
� ��

Dynamical visualization of nested
correspondences

�
�
�

Christophe Chenon
Groupe d’Etude pour la Traduction Automatique
CLIPS - IMAG
Grenoble
France.

christophe.chenon@imag.fr

Introduction
Computer-aided translation systems based on translation memories have spread
rapidly in the translation industry over the last 15 years or so. A key reason for their
success is that they require no language-specific resources. One of their main
drawbacks is that they do not allow translators to reuse translation of
micro-examples that are abundant in the memories. Indeed, in the classical use of
translation memories, a fuzzy match will only be presented to the translator if it
broadly corresponds to the segment to be translated. This granularity is far from
optimal to take advantage of minor correspondences that will remain ignored by the
system. These issues have been repeatedly addressed in the literature; see for
example [7], [13], [20], [25], [26] and [27].

We present a new formalism, TransTree, to encode subsegmental correspondences
recursively. TransTree is a by-product of a new method designed to automatically
generate such correspondences, based on statistics collected from large corpora of
translation memories. With this new approach to translation memories, we will be
able to provide translators with a much richer material than whole bisegments,
provide pedagogical examples of translations to learners, and pave the way towards
construction of quasi-translated segments, to be used by translators. Because we
use statistics-based methods only, we remain within the knowledge free paradigm
that made possible the clear success of translation-memory-based systems of the
first generation.

In this article, TransTree will first be presented on a couple of examples, along with
an XML form. A VML-based graphical representation derived from the XML
expression will also be given. We will then propose a dynamical, javascript-based
vizualisation of corresponding subsegments in TransTree that will allow users to
efficiently reuse translation of subsegments. In the second and third parts, we will
show how to produce subsegmental correspondences automatically and express
them in TransTree. In the conclusion, we will explain where we intend to concentrate
in future works.

I The TransTree formalism
I.1 Architecture and XML representation

� ��

The architecture we propose relies on local correspondences between strings in a
pair of segments. Such elementary correspondences between two strings are called
prime amphigraphs. "Prime" because they cannot be further divided in simpler
elements, "amphigraphs" because they contain two written strings that are
considered two facets of a same entity.

Prime amphigraphs can be any pair of text strings in different languages, here
English and French. We will assume that they actually connect semantically related
strings, and thus bear semantical information, but that is not necessary in the
formalismper se. Typically, prime amphigraphs will be of the form
("computer","ordinateur") or ("for","pour"). Prime amphigraphs with a common
source or target string but with differring counterparts are different. For example
("had","avions") and ("airplanes","avions") as well as ("use","utiliser") and ("use",
"utilisation") are all different prime amphigraphs. Prime amphigraphs do not contain
variables or place holders: they are just pairs of strings. The XML expression we
chose for prime amphigraphs is given below. It is made up of two strings, the text
elements:

�������	���
�
����
�������������
��
������
	���
��
�
����
��������������	�
�	�����
�	���
��
�
��������	���
�

The standard xml:lang attribute is used to encode the language in which the content
of a text element is written.
There is no limitation or constraint on texts. They can contain punctuation, spaces or
even markup, if properly escaped. They may contain poorly delimited, non-related
strings. There is no need to specify any such constraint at this point.
Then, we will consider general amphigraphs. These are similar objects, although
somewhat more complex. A general amphigraph posesses not only text elements,
but also children amphigraph elements. The text elements contain place holders,
amph elements, that are instantiated by children amphigraphs. A mechanism to take
care of nested correspondences between the two texts is provided by an occurrence
indicator, the occ attribute, which specifies correspondences between place holders.
To make things clearer, let us take an example.
We want to capture the correspondences between the English segment "dialog box"
and the French segment "boîte de dialogue". Here is the amphigraph representation
in XML:
�������	���
�
���
�������������
��
��������������
���������������
���
��
�
���
��������������	�
��������������
��
���������������
���
��
�
��������	�����������
�
����
�������������
��
���������
��
�
����
��������������	�
�������
���
��
�
���������	���
�
��������	�����������
�
����
�������������
��
������
��
�
����
��������������	�
����
���
��
�
���������	���
�
��������	���
�
In this example there are three amphigraphs: a general amphigraph and two children
prime amphigraphs. The latter bear the occ attribute, used to unambiguously locate

