect whether such actions are
part of one single correction and should be con-
sidered together by the RR module, or are in-
tended to correct multiple errors.

For example when a user deletes a word and
then adds a different word in a different posi-
tion, it could be that the user modified a word

5 The transfer engine may produce multiple transla-
tions, possibly generated by different parse trees, as
a function of the ambiguity inherent in the grammar
and the lexicon; however, users pick which sentence
to correct and thus the corresponding parse tree is re-
trieved for RR purposes.

A framework for interactive and automatic refinement of transfer-based machine translation

EAMT 2005 Conference Proceedings 93

and that the modification caused it to have to
move in a different position, or it could be that
s/he performed two independent corrections.
The appropriate way to show that there is a cor-
relation with the TCTool is to drag and drop the
word to the right position and then modify the
dragged word, but there is no guarantee that us-
ers will always do it that way.

In any case, and as a starting point, we adopt
the Occam’s razor principle and assume that
when affecting the same word, different correc-
tion actions are due to the same error.

The generalization power of the Rule Re-
finement approach is greatest if the refinements
involve existing feature constraints (e.g. gender,
number, person), since all the relevant lexical
entries will already be appropriately tagged for
the correct rule to apply.

If the RR module needs to postulate a new
binary feature attribute (to distinguish between
two different senses of a word, say), only local
improvements will be observed. The problem is
that newly hypothesized features would not
populate lexical entries, and in the absence of a
generalization mechanism, this process would
require one-by-one addition.

This work can be seen as the first step to-
wards semantic correction, in the sense that it
annotates the specific examples corrected by
users in the appropriate way, which may be used
later by a system with Wordnet to make the ap-
propriate generalizations.

8.1. Batch Mode vs. Interactive Mode
One of the main goals of this framework is to
automate the refinement process as much as
possible. And since initial examination of the Eng-
lish-Spanish data shows that a significant amount
of sentences can be automatically refined with
just the correction and error information elicited
by the TCTool, we are currently implementing a
RR module that operates in batch mode.

In batch mode, however, it is not always
possible to automatically decide whether a re-
finement or a bifurcation of the original rule is
the appropriate operation. When no evidence is
available to determine that the original rule can
never be applied, the system adopts a conserva-
tive approach and applies the bifurcate opera-
tion, leaving the original unchanged and refin-
ing the duplicate rule.

Moreover, when the system is running in batch
mode, the default settings are to add the con-
straints at the most specific level possible, name-
ly the word. Sometimes, the ideal refinement
would have been at the POS level. But further
refinements and generalizations on the specific
constraints can only be made automatically at a
later stage, when the system has more labeled
examples, or when it can interact with the user.

While processing all the available informa-
tion, the RR module might detect that it is miss-
ing some crucial information about the error or
the type of rule refinement operation required to
fix the error, and that this crucial information
could be retrieved by having other minimal-pair
sentences evaluated and corrected.

An interactive mode of operation allows the
RR module to prompt users with new sentences
to evaluate at run time, so as to obtain any addi-
tional information required to determine the ap-
propriate refinement operation that can be ap-
plied reliably.

To minimize further user interaction as much
as possible, Active Learning methods can be
used to optimize user time by presenting them
with most informative sentences first.

9. Refinement simulation
A comprehensive set of end-to-end simulations
has been developed to cover all the refinement
cases identified in Figure 3. For illustration
purposes and to provide with better insight into
the refinement process, one simulation is de-
scribed below.

The simulation example requires a word to
be changed into a different position in the TL
sentence and to be slightly modified. This cor-
responds to the first branch of the subtree
rooted at “Change W Order” in Figure 3, as
well as the branch rooted at the “Modify” node
following by “+Wc” and “δ=∅”.

SL: Gaudí was a great artist
TL: Gaudí era un artista grande
User corrections:

 *Gaudí era un artista grande
 Gaudí era un gran artista

Figure 4: Source language (SL) sentence, translation in
Spanish as it is output by the MT system (TL) and cor-

rection information given by the user.

Font Llitjós, et al.

