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Introduction 
Computer-aided translation systems based on translation memories have spread 
rapidly in the translation industry over the last 15 years or so. A key reason for their 
success is that they require no language-specific resources. One of their main 
drawbacks is that they do not allow translators to reuse translation of 
micro-examples that are abundant in the memories. Indeed, in the classical use of 
translation memories, a fuzzy match will only be presented to the translator if it 
broadly corresponds to the segment to be translated. This granularity is far from 
optimal to take advantage of minor correspondences that will remain ignored by the 
system. These issues have been repeatedly addressed in the literature; see for 
example [7], [13], [20], [25], [26] and [27]. 
 
We present a new formalism, TransTree, to encode subsegmental correspondences 
recursively. TransTree is a by-product of a new method designed to automatically 
generate such correspondences, based on statistics collected from large corpora of 
translation memories. With this new approach to translation memories, we will be 
able to provide translators with a much richer material than whole bisegments, 
provide pedagogical examples of translations to learners, and pave the way towards 
construction of quasi-translated segments, to be used by translators. Because we 
use statistics-based methods only, we remain within the knowledge free paradigm 
that made possible the clear success of translation-memory-based systems of the 
first generation. 
 
In this article, TransTree will first be presented on a couple of examples, along with 
an XML form. A VML-based graphical representation derived from the XML 
expression will also be given. We will then propose a dynamical, javascript-based 
vizualisation of corresponding subsegments in TransTree that will allow users to 
efficiently reuse translation of subsegments. In the second and third parts, we will 
show how to produce subsegmental correspondences automatically and express 
them in TransTree. In the conclusion, we will explain where we intend to concentrate 
in future works. 

 
I The TransTree formalism 
I.1 Architecture and XML representation 
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The architecture we propose relies on local correspondences between strings in a 
pair of segments. Such elementary correspondences between two strings are called 
prime amphigraphs. "Prime" because they cannot be further divided in simpler 
elements, "amphigraphs" because they contain two written strings that are 
considered two facets of a same entity. 
 
Prime amphigraphs can be any pair of text strings in different languages, here 
English and French. We will assume that they actually connect semantically related 
strings, and thus bear semantical information, but that is not necessary in the 
formalismper se. Typically, prime amphigraphs will be of the form 
("computer","ordinateur") or ("for","pour"). Prime amphigraphs with a common 
source or target string but with differring counterparts are different. For example 
("had","avions") and ("airplanes","avions") as well as ("use","utiliser") and ("use", 
"utilisation") are all different prime amphigraphs. Prime amphigraphs do not contain 
variables or place holders: they are just pairs of strings. The XML expression we 
chose for prime amphigraphs is given below. It is made up of two strings, the text 
elements: 
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The standard xml:lang attribute is used to encode the language in which the content 
of a text element is written. 
There is no limitation or constraint on texts. They can contain punctuation, spaces or 
even markup, if properly escaped. They may contain poorly delimited, non-related 
strings. There is no need to specify any such constraint at this point. 
Then, we will consider general amphigraphs. These are similar objects, although 
somewhat more complex. A general amphigraph posesses not only text elements, 
but also children amphigraph elements. The text elements contain place holders, 
amph elements, that are instantiated by children amphigraphs. A mechanism to take 
care of nested correspondences between the two texts is provided by an occurrence 
indicator, the occ attribute, which specifies correspondences between place holders. 
To make things clearer, let us take an example. 
We want to capture the correspondences between the English segment "dialog box" 
and the French segment "boîte de dialogue". Here is the amphigraph representation 
in XML: 
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In this example there are three amphigraphs: a general amphigraph and two children 
prime amphigraphs. The latter bear the occ attribute, used to unambiguously locate 
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corresponding amphigraphs. The same attribute is also used in the amph element, 
and it locally plays the role of an identifier. 
There are some constraints on amph and occ: 
• There must be the same number of amph elements in both text elements, 
with the same values, in any order  
• occ attributes being identifiers, they must have different values within a 
given text element  
• there must be as many children amphigraph elements as there are amph 
elements in texts, one for each value of the occ attribute  
• As a consequence, within a single amphigraph, the occ attribute occurs 
three times for one given value.  
The prime amphigraphs capture the two pairs ("box","boîte") and 
("dialog","dialogue"). One specificity of XML is its ability to represent both structured 
data and strings with inline markups. That is what allows us to capture the French 
preposition "de" in the general amphigraph, where it logically belongs. This flexibility 
of XML makes it particularly suitable to support the TransTree formalism. 
This is better examplified with the following, larger example. In a translation memory, 
we find the following bisegment: 
<bisegment> 
 <source>This task shows you how to change views.</source> 
 <target>Dans cette tâche, vous apprendrez à modifier les 
vues.</target> 
</bisegment> 

There are very heterogeneous grammatical features in this bisegment. Specifically, 
the first part of the English sentence is conveyed in a totally different manner into 
French. Here is how we can represent it: 
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This example was built automatically, with the method described further down in this 
paper. The subsegments "This task shows you how to" and "Dans cette tâche, vous 
apprendrez à" were not broken up very much, due to the very dissimilar phrasings. 
This correspondence can be used as is by a translator, and would very unlikely be 
produced by a conventional machine translation system. Note also that the comma 
has been seamlessly taken into account. 
As can be seen, we now have a tree that describes both segments simultaneously. 
The structures of both segments are determined by their counterparts. An 
amphigraph can contain many nested amphigraphs. The leaves of the tree are the 
prime amphigraphs which play a central role in this construction, as will be explained 
later. 

