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Abstract. Most current Machine Translation (MT) systems do not improve with feedback 
from post-editors beyond the addition of corrected translations to parallel training data (for 
statistical and example-base MT) or to a memory database. Rule based systems to date im-
prove only via manual debugging. In contrast, we introduce a largely automated method for 
capturing more information from human post-editors, so that corrections may be performed 
automatically to translation grammar rules and lexical entries. This paper introduces a gen-
eral framework for incorporating a refinement module to rule-based transfer MT systems. 
This framework allows to generalize post-editing efforts in an effective way, by identifying 
and correcting rules semi-automatically to improve coverage and overall translation quality. 

1. Introduction 
Although Machine Translation (MT) has ad-
vanced recently for language pairs with large 
amounts of parallel data, translation quality has 
not yet reached satisfactory levels, especially 
not for resource-poor languages with little if 
any parallel text to train statistical or example-
based MT systems. Examples of resource poor 
languages are Quechua and Mapudungun, which 
contrast with languages that have more eco-
nomic, and therefore also electronic, resources, 
such as Spanish and English. 

Rule-based transfer MT systems are the only 
feasible solution for resource-poor scenarios. 
Developing and expanding such systems manu-
ally can, however, prove very costly and time 
consuming.  On the other hand, finding trained 
computational linguists with knowledge of re-
source-poor languages is a real challenge. More-
over, if the translation rules are written manu-
ally, no matter how many rules there already 
are, coverage and accuracy can always be in-
creased. If they are automatically learned, they 
might be either too general or too specific. In 
both cases, the translation rules can be refined 
to account for new data. The goal of our re-

search is to generalize post-editing efforts in an 
effective way, by identifying and correcting rules 
semi-automatically in order to improve cover-
age and overall translation quality. 

In this paper, we introduce a novel approach 
that proposes an MT module for automatically 
refining translation rules based on the feedback 
provided by bilingual speakers. 

There are two main challenges in this ap-
proach. First, the elicitation of accurate correc-
tion information from non-expert bilingual 
speakers. Second, the automatic refinement of 
existing translation rules, given a corrected and 
word-aligned translation pair, and information 
about the MT errors. 

The approach described in this paper auto-
matically determines the appropriate rule re-
finement operations that need to be applied to a 
grammar and a lexicon in order for the system 
to output the correct translation, as given by the 
native speaker. 

The resulting refinements and extensions 
can therefore apply not only to the translation 
instance corrected by the user, but also to other 
similar cases where the same error would be 
encountered. 
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2. Related Work 

2.1. On Post-editing to Improve MT  
Post-editing has often been defined as the cor-
rection of MT output by human linguists or edi-
tors. In the case of native and minority lan-
guages on which we are working, the editors 
are actually bilingual speakers with no expertise 
in linguistics or translation, and their goal is to 
evaluate and minimally correct MT output, in a 
way that is similar to what has been referred to 
as minimal post-editing in the literature (Allen, 
2003).  

The minimal correction method we are pro-
posing for the task of rule refinement involves 
grammar correctness and fluency, in addition to 
meaning preservation. Stylistic changes are not 
considered minimal post-editing. 

Some researchers have looked at ways of in-
cluding user feedback in the MT loop. Su et al. 
(1995) have explored the possibility of using 
feedback for a corpus-based MT system to ad-
just the system parameters so that the user style 
could be respected in the translation output. 
They proposed that the distance between the 
translation output of the system and the transla-
tion preferred by the user should be propor-
tional to the amount of adjustment to the para-
meters involved in the score evaluation func-
tion, and should be minimized over time. We 
could not find, however, any papers reporting 
testing of these ideas.  

In the case of languages with limited data, 
such a system is not feasible, though, since there 
is not enough data to estimate and train system 
parameters. Moreover, we are interested in im-
proving the translation rules themselves, which 
in the case of automatically learned grammars 
typically lack some of the feature constraints 
required for the correct application of the rule, 
rather than just tweaking the evaluation parame-
ters, which in their system are conditional prob-
abilities and their weights. 

Menezes and Richardson (2001) and Ima-
mura et al. (2003) have proposed the use of ref-
erence translations to “clean” incorrect or re-
dundant rules after automatic acquisition. The 
method of Imamura et al. consists of selecting 
or removing translation rules to increase the 
BLEU score of an evaluation corpus. In contrast 

to filtering out incorrect or redundant rules, we 
propose to actually refine the translation rules 
themselves, by editing valid but inaccurate rules 
that might be lacking a constraint, for example. 