94 EAMT 2005 Conference Proceedings

Simulation steps
1. Error Information Elicitation
Given the SL and TL sentences in Figure 4, a
bilingual speaker will move grande before ar-
tista and change grande to gran, as can be seen
from the two snapshots showing the initial and
final screens of the TCTool.

2. Variable Instantiation
All the actions users perform with the TCTool
are properly logged, and thus by parsing a ses-
sion log file, the system can instantiate the error
information variables with the logged informa-
tion. In this example, the log file will contain
the following correction actions allowing the
three variable instantiations indicated below:

1. Word order change: grande is moved in
front of artista) Wi = grande

2. Edited grande into gran Wi’ = gran
 3. User selected the following option from a
menu: “The word great can be translated as
grande but not in this sentence. The key word
in the sentence that indicates this is [artista]”.

 Wc = artista
In this case, even if the user had not identified a
Wc, the RR module could still refine the gram-
mar and lexicon automatically, but it would not
be able to make the refined grammar tighter.

3. Retrieve Relevant Lexical Entries
Assuming there is no entry for [great gran]
in the lexicon, the system will apply RS6 (Fig-
ure 2) and duplicate the lexical entry for [great

 grande] and change TL side to gran: 6

4. Finding Triggering Feature(s)
Since the delta set between grande and gran is
empty (δ(grande,gran) = ∅), precisely because
their lexical entries have the same features, the
system postulates a new binary feature, let’s
call it feat1.7

5. Blame assignment
The MT system output provides with all the in-
formation required to trace what rules were in-
volved in producing the error:

6. Variable Instantiation in the Rules

Since the system has access to the part-of-
speech of grande (ADJ) through the MT system
output shown in the previous step, the RR mod-
ule can trace what variables refer to grande by
the position of its POS in the TL-side of the
relevant grammar rule.

But first, a few words about the rule formal-
ism used by our MT system. The translation
rules include all information necessary for pars-
ing, transfer, and generation, and have 6 com-
ponents: 1) type, which in most cases corresponds
to a syntactic constituent type; 2) part-of-speech
/constituent sequence for both the SL (x-side)
and the TL (y-side); 3) alignments between the
SL constituents and the TL constituents; 4) x-
side constraints, which are defined as equality

6 The Spanish morphological analyzer gives us the
information that grande and gran have the same fea-
tures.
7 A more mnemonic name for feat1 would be pre-
nominal.

A framework for interactive and automatic refinement of transfer-based machine translation

EAMT 2005 Conference Proceedings 95

of grammatical features in the SL sentence; 5)
y-side constraints, which are defined as equality
of grammatical features in the TL sentence, and
6) xy-constraints, which provide information
about which feature values or agreements trans-
fer from the source into the target language.

Back to the variable instantiation in the
grammar rules, in the NP,8 rule, ADJ is in the
third position on the TL side (y-side) and thus
the variable that refers to it is y3:

7. Refining Rules
Assuming the system has the information that
NP,8 has applied correctly in the past (perhaps
because users have evaluated the translation
pair I saw a black bird – vi un pájaro negro as
correct), the RR module proceeds to bifurcate
the original rule, following the second rule
schema in Figure 2 (SR2). It then modifies the
copy (NP,8’) by flipping the order of the con-
stituents, as indicated by the user, and by add-
ing the constraint that the Spanish adjective
(y2) needs to have the feat1 with value +:

8. Refining Lexical Entries
For this refinement to be effective, the lexical
entries need to be expanded with the new fea-
ture postulated by the RR module in step 4:

9. Add Blocking Constraints
In addition to this, the system already has the
information that un artista gran is not a correct
sequence in Spanish8, and thus the grammar can
be further refined to also rule out the incorrect
translation. This can be done by restricting the
application of the general rule (NP,8) to just
post-nominal adjectives, which in this example
are marked in the lexicon with feat1 = − .

But can the system also eliminate other in-
correct translations automatically? In addition
to generating the correct translation, we would
also like the RR module to produce a refined
grammar that is as tight as possible, given the
data that is available.

In this case, the system can only further
tighten the grammar if it knows what the clue
word is (Wc=artista). If it does, then it can add
the constraint feat = + to the lexical entry for
artista and add an agreement constraint be-
tween the N position (y2) and the ADJ position
(y3) for the original rule (NP,8).