� ��

corresponding amphigraphs. The same attribute is also used in the amph element,
and it locally plays the role of an identifier.
There are some constraints on amph and occ:
• There must be the same number of amph elements in both text elements,
with the same values, in any order
• occ attributes being identifiers, they must have different values within a
given text element
• there must be as many children amphigraph elements as there are amph
elements in texts, one for each value of the occ attribute
• As a consequence, within a single amphigraph, the occ attribute occurs
three times for one given value.
The prime amphigraphs capture the two pairs ("box","boîte") and
("dialog","dialogue"). One specificity of XML is its ability to represent both structured
data and strings with inline markups. That is what allows us to capture the French
preposition "de" in the general amphigraph, where it logically belongs. This flexibility
of XML makes it particularly suitable to support the TransTree formalism.
This is better examplified with the following, larger example. In a translation memory,
we find the following bisegment:
<bisegment>
 <source>This task shows you how to change views.</source>
 <target>Dans cette tâche, vous apprendrez à modifier les
vues.</target>
</bisegment>

There are very heterogeneous grammatical features in this bisegment. Specifically,
the first part of the English sentence is conveyed in a totally different manner into
French. Here is how we can represent it:
�������	���
�
���
�������������
��
��������������
���������������
����
��
�
���
��������������	�
��������������
���������������
����
��
�
��������	�����������
�
����
�������������
��
��������������
���������������
���
��
�
����
��������������	�
��������������
���������������
���
��
�
���������	�����������
�
�����
�������������
��
��� ���������������
� ��! ���������������
���!���
��
�
�����
��������������	�
"�� ��
��
���������������
#���������������
�
���	
��	
$���
��
�
����������	�����������
�
������
�������������
��
�� %���
��
�
������
��������������	�
�&��
���
��
�
�����������	���
�
����������	�����������
�
������
�������������
��
'�����
��
�
������
��������������	�
(�� ���
��
�
�����������	���
�
����������	���
�
���������	�����������
�
�����
�������������
��
�����
��
�
�����
��������������	�
)���
��
�
����������	���
�
���������	���
�
��������	�����������
�
����
�������������
��
��������������
���������������
���
��
�
����
��������������	�
��������������
��
 ���������������
���
��
�

� ��

���������	�����������
�
�����
�������������
��
�����
���
��
�
�����
��������������	�
������
	���
��
�
����������	���
�
���������	�����������
�
�����
�������������
��
(�
! ���
��
�
�����
��������������	�
(�
 ���
��
�
����������	���
�
���������	���
�
��������	���
�
This example was built automatically, with the method described further down in this
paper. The subsegments "This task shows you how to" and "Dans cette tâche, vous
apprendrez à" were not broken up very much, due to the very dissimilar phrasings.
This correspondence can be used as is by a translator, and would very unlikely be
produced by a conventional machine translation system. Note also that the comma
has been seamlessly taken into account.
As can be seen, we now have a tree that describes both segments simultaneously.
The structures of both segments are determined by their counterparts. An
amphigraph can contain many nested amphigraphs. The leaves of the tree are the
prime amphigraphs which play a central role in this construction, as will be explained
later.

I.2 Graphical visualization of the arborescence
An XSL stylesheet produces a Vector Markup Language (VML) visualization on the
fly from the XML representation. Here is the graphical visualization of the first
example above.

On this picture, occurrence indicators are represented with a $ sign.
Here is the same visualization of the larger example:

� ��

This example demonstrates how several levels of correspondences can be encoded
in TransTree. There is no specific order in the branches of the tree since the linear
order of each segment is supported by occurrence indicators.

I.3 Dynamical visualization of nested correspondences
Segments are more legible when displayed on the same line... The potential user of
this recursive segmentation representation probably wants to read segments in a
user-friendly manner. In order to help grasp the different segmentation levels while
keeping some sense of ergonomy, we propose a dynamical visualisation that could
be more relevant to a full-fledged computer-aided translation environment.
The main idea is that hovering with the pointer on a particular part of either segment
should highlight the hierarchy of nested subsegments in both segments
simultaneously. We use several colors, contrasting in darkness, to this purpose. On
the next picture, one can see what happens when the user hovers on different parts
of the bisegment (note the change of pointer shape).