2.2. On Rule Refinement 
The idea of rule adaptation to correct or expand 
an initial set of rules is an appealing one and re-
searchers have indeed looked at rule adaptation 
for several natural language processing applica-
tions. 

Lin et al. (1994) report research on auto-
matically refining models to decrease the error 
rate of part-of-speech tagging. 

Brill (1993) introduced a new technique for 
parsing free text: a transformational grammar is 
automatically learned that is capable of accu-
rately parsing text into binary-branching syntac-
tic trees with non-terminals unlabeled. The sys-
tem learns a set of simple structural transforma-
tions that can be applied to reduce error. Brill's 
method can be used to obtain high parsing ac-
curacy with a very small training set. Although 
small, the learning algorithm does need the 
training corpus to be partially bracketed and an-
notated with part-of-speech information, which is 
a scarce resource for minority languages. 

Even if we had such a small initial annotated 
corpus, transforming translation rules is non-
trivial and cannot be done with simple patterns 
like the ones proposed in Brill's method. 

The rule refinement algorithm proposed here 
needs to deal with the lexicon, the syntax and 
the feature constraints in the rules.  

Corston-Oliver and Gamon (2003) learned 
linguistic representations for the target language 
with transformation-based learning (Brill style) 
and used decision trees to correct binary fea-
tures describing a node in the logical form to 
reduce noise. 

Yamada et al. (1995) use structural compari-
son (parse tree) between machine translations 
and manual translations in a bilingual corpus to 
adapt a rule-based MT system to different do-
mains. In order for this method to work, though, 
a parser for the target language (TL) needs to be 
readily available, which is typically not the case 
for resource-poor languages. Moreover, such a 
parser must have coverage for the manually 
corrected output as well as the incorrect MT 
output to compute the differences. The actual 
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adaptation technique is not described in the pa-
per. 

In sum, even though adaptation has been re-
searched for MT and other natural language 
processing applications before, to this day, 
work so far has not attempted to refine the 
translation rules themselves, and thus the 
framework described in this paper constitutes 
an interesting and novel approach to automati-
cally refine and expand MT systems. 

3. Automating the Post-editing 
process  

Current solutions to improve MT output are 
limited to manually correcting the output and, 
in the best-case scenario, to some post-process-
ing to alleviate the tedious task of manual post-
editing by correcting the most frequent errors 
beforehand (Allen & Hogan, 2000). Currently, 
there exists no solution to fully automating the 
post-editing process. 

There are at least two different approaches 
one could take in order to do that. First, one 
could try to learn post-editing rules automati-
cally from concrete corrections, which has the 
advantage of being system independent. With 
this approach, however, one cannot generalize 
over specific corrections to correct the same 
structural error with a different word, say; fur-
thermore, several thousands of sentences would 
need to be corrected for the same error.  

Alternatively, we could go to the root of the 
problem, and try correcting the source of the er-
ror by refining existing translation rules auto-
matically. 

This way, by just fixing one or two transla-
tion rules, we can avoid the generation of a 
structural error that would otherwise creep in 
thousands of sentences. This approach naturally 
requires access to translation rules that can be 
refined. 

Therefore, the approach proposed by this 
framework is to attack the core of the problem 
and refine the incorrect translation rules them-
selves guided by user corrections. In other 
words, we propose to automate post-editing ef-
forts by recycling these corrections back into 
the MT system. 

4. Elicitation of Translation 
Correction Information 

Even in resource-poor contexts, there is usually 
at least one resource available, namely, bilin-
gual speakers. Our approach exploits this fact 
and relies on non-expert bilingual users to ex-
tract as much accurate information as possible 
to determine error location and cause, which 
can then be used by the Rule Refinement (RR) 
module.  

In order to elicit MT error information from 
naïve speakers reliably, we designed and im-
plemented a graphic user interface, called the 
Translation Correction Tool (TCTool), that is 
intuitive and easy to use and that does not as-
sume any knowledge about translation or lin-
guistics. For details on how the TCTool works 
to elicit translation error information, please re-
fer to Font-Llitjós and Carbonell (2004). 

A set of English-Spanish user studies showed 
that bilingual speakers with no linguistics or 
translation skills, are able to use the TCTool to 
evaluate and correct MT output with 90% and 
72% accuracy, respectively (Font-Llitjós and 
Carbonell 2004).  