The resulting refined grammar would now
correctly translate a great artist into un gran
artista as well as rule out all the incorrect com-
binations of N and ADJ (*un artista grande,
*un artista gran, * un grande artista)

10. Conclusions and Future Work
Non-expert bilingual speakers can provide us
with accurate translation error information, by
using the Translation Correction Tool, so that
automatic rule refinement becomes an option.

Once the error information is instantiated
with the appropriate variables, we can auto-
matically extract the set of feature attributes

8 Since instead of just changing grande to gran, the
user proceeded to move it to the pre-nominal posi-
tion.

Font Llitjós, et al.

96 EAMT 2005 Conference Proceedings

that triggered a particular correction. Using an
error typology, which takes into account the
correction action and the error information
available to the system, the RR module is then
able to automatically determine what refine-
ment operations need to apply. The trace of the
MT system is used to automatically perform the
blame assignment and determine what rules
need to be refined.

When operating in batch mode, given a set
of user corrections, the RR module can auto-
matically refine some of the errors by just using
the correction and the error information pro-
vided by the TCTool.

If extra information is required to automati-
cally determine what triggered the correction,
the system will need to present users with other
relevant translation pairs at run-time.

Therefore, we are planning to expand the
system to also include an interactive mode,
which will allow the system to refine a larger
set of translations, possibly using Active Learn-
ing techniques.

Initial end-to-end simulations indicate that
this framework for interactive and automatic re-
finement of transfer MT systems is appropriate
for the task. We are currently developing a first
prototype of the RR module and plan to fully
test this framework for at least two language
pairs: Mapudungun ↔ Spanish and Quechua ↔
Spanish.

11. Acknowledgments
This research was funded in part by NSF grant
number IIS-0121-631.

12. References
ALLEN, Jeffrey (2003). Post-editing. ed. Harold So-
mers. Benjamins Translation Library, 35.

ALLEN, Jeffrey & HOGAN, Christopher. (2000). To-
ward the Development of a Post editing Module for
Raw Machine Translation Output: A Controlled
Language Perspective. CLAW.
BRILL, Eric (1993). Automatic Grammar Induction
and Parsing Free Text: A Transformation-Based
Approach. ACL.
CORSTON-OLIVER, Simon, & GAMON, Michael
(2003). Combining decision trees and transforma-
tion-based learning to correct transferred linguistic
representations. MT Summit 2003.
FONT-LLITJÓS, Ariadna & CARBONELL, Jaime (2004).
The Translation Correction Tool: English-Spanish
user studies. LREC.
IMAMURA, Kenji, SUMITA, Eiichiro, & MATSUMOTO,
Yuji (2003). Feedback cleaning of Machine Transla-
tion Rules Using Automatic Evaluation. ACL.
LIN, Yi-Chung, CHIANG, Tung-lIui., & SU, Keh-Yih
(1994). Automatic Model Refinement with an appli-
cation to tagging. COLING-94.
MENEZES, Arul, & RICHARDSON, Stephen D. (2001).
A best-first alignment algorithm for automatic ex-
traction of transfer mappings from bilingual corpora.
Workshop on Example-Based Machine Translation,
in MT Summit VIII.
PROBST, Kathrin, LEVIN, Lori, PETERSON, Erik, LA-
VIE, Alon, & CARBONELL, Jaime (2002). MT for Re-
source-Poor Languages Using Elicitation-Based Learn-
ing of Syntactic Transfer Rules. Machine Translation
Journal, vol. 17, No. 4. Special Issue on Embedded
MT Systems.
SU, Keh-Yih, CHANG, Jing-Shin, & HSU, Yu-Ling
Una (1995). A corpus-based statistics-oriented two-
way design for parameterized MT systems: Ration-
ale, Architecture and Training issues. TMI.
YAMADA, Setsuo, NAKAIWA, Hiromi, OGURA, Ken-
taro, & IKEHARA, Satoru (1995). A Method of
Automatically Adapting a MT System to Different
Domains. TMI.