� ��

On each image, different parts of the bisegment are highlighted, with a indication of
the depth of the correspondence. The deeper correspondences highlight shorter
chunks. When changing words, a different branch of the tree is selected.
The second example involves a much larger tree. At any time, the user can decide
what selection suits her best and click to import it in her current translation stream.

This dynamical vizualization seems equally suitable for other types of users, such as
students of a foreign language.

Conclusion of part I
The TransTree formalism that we propose captures nested correspondences in a
bisegment. It can be extended to allow for other types of information, such as
linguistic characterization of units or monolingual dependences although that is not
directly in the scope of this article. It can also encode correspondences in more than
two languages.
The XML expression of TransTree leads to several kinds of representations, that can
be used by both machines and human users, such as linguists, translators or
students.
The next part will show how it is possible to build TransTree structures from
statistical computation on a big corpus.

II Segmentation algorithm
Naturally, one would like to use this formalism to store relevant knowledge. In a
computer aided translation environment, acquiring this data manually is clearly out
of the question. Also, compliance with the language-independent translation
memory paradigm requires not using potential linguistic knowledge.
For these reasons, we have developed statistical heuristics to produce reliable
segmentation and correspondences. We use a translation memory or, rather, a large
collection of translation memories as a bilingual corpus to train the system. In

� 	�

translation memories, segments are aligned during the process of
acquisition/translation. Thus, segment alignment is not a concern to us.

II.1. Prime amphigraphs acquisition
The first idea is to collect word correspondences
throughout the corpus. Words, for us, are
space-delimited strings. Other delimiters are also used,
such as start and end of segment, punctuation etc. The
immediate consequence of this is that we do not attempt
to work on scripts without such delimiters. That bars us
from tackling Chinese, Japanese, Korean or Thai, to
name just a few.
To create prime amphigraphs, we establish
correspondences between words. We will have to set
some conditions: we want correspondences to be
non-directional and injective, i.e. words in either segment
have at most one counterpart.
One of the simplest methods to get word
correspondences consists in comparing mutual
information, or some other statistical index
characterizing correlation, between source words and
target words as computed throughout the whole corpus.
Then some algorithm can be applied such as the
following one. For each word in a given segment, one
can order words in the opposite segment according to
mutual information. So, for any word in the first segment,
some matching priority is given to words of the second
segment and vice-versa. Every pair of words that grant
each other first priority are in correspondence and are
taken out of the bisegment. The set of remaining words
is then considered in turn and so on until some condition
is reached, for example when one segment is empty. For
further details about these techniques, see [18].
Here are two examples of such alignments. The
following two pictures are SVG graphics, produced from
the XML representation:

Some problems may arise when there are identical
words in the segments or when mutual information leads
to ties. There is a need to make a choice if we want to
have actual links between occurrences of words within
the two segments. In the examples shown here, these
links have been omitted: the English word "the" (lower
case) is not aligned on either French word "la" (lower
case). The second "la" would be the correct alignement.

�
�

Methods to compute these correspondences are beyond
the scope of this article.

As can be seen, at the end of such a process, some
words are in correspondence with the words of the
opposite segment, some are not. Pairs of words in
correspondence make up prime amphigraphs. Words
are just strings; prime amphigraphs are largely
disambiguated semantically and syntactically by the
relationship that is established between their
components. In the case of a single word term in either
language corresponding to a multiple word term, only
one link will be made. In the case of the English word
"updated" and its French translation "mise à jour", a
single link is established, between "updated" and "jour".
The word "jour", because of its correspondence with
"updated", conveys some extra information. The French
words "mise" and "à" are left alone. Such "simple words"
also acquire extra information: that of having no
counterparts. We will use amphigraphs here as a way to
manipulate more specific objects than simple words
wherever possible. This will make the following process
even more accurate.