Given the evidence that non-expert bilingual 
speaker judgments and corrections of MT out-
put are reliable, automating a rule refinement 
mechanism based on this information becomes 
an option.1 

5. MT Error typology 
As part of the initial research mostly based on 
English to Spanish translation, a preliminary 
MT error typology was defined, and it is shown 
in a simplified form in Figure 1.  

 

       
Figure 1: Initial MT Error Typology 

                                                      
1 To reduce noise, a threshold can be set so that only 
if 90% of the speakers agree on any particular cor-
rection is the information considered reliable. 
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Not coincidentally, these errors nicely corre-
spond to correction actions that can be per-
formed by bilingual speakers when using the 
Translation Correction Tool. 

6. Rule Refinement Approach 

After eliciting the error-locus, namely the loca-
tion of the error in the translated sentence, and 
error-type information from non-expert bilin-
gual speakers, we are half way towards being 
able to automatically refine the translation rules 
that generated a specific error. The other half 
involves using the error information available 
to trace back through the incorrect translation 
rules and fix them automatically so as to im-
prove coverage and translation quality. 

6.1. Formalizing Error Information 
In order for any system to apply refinement op-
erations efficiently in an automatic way, we 
need to formalize the different kinds of user 
corrections and the refinement operations that 
they should trigger. 

We represent target language (TL) sen-
tences, i.e. translations, as vectors of words 
from 1 to n (sentence length), indexed from 1 to 
m (corpus length) ),...,...( 1 nim WWWTL =  and 
the corrected sentences (TL’) as follows: 

 ),...,...',...('
'1 ncim WWWWTL =  where Wi 

represents the error, namely the word that needs 
to be modified, deleted or dragged into a differ-
ent position by the user in order for the sentence 
to be correct; and Wi’ represents the correction, 
namely the user modification of Wi or the word 
that needs to be added by the user in order for 
the sentence to be correct.  

Wc represents a word that provides a clue 
with respect to what triggered the correction, 
namely the cause of the error.  For example, in 
the case of lack of agreement between a noun 
and the adjective that modifies it, as in *el co-
che roja (the red car), Wc should be instantiated 
to coche, namely the word that gives us the clue 
about what the gender agreement feature value 
of Wi, roja, should be. Wc can also be a phrase 
or constituent like a plural subject (eg.  *[Juan y 
Maria] cayó, where the plural is implied by the 
conjoined NP). 

Wc is not always present and it can be before 
or after Wi. They can be contiguous or sepa-
rated by one or more words. 

The TCTool is designed so that if such a 
clue word were present in the sentence, it would 
be easy for a non-expert bilingual speaker to 
give us this information. 

6.2. Finding Triggering Features 
After users correct a word Wi, the RR module 
can compare Wi and its correction, Wi’ at the 
feature level and try to find out which is the 
triggering feature, namely what feature attribute 
(or set of attributes, in cases where a correction 
fixes two errors) has a different value in Wi and 
Wi’. 

For RR purposes, we define the difference 
between an incorrect word and its correction as 
the set of feature attributes for which they have 
different values. We can extract the set of fea-
tures and their values from the lexicon.2 

We call this the feature delta function and it 
can be written as )',( ii WWδ . 

The resulting δ set can be a single feature at-
tribute, a set of feature attributes, which are all 
responsible for the correction, or the empty set. 
If the δ set has one or more elements, this indi-
cates that there is a missing feature constraint 
for all the attributes in the set. Examples of this 
can be found when comparing Spanish varia-
tions for red δ(rojo,roja) = {gender} and eat, 
δ(comían,comías) = {person, number}.3 

If the δ set is empty, this indicates that the 
existing feature set is insufficient to explain the 
difference between the error and the correction 
and, therefore, a new binary feature is postu-
lated by the RR module, feat1, say. An example 
of two words that would not have any attribute 
with a differing value is δ(mujer,guitarra) = 
{Ø}4, since the lexical entries in our grammar 
are not marked for animacy. 

Once the RR module has determined the 
triggering features, and assuming the user was 
able to identify a Wc with the TCTool, it pro-

                                                      
2 If the lexicon contains roots, some kind of morpho-
logical analyzer is needed to extract the features for 
each word. 
3 comían is 3rd person plural and comías 2nd person 
singular. 
4 In Spanish, women and guitar are both singular, 
feminine nouns. 
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ceeds to refine the relevant grammar and lexical 
rules by adding the appropriate feature constraints 
between Wi and Wc.  