II.2. Binary trees and secability
The next step consists in counting n-grams in the corpus,
with "n" being typically 1, 2 and 3 and "grams" being both
simple words (i.e. without correspondence link) or prime
amphigraphs.
This material will enable us to compute a "secability"
index on each delimiter of the segment. To make things
simple, let's assume that separators are white spaces
only. On each separator in a segment, we can compute
an estimation of the mutual information of the two parts
of the segment thus delimited by estimating its value on
a small window, for example two words before and two
words after the separator. Thus, we have a score on
each separator on the segment. We can then assign a
rank on separators, from 1 where the mutual information
is the highest, to n-1 (for n words) where the mutual
information is the lowest. We call this rank secability. It
gives us an indication on whether delimitating chunks on
this separator is more or less appropriate. The fact that
we only consider ranks, i.e. whole numbers, and not
mutual information values, should be emphasized. In the

� ��

case of ties, the leftmost separator is arbitrarily given a
higher secability index.
For instance, on this schema, where 'x's stand for
different tokens in the segment, secability indexes are
placed under each white space separator.

Computing secability indexes on a segment is the same
as bracketing the segment. We split the segment in two
parts at the highest secability point. Then we split each
subsegment in two parts, at the locally highest secability
point. This is the final result, from the example above:

It is also equivalent to defining a binary tree. On this
picture, each node of the binary tree bears a secability
index.

In what follows, we will refer to high nodes, which are
closer to the root, and low nodes which are closer to the
leaves. Thus, the root of the tree is the top node while
leaves are at the bottom (the metaphor follows the
drawings more than Mother Nature). The leaves of the
tree are the segment tokens: prime amphigraphs and
words. We will say that a node "dominates" other nodes
or leaves when it is above them, i.e. closer to the root.

II.3. Alignment of subsegments
To convert pairs of binary trees obtained in the two
segments of a bisegment into a single abstract tree of
amphigraphs, a TransTree structure, we will study
several options to map them on one another. We first
exhibit two properties of nodes in binary trees, based on
prime amphigraphs: "saturation" and "congruence".
These properties concern the geometry of the binary
trees.

� ���

a- Saturation
We will call "saturation" a property of some particular
nodes in a binary tree. A node that dominates a given set
of prime amphigraphs, such that any node above it
dominates a strict superset of prime amphigraphs will be
called a saturated node. In the figure below, saturated
nodes are marked with a hyphen (�). Note that not all
nodes are saturated:

In this figure, 'X's stand for prime amphigraphs and 'o's
for simple words. Horizontal bars are placed at saturated
nodes. A given saturated node dominates either two
saturated nodes or two non saturated nodes. The root
node is always considered saturated, and a leaf can be
saturated or not. It is possible for a saturated node to be
dominated by a non saturated node (not on this picture).
b- Congruence
Having built binary trees on both segments of a
bisegment, a new property emerges: some pairs of
nodes in the two trees dominate the same set of prime
amphigraphs. We call that property congruence. Pairs of
congruent nodes ignore simple words that they
dominate.

� ���

On this picture, two binary trees have been represented,
one for each segment of the bisegment. The bisegment
has four prime amphigraphs, labeled W,X,Y and Z. They
link words 'W1' through 'Z2' in languages L1 and L2.
Each node of the binary trees dominating at least one
prime amphigrah is decorated with the set of one or more
prime amphigraph(s) that it dominates. Because there
are many pairs of congruent nodes, we have
materialized only a few for the sake of clarity. The reader
is invited to find them all...
With our definition, a given set of prime amphigraphs can
be involved in many pairs of congruent nodes. The
simplest congruent nodes are prime amphigraphs: we

� ���

have materialized an example of a prime amphigraph on
this sketch, between the two (X) leaves.
An important feature appears on this drawing: there can
not be congruent nodes involving sets {W,X}, {X,Y} or
{W,Y}. The only possibility is a pair of congruent nodes
for the set {W,X,Y}. Thus, the congruence property
provides us with indications as how to determine an
optimal granularity in the analysis of the segment, based
on both monolingual and bilingual constraints.
c- Alignment
Basically, any pair of congruent nodes can be rewritten
as a general amphigraph, without considering further
structuration:
Thus, the pair of congruent nodes involving {W,X,Y},
shown on the sketch above, could be converted in the
following general amphigraph:
�������	���
�
���
�������������*+�
����������������
���������
��������
����������������,��
�����
��
�
���
�������������*-�
��������������
���������
�����,��
���������������������
�����
��
�
��������	�����������
�
����
�������������*+�
.+���
��
�
����
�������������*-�
.-���
��
�
���������	���
�
��������	�����������
�
����
�������������*+�
/+���
��
�
����
�������������*-�
/-���
��
�
���������	���
�
��������	���������,�
�
����
�������������*+�
0+���
��
�
����
�������������*-�
0-���
��
�
���������	���
�
��������	���
�
This is the fundamental method to create amphigraphs,
based on the comparison of two binary trees.

Conclusion of part II.
Prime amphigraph acquisition and binary trees are the
basic blocks of a statistics-based TransTree construction.
Several strategies to convert pairs of binary trees into the
TransTree formalism are possible, that are beyond the
scope of this article. We will now examine how we can
use the TransTree formalism in a real computed-aided
translation scenario.

III. A possible application of TransTree
How can we use the TransTree formalism to help a
human translator get the most of an
automatically-computed fuzzy match, in a
translation-memory-based translation environment?

III.1 A simple scenario
We suppose that we have a segment to translate, and
that the system selected a fuzzy match from a translation
memory. A fuzzy match is a source segment for which

� ���

there is a known translation that almost matches the
source segment to be translated. In a translation
environment such as Translation Manager, only the
target side of the fuzzy match is shown. To display the
original source segment of the fuzzy match, an additional
action has to be taken. The available information is then
the following:
1. Segment to be translated, in the source
language,
2. Target language version of the fuzzy match,
3. Optionally, source language version of the
fuzzy match.
Identifying useable parts of the fuzzy match can be
rather confusing with only 1. and 2. because of the
difference of languages. Requesting the display of 3.
helps the translator to understand why the fuzzy match is
indeed considered a fuzzy match by the system but also
adds supplementary information that may cause
confusion. Further adding to the confusion, the system
often proposes more than one fuzzy match.
Let’s see how the use of TransTree can help the user
grasp the useable information faster.

III.2 Determining useable information in a glimpse
The segment to be translated and its fuzzy match can be
compared to determine where the two strings are
identical and where the differences lie, in the source
language.
For example we have a pair like this:
�
��
��
0����� ������
���(�	����
�!��������
� �
����
��
����%���
��
��
�
���$$'
0����� ������%������
�(�	����
�!�������� � �������
����%�����$$'
�
We separate common parts from differing parts by
parenthesizing out substrings that do not belong to both
strings, thus:
�
��
��
0����� ��1����
��2�(�	����
�!������1��
�
 �
����
�2�����%���
��
��
�
���$$'
0����� ��1����%������
2�(�	����
�!������1�� � ������2�
����%�����$$'
�
We know now where the differences lay between the two
segments in the source language, but without
correspondences, we cannot use this material to help
the translator any further. The TransTree formalism will
give us some clues.
TransTree gives a hierarchical view of correspondences
of different lengths between the two segments of a
bisegment. Although individual words may not have a
directly-matching words, correspondences can be found
between larger chunks of text. We now need to
determine which corresponding parts of the fuzzy match
are relevant to the translator.
A more reader-friendly, static way of expressing nested
correspondences between the source and target
segments consists in bracketing chunks in both

� ���

segments. Numbers in superscript identify prime
amphigraphs, while lower-case letters in subscript
denote general amphigraphs.
33330��4+�3�� �4-4������%�3��454��33��
46�33(�	����
47�!������
3�� 48�3 ������49�3����%4:�4�4�4
�
3333;�� 4+�3�
(
$4-4�����<�
	�3 �	454��33��46�33(�	����
47���� �
3 ��48�3����4:�3
��������49�4�4�4
�
The algorithm we use to match the-parenthesized
English string and the bracketed English string works as
follow: we can use a general amphigraph whenever all
its content is not in a parenthesis, i.e. when it is common
to both the fuzzy match and the segment to be translated.
The bracketed substrings that appear at a lower level are
not taken into account. Thus, we can make use of the
following bracketed substrings, indexed a and c, from
the English string:
330��4+�3�� �4-4���
33(�	����
47�!������3�� 48�3 ������49�3����%4:�4��
This rule enables us to transpose parts of the fuzzy
match for which we have no prime amphigraph
equivalent, here the English word “within”.
In the translator environment, this gives way to an
implementation where only relevant parts of the fuzzy
mach are active. If we compare the three segments in
play, we get the following picture, where non-active parts
of the segments have been disabled:

Even without the help of the source segment of the fuzzy
match, usable parts are easy to spot out, thus:

The translator can then choose either to use this material
in her translation or to use parts of it. At any moment, she
can check what part of the original source segment
matches what part of the translated fuzzy match. In the
example given below, matching parts keep their
dynamical behavior, so that the translator can wander
with the pointing device and highlight matching chunks.

If the translator decides to import all or parts of the
relevant chunks of the fuzzy match translation into her
editing area, the system can keep a trace of the parts
from the original segment that are now translated. If

� ���

another fuzzy match is available, missing chunks may be
translated in turn.

Conclusion of part III.
TransTree is a formalism suitable to matching chunks
during the translation process. This can be used to help
translators identify the relevant parts of a
system-selected, translated fuzzy match automatically in
a memory-based translation environment. Moreover,
supervised translation by chunks can be performed with
accuracy and speed.

Conclusion and further work
In this article, we have described a new formalism to
represent nested subsegmental correspondences in a
bisegment as an abstract tree, that we call TransTree. A
dynamic presentation of data encoded with this
formalism can be used to help translators benefit from
pre-translated material of smaller size than whole
segments. It is also suitable for other types of users,
such as students of foreign languages. TransTree can
easily be extended to support linguistic data and to
encode correspondences between three or more
languages.
We have also given a general methodology to
programmatically compute a TransTree representation
of a given bisegment that relies solely on aligned
bilingual material such as can be found in large
translation memories. Several implementations can be
derived from this methodology.
We have then given a simple example of how TransTree
can be used in a translation-memory-based
computer-aided translation environment, leading to
accurate and flexible supervised translation by chunks.

Bibliography:
[1] (1994) A. Ratnaparkhi, S. Roukos, and R. T. Ward A
Maximum Entropy Model For Parsing. in International
Conference on Spoken Language Processing,
Conference Proceedings, Yokohama, pp: 803-806
[2] (2003) Al-Adhaileh, Mosleh Hmond Synchronous
Structured String-Tree Correspondence (S-SSTC) and
its applications for machine translation., Thesis, Ph. D.,
UTMK, Universiti Sains Malaysia
[3] (1998) Al-Adhaileh M. H., Tang E. K. A Flexible
Example-Based Parser Based on the SSTC in 17th
International Conference on Computational Linguistics
(COLING'98), Conference Proceedings, Montreal,
Canada, pp: 687-693
[4] (1999) Al-Adhaileh M. H., Tang E. K. Example-Based
Machine Translation Based on the Synchronous SSTC
Annotation Schema in Machine Translation Summit VII
'99, Conference Proceedings, Singapore
[5] (2002) Al-Adhaileh M. H., Tang E. K. Synchronous
Structured String-Tree Correspondence (S-SSTC) in
IASTED02, Conference Proceedings, Innsbruck, Austria