6.3. Rule Refinement Schemata 
In general, if the new refined rule needs to 
translate the same sentences as before plus the 
corrected sentence, the original rule (R) is sub-
stituted by the refined rule (R’). However, if the 
refined rule should only apply to the corrected 
sentence, then R bifurcates into a general, de-
fault rule, R1, and a more specific rule, R2. 

Figure 2 illustrates the two types of RR op-
erations that we anticipate being able to deal 
with our system. If user corrections require a 
brand new rule not already in the original 
grammar, this is outside the scope of the frame-
work. In this case, in our MT system, an auto-
matic rule learner (Probst et al., 2002) would be 
invoked, instead. 

In the first refinement schema shown in Fig-
ure 2 (RS1), the original rule is not tight enough, 
and needs to be made more specific for all in-
stances of such rule application. A good exam-
ple of this is if the NP rule was missing number 
and gender agreement constraints in Spanish; 
the noun, adjective and determiner always need 
to agree. This requires adding a constraint equa-
tion. 

The second rule refinement schema (RS2) 
represents the case when the original grammar 
rule (GR0) bifurcates into a general rule, GR1, 
which should apply by default, and a more spe-
cific rule, GR2, perhaps with a different word 
order. 

In order to prevent the application of the 
general rule (GR1) to the current translation 
pair, a blocking constraint is added to it. In the 
case of a binary constraint, the RR module 
would assign it value −.  

 At the same time, the specific rule needs to 
be applied in the special cases only, and not in the 
general case, and thus the same binary constraint 
will also be added to GR2 but with value +.  

An instantiation of when it is appropriate to 
apply this schema can be found in object pro-
nouns in Spanish. Spanish object pronouns of-
ten appear in a pre-verbal position (I saw you 

 *vi te  te vi), instead of following the verb 
like other object NPs, and thus the VP rule ([V 
NP(pron −)]) would need to be bifurcated into a 

rule like the original but with a new constraint 
to block its application when the object NP is a 
pronoun (thus decreasing the ambiguity of the 
refined grammar), and a more specific rule with 
the order flipped and a constraint enforcing its 
application to TL sentences where the object is 
realized with a pronoun (VP  [NP(pron +) V]). 

The constraint added to the more specific 
rule (GR2) enforces that the lexical entry be 
tagged as + (this is done with the use of =c), so 
that if the lexical entry is underspecified with 
respect to constr, only the general rule (GR1) 
will apply. 

 
Grammar 
Refine 
RS1: GR0  GR1 [=GR0 + constr] 

Cov(GR0) > Cov(GR1)  
Bifurcate 
RS2: GR0  GR1 [=GR0 + constr = −] 

 GR2 [≈GR0 + constr =c +]
        
     Cov(GR0) ≤  Cov(GR1&GR2) 

Lexicon 
Refine 
RS3: Lex0  Lex1 [=Lex0 + constr] 
Bifurcate 
RS4: Lex0  Lex1 [=Lex0 + constr = −] 

      Lex2 [≠ TLword + constr = +] 
 

RS5:   Ø     Lex1  

Figure 2: Main types of Refinement Schemata (RS) for 
grammar rules (GR) and lexical entries (Lex), and 

their effect on the rule's coverage (Cov).  

The reason the coverage (Cov) of GR0 might be 
smaller than the coverage of GR1 plus GR2 in 
RS2 is that the modification undergone by GR2 
might allow different kinds of TL sentences to 
be correctly generated. 

The first lexical refinement schema is equi-
valent to the first grammar schema. One possi-
ble instantiation of SR3 is when adding a con-
straint (feat0 = +) to all animated nouns, such 
as woman, boy, Mary, and in contrast with 
trees, book and feather, which basically distin-
guishes nouns with animate referents from 
nouns with inanimate referents. 

The reason we might want to do something 
like this, is that in Spanish animacy is marked 
explicitly in the sentence in front of the object 
NP (e.g. I saw Mary  Vi a Maria). 
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RS4 adds a missing sense to the lexicon. 
Namely, the translation of an SL word required 
for a sentence is not the one in the lexicon, but a 
different one. In this case, the RR module bi-
furcates Lex0 into Lex1 and Lex2 and changes 
the TL side of Lex2 to match the translation 
proposed by the user. For example, if bilingual 
speakers were given Wally plays guitar  
*Wally juega guitarra, they would correct the 
translation of plays and change juega into toca, 
which is the right sense for play+[instrument] in 
Spanish. If the lexicon only had an entry for 
[plays] [juega], then RR6 would apply and 
generate a new entry [plays] [toca] with the 
same feature constraints, but with the TL word 
modified. 

Finally, RS5 represents the schema required 
for out-of-vocabulary words, i.e. there is no le-
xical entry for the SL word aligned to it, and thus 
the system does not output a translation for it. 

7. Refinement Coverage 
In order to determine the refinement space, we 
organized the rule refinement cases according 
to the type of action users can perform to cor-
rect a sentence using the TCTool (add, delete or 
modify a word, change word order), and then 
according to what error information is available 
to the RR module at refinement time.  

The tree in Figure 3 sketches the different 
Rule Refinement conditions identified so far. 

 

 
Figure 3: Different Rule Refinement cases, given 
TCTool correction actions and error information 

available. 

When the user identifies a triggering word, in-
dicated as “+Wc” in Figure 3, there usually is a 
fully automatic way to refine the appropriate 
rules, even though further interaction with users 
might make the refinement more robust. Most 
cases where the user did not identify a trigger-
ing word (“−Wc”) will require some amount of 

further user interaction to be solvable, possibly 
using Active Learning techniques to minimize 
the number of translation pairs that the user 
needs to correct. 

When there is an alignment to the corrected 
word, this is indicated with “+al” in the tree 
above; “−al” indicates lack of alignment to the 
corrected word. 

8. Rule Refinement Module 
The philosophy behind the RR module is to ex-
tend the grammar to account for exceptions not 
originally encoded in the translation rules, to 
make overly general rules more specific so as to 
reduce grammar ambiguity, and to correct rule 
errors. 

In the case of automatically learned gram-
mars, the RR module also has the role of adding 
missing constraints to the context-free rules that 
need them. 

Given specific user feedback, the RR mod-
ule will first use the parse tree produced by the 
transfer engine5 to trace back to the rules and 
lexical entries that applied and, if it has all the 
information required, it will determine the type 
of refinement required to fix the rules. If it 
needs to add a feature constraint between two 
positions, a rule covering those positions must 
already exist in the grammar. If such a rule does 
not exist in the grammar, the RR module cannot 
perform any refinements and just feeds the 
user-corrected SL-TL pair back to the Rule 
Learner as a new training example. 

The refinement schemata defined in Figure 2 
will work when considering user corrections in 
isolation. However, when users perform more than 
one correction action allowed by the TCTool to 
address a single MT error, it becomes very hard 
to automatically detect whether such actions are 
part of one single correction and should be con-
sidered together by the RR module, or are in-
tended to correct multiple errors. 

For example when a user deletes a word and 
then adds a different word in a different posi-
tion, it could be that the user modified a word 

                                                      
5 The transfer engine may produce multiple transla-
tions, possibly generated by different parse trees, as 
a function of the ambiguity inherent in the grammar 
and the lexicon; however, users pick which sentence 
to correct and thus the corresponding parse tree is re-
trieved for RR purposes. 
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and that the modification caused it to have to 
move in a different position, or it could be that 
s/he performed two independent corrections. 
The appropriate way to show that there is a cor-
relation with the TCTool is to drag and drop the 
word to the right position and then modify the 
dragged word, but there is no guarantee that us-
ers will always do it that way. 

In any case, and as a starting point, we adopt 
the Occam’s razor principle and assume that 
when affecting the same word, different correc-
tion actions are due to the same error. 

The generalization power of the Rule Re-
finement approach is greatest if the refinements 
involve existing feature constraints (e.g. gender, 
number, person), since all the relevant lexical 
entries will already be appropriately tagged for 
the correct rule to apply.  

If the RR module needs to postulate a new 
binary feature attribute (to distinguish between 
two different senses of a word, say), only local 
improvements will be observed. The problem is 
that newly hypothesized features would not 
populate lexical entries, and in the absence of a 
generalization mechanism, this process would 
require one-by-one addition. 

This work can be seen as the first step to-
wards semantic correction, in the sense that it 
annotates the specific examples corrected by 
users in the appropriate way, which may be used 
later by a system with Wordnet to make the ap-
propriate generalizations. 