� ���

[6] (2003) Bowen Zhou, Y. Gao, J. Sorensen, D. Dechel
and M. Picheny A Hand-held Speech-to-speech
Translation System in IEEE ASRU, Conference
Proceedings, US Virgin Islands
[7] (2000) Brown, Ralph D. Automated Generalization of
Translation Examples in COLING 2000, Conference
Proceedings, vol: Volume 1
[8] (1997) Charniak., E Statistical Techniques for Natural
Language Parsing in AI Magazine, Magazine Article, vol:
18, pp: 33-35
[9] (2002) Dario Benedetto, Emanuele Caglioti, Vittorio
Loreto Language Tree and Zipping in Physical Review
Letters, Magazine Article, vol: 88
[10] (1990) David M. Magerman, Mitchell P. Marcus
Parsing a Natural Language Using Mutual Information
Statistics in National Conference on Artificial Intelligence,
Conference Proceedings
[11] (2000) Foster, George and Langlais, Philippe Using
Context-Dependent Interpolation to Combine Statistical
Language and Translation Models for Interactive
Machine Translation in Content-Based Multimedia
Information Access (RIAO), Conference Proceedings,
Paris, France, pp: 507-518
[12] (2001) Franz Josef Och, Hermann Ney. Statistical
Multi-Source Translation in MT Summit 2001,
Conference Proceedings, Santiago de Compostela,
Spain, pp: 253-258
[13] (2000) Furuse, Osamu and Planas, Emmanuel
Multi-level Similar Segment Matching Algorithm for
Translation Memories and Example-Based Machine
Translation in Coling 2000, Conference Proceedings
[14] (1998) Gaussier, Eric Flow Network Models for
Word Alignment and Terminology Extraction from
Bilingual Corpora in ACL 1998, Conference Proceedings,
pp: 444 -- 450
[15] (1996) Goblirsch, D. M. Viterbi Beam Search with
Layered Bigrams in ICSLP '96, Conference Proceedings,
pp: 2131-2134
[16] (2001) Goodman, Joshua T. A Bit of Progress in
Language Modeling Extended Version, Report,
Technical Report, Microsoft
[17] (2003) Gow, Francie Metrics for Evaluating
Translation Memory Software, Thesis, MA Thesis,
School of Translation and Interpretation, University of
Ottawa
[18] (2001) Kraif, Olivier Constitution et exploitation de
bi-textes pour l'aide à la Traduction, Thesis, Thèse de
doctorat, Université de Nice Sophia Antipolis
[19] (1994) Kumano, A. and Hirakawa, H., Building an
MT Dictionary from Parallel Texts Based on Linguistic
and Statistical Information in COLINC, Conference
Proceedings, pp: 76-81
[20] (2001) Langlais, Philippe and Simard, Michel
Sub-sentential Exploitation of Translation Memories in

� �	�

Machine Translation Summit VIII, Conference
Proceedings, Santiago de Compostela
[21] (1997) Melamed, I. Dan A Word-to-Word Model of
Translational Equivalence in Association for
Computational Linguistics (ACL'97), Conference
Proceedings, Madrid, Spain
[22] (2000) Ney, H. and Och, F. A Comparison of
Alignment Models for Statistical Machine Translation in
Coling 2000, Conference Proceedings, Saarbrucken,
Germany
[23] (1992) P.F. Brown, V.J. Della Pietra, P.V. deSouza,
J.C. Lai and R.L. Mercer Class-based n-gram models of
natural language. in Comp. Linguistics, Book Section,
vol: 18(4), pp: 467-479
[24] (2003) Philippe Langlais, Michel Simard De la
traduction probabiliste aux mémoires de traduction (ou
l'inverse) in TALN 2003, Conference Proceedings,
Batz-sur-Mer
[25] (1999) Planas, E. & Furuse O Formalizing
Translation Memories in Machine Translation Summit VII,
Conference Proceedings, Singapore, pp: 331-339
[26] (2000) Planas, Emmanuel Extending Translation
Memories, Report, NTT Cyber Solutions Laboratories,
Japan
[27] (2000) Planas, Emmanuel A Case Study on Memory
Based Machine Translation Tools, Report
[28] (1995) S. Martin, J. Liermann, H. Ney Algorithms for
Bigram and Trigram Word Clustering. in
EUROSPEECH-95, Conference Proceedings, Madrid,
pp: 1253-1256
[29] (2001) Schäler, Reinhard Beyond Translation
Memories in MT Summit VIII, Conference Proceedings,
Spain
[30] (1996) Su Keh-Yih, Chiang Tung-Hui and Chang
Jing-Shin An Overview of Corpus-Based
Statistics-Oriented (CBSO) Techniques for Natural
Language Processing in Intl. Journal of Computational
Linguistics and Chinese Language Processing (CLCLP),
Book Section, Taipei, vol: 1(1), pp: 101-157