8.1. Batch Mode vs. Interactive Mode 
One of the main goals of this framework is to 
automate the refinement process as much as 
possible. And since initial examination of the Eng-
lish-Spanish data shows that a significant amount 
of sentences can be automatically refined with 
just the correction and error information elicited 
by the TCTool, we are currently implementing a 
RR module that operates in batch mode.  

In batch mode, however, it is not always 
possible to automatically decide whether a re-
finement or a bifurcation of the original rule is 
the appropriate operation.  When no evidence is 
available to determine that the original rule can 
never be applied, the system adopts a conserva-
tive approach and applies the bifurcate opera-
tion, leaving the original unchanged and refin-
ing the duplicate rule. 

Moreover, when the system is running in batch 
mode, the default settings are to add the con-
straints at the most specific level possible, name-
ly the word. Sometimes, the ideal refinement 
would have been at the POS level. But further 
refinements and generalizations on the specific 
constraints can only be made automatically at a 
later stage, when the system has more labeled 
examples, or when it can interact with the user. 

While processing all the available informa-
tion, the RR module might detect that it is miss-
ing some crucial information about the error or 
the type of rule refinement operation required to 
fix the error, and that this crucial information 
could be retrieved by having other minimal-pair 
sentences evaluated and corrected. 

An interactive mode of operation allows the 
RR module to prompt users with new sentences 
to evaluate at run time, so as to obtain any addi-
tional information required to determine the ap-
propriate refinement operation that can be ap-
plied reliably. 

To minimize further user interaction as much 
as possible, Active Learning methods can be 
used to optimize user time by presenting them 
with most informative sentences first. 

9. Refinement simulation  
A comprehensive set of end-to-end simulations 
has been developed to cover all the refinement 
cases identified in Figure 3. For illustration 
purposes and to provide with better insight into 
the refinement process, one simulation is de-
scribed below. 

The simulation example requires a word to 
be changed into a different position in the TL 
sentence and to be slightly modified. This cor-
responds to the first branch of the subtree 
rooted at “Change W Order” in Figure 3, as 
well as the branch rooted at the “Modify” node 
following by “+Wc” and “δ=∅”.  

 
SL: Gaudí was a great artist  
TL: Gaudí era un artista grande 
User corrections:  

 *Gaudí era un artista grande  
   Gaudí era un  gran artista 

 
Figure 4: Source language (SL) sentence, translation in 
Spanish as it is output by the MT system (TL) and cor-

rection information given by the user. 
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Simulation steps 
1. Error Information Elicitation  
Given the SL and TL sentences in Figure 4, a 
bilingual speaker will move grande before ar-
tista and change grande to gran, as can be seen 
from the two snapshots showing the initial and 
final screens of the TCTool.  

 

 

        
2. Variable Instantiation 
All the actions users perform with the TCTool 
are properly logged, and thus by parsing a ses-
sion log file, the system can instantiate the error 
information variables with the logged informa-
tion. In this example, the log file will contain 
the following correction actions allowing the 
three variable instantiations indicated below: 

1. Word order change: grande is moved in 
front of artista)  Wi = grande  

2.  Edited grande into gran   Wi’ = gran  
     3. User selected the following option from a 
menu: “The word great can be translated as 
grande but not in this sentence. The key word 
in the sentence that indicates this is [artista]”.  

 Wc = artista 
In this case, even if the user had not identified a 
Wc, the RR module could still refine the gram-
mar and lexicon automatically, but it would not 
be able to make the refined grammar tighter. 

3. Retrieve Relevant Lexical Entries 
Assuming there is no entry for [great  gran] 
in the lexicon, the system will apply RS6 (Fig-
ure 2) and duplicate the lexical entry for [great 

 grande] and change TL side to gran: 6 
 

 
    
4. Finding Triggering Feature(s) 
Since the delta set between grande and gran is 
empty (δ(grande,gran) = ∅), precisely because 
their lexical entries have the same features, the 
system postulates a new binary feature, let’s 
call it feat1.7 
 
5. Blame assignment  
The MT system output provides with all the in-
formation required to trace what rules were in-
volved in producing the error: 

 
 
6. Variable Instantiation in the Rules 

Since the system has access to the part-of-
speech of grande (ADJ) through the MT system 
output shown in the previous step, the RR mod-
ule can trace what variables refer to grande by 
the position of its POS in the TL-side of the 
relevant grammar rule.  

But first, a few words about the rule formal-
ism used by our MT system. The translation 
rules include all information necessary for pars-
ing, transfer, and generation, and have 6 com-
ponents: 1) type, which in most cases corresponds 
to a syntactic constituent type; 2) part-of-speech 
/constituent sequence for both the SL (x-side) 
and the TL (y-side); 3) alignments between the 
SL constituents and the TL constituents; 4) x-
side constraints, which are defined as equality 

                                                      
6 The Spanish morphological analyzer gives us the 
information that grande and gran have the same fea-
tures. 
7 A more mnemonic name for feat1 would be pre-
nominal. 
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of grammatical features in the SL sentence; 5) 
y-side constraints, which are defined as equality 
of grammatical features in the TL sentence, and 
6) xy-constraints, which provide information 
about which feature values or agreements trans-
fer from the source into the target language. 

Back to the variable instantiation in the 
grammar rules, in the NP,8 rule, ADJ is in the 
third position on the TL side (y-side) and thus 
the variable that refers to it is y3: 
 

        
 
7. Refining Rules  
Assuming the system has the information that 
NP,8 has applied correctly in the past (perhaps 
because users have evaluated the translation 
pair I saw a black bird – vi un pájaro negro as 
correct),  the RR module proceeds to bifurcate 
the original rule, following the second rule 
schema in Figure 2 (SR2). It then modifies the 
copy (NP,8’) by flipping the order of the con-
stituents, as indicated by the user, and by add-
ing the constraint that the Spanish adjective 
(y2) needs to have the feat1 with value +: 
 

          
 

8. Refining Lexical Entries 
For this refinement to be effective, the lexical 
entries need to be expanded with the new fea-
ture postulated by the RR module in step 4: 
 

          
 
9. Add Blocking Constraints 
In addition to this, the system already has the 
information that un artista gran is not a correct 
sequence in Spanish8, and thus the grammar can 
be further refined to also rule out the incorrect 
translation. This can be done by restricting the 
application of the general rule (NP,8) to just 
post-nominal adjectives, which in this example 
are marked in the lexicon with feat1 = − . 

But can the system also eliminate other in-
correct translations automatically? In addition 
to generating the correct translation, we would 
also like the RR module to produce a refined 
grammar that is as tight as possible, given the 
data that is available.  

In this case, the system can only further 
tighten the grammar if it knows what the clue 
word is (Wc=artista). If it does, then it can add 
the constraint feat = + to the lexical entry for 
artista and add an agreement constraint be-
tween the N position (y2) and the ADJ position 
(y3) for the original rule (NP,8). 

The resulting refined grammar would now 
correctly translate a great artist into un gran 
artista as well as rule out all the incorrect com-
binations of N and ADJ (*un artista grande, 
*un artista gran, * un grande artista) 

10. Conclusions and Future Work 
Non-expert bilingual speakers can provide us 
with accurate translation error information, by 
using the Translation Correction Tool, so that 
automatic rule refinement becomes an option. 

Once the error information is instantiated 
with the appropriate variables, we can auto-
matically extract the set of feature attributes 

                                                      
8 Since instead of just changing grande to gran, the 
user proceeded to move it to the pre-nominal posi-
tion. 
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that triggered a particular correction. Using an 
error typology, which takes into account the 
correction action and the error information 
available to the system, the RR module is then 
able to automatically determine what refine-
ment operations need to apply. The trace of the 
MT system is used to automatically perform the 
blame assignment and determine what rules 
need to be refined. 

When operating in batch mode, given a set 
of user corrections, the RR module can auto-
matically refine some of the errors by just using 
the correction and the error information pro-
vided by the TCTool. 

If extra information is required to automati-
cally determine what triggered the correction, 
the system will need to present users with other 
relevant translation pairs at run-time.  

Therefore, we are planning to expand the 
system to also include an interactive mode, 
which will allow the system to refine a larger 
set of translations, possibly using Active Learn-
ing techniques. 

Initial end-to-end simulations indicate that 
this framework for interactive and automatic re-
finement of transfer MT systems is appropriate 
for the task. We are currently developing a first 
prototype of the RR module and plan to fully 
test this framework for at least two language 
pairs: Mapudungun ↔ Spanish and Quechua ↔ 
Spanish. 
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