I.2 Graphical visualization of the arborescence 
An XSL stylesheet produces a Vector Markup Language (VML) visualization on the 
fly from the XML representation. Here is the graphical visualization of the first 
example above. 

 
On this picture, occurrence indicators are represented with a $ sign. 
Here is the same visualization of the larger example: 
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This example demonstrates how several levels of correspondences can be encoded 
in TransTree. There is no specific order in the branches of the tree since the linear 
order of each segment is supported by occurrence indicators. 

I.3 Dynamical visualization of nested correspondences 
Segments are more legible when displayed on the same line... The potential user of 
this recursive segmentation representation probably wants to read segments in a 
user-friendly manner. In order to help grasp the different segmentation levels while 
keeping some sense of ergonomy, we propose a dynamical visualisation that could 
be more relevant to a full-fledged computer-aided translation environment. 
The main idea is that hovering with the pointer on a particular part of either segment 
should highlight the hierarchy of nested subsegments in both segments 
simultaneously. We use several colors, contrasting in darkness, to this purpose. On 
the next picture, one can see what happens when the user hovers on different parts 
of the bisegment (note the change of pointer shape). 
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On each image, different parts of the bisegment are highlighted, with a indication of 
the depth of the correspondence. The deeper correspondences highlight shorter 
chunks. When changing words, a different branch of the tree is selected. 
The second example involves a much larger tree. At any time, the user can decide 
what selection suits her best and click to import it in her current translation stream. 

 
This dynamical vizualization seems equally suitable for other types of users, such as 
students of a foreign language. 

Conclusion of part I 
The TransTree formalism that we propose captures nested correspondences in a 
bisegment. It can be extended to allow for other types of information, such as 
linguistic characterization of units or monolingual dependences although that is not 
directly in the scope of this article. It can also encode correspondences in more than 
two languages. 
The XML expression of TransTree leads to several kinds of representations, that can 
be used by both machines and human users, such as linguists, translators or 
students. 
The next part will show how it is possible to build TransTree structures from 
statistical computation on a big corpus. 

II Segmentation algorithm 
Naturally, one would like to use this formalism to store relevant knowledge. In a 
computer aided translation environment, acquiring this data manually is clearly out 
of the question. Also, compliance with the language-independent translation 
memory paradigm requires not using potential linguistic knowledge. 
For these reasons, we have developed statistical heuristics to produce reliable 
segmentation and correspondences. We use a translation memory or, rather, a large 
collection of translation memories as a bilingual corpus to train the system. In 
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translation memories, segments are aligned during the process of 
acquisition/translation. Thus, segment alignment is not a concern to us. 

II.1. Prime amphigraphs acquisition 
The first idea is to collect word correspondences 
throughout the corpus. Words, for us, are 
space-delimited strings. Other delimiters are also used, 
such as start and end of segment, punctuation etc. The 
immediate consequence of this is that we do not attempt 
to work on scripts without such delimiters. That bars us 
from tackling Chinese, Japanese, Korean or Thai, to 
name just a few. 
To create prime amphigraphs, we establish 
correspondences between words. We will have to set 
some conditions: we want correspondences to be 
non-directional and injective, i.e. words in either segment 
have at most one counterpart. 
One of the simplest methods to get word 
correspondences consists in comparing mutual 
information, or some other statistical index 
characterizing correlation, between source words and 
target words as computed throughout the whole corpus. 
Then some algorithm can be applied such as the 
following one. For each word in a given segment, one 
can order words in the opposite segment according to 
mutual information. So, for any word in the first segment, 
some matching priority is given to words of the second 
segment and vice-versa. Every pair of words that grant 
each other first priority are in correspondence and are 
taken out of the bisegment. The set of remaining words 
is then considered in turn and so on until some condition 
is reached, for example when one segment is empty. For 
further details about these techniques, see [18]. 
Here are two examples of such alignments. The 
following two pictures are SVG graphics, produced from 
the XML representation: 

 
Some problems may arise when there are identical 
words in the segments or when mutual information leads 
to ties. There is a need to make a choice if we want to 
have actual links between occurrences of words within 
the two segments. In the examples shown here, these 
links have been omitted: the English word "the" (lower 
case) is not aligned on either French word "la" (lower 
case). The second "la" would be the correct alignement. 
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Methods to compute these correspondences are beyond 
the scope of this article. 

As can be seen, at the end of such a process, some 
words are in correspondence with the words of the 
opposite segment, some are not. Pairs of words in 
correspondence make up prime amphigraphs. Words 
are just strings; prime amphigraphs are largely 
disambiguated semantically and syntactically by the 
relationship that is established between their 
components. In the case of a single word term in either 
language corresponding to a multiple word term, only 
one link will be made. In the case of the English word 
"updated" and its French translation "mise à jour", a 
single link is established, between "updated" and "jour". 
The word "jour", because of its correspondence with 
"updated", conveys some extra information. The French 
words "mise" and "à" are left alone. Such "simple words" 
also acquire extra information: that of having no 
counterparts. We will use amphigraphs here as a way to 
manipulate more specific objects than simple words 
wherever possible. This will make the following process 
even more accurate. 

II.2. Binary trees and secability 
The next step consists in counting n-grams in the corpus, 
with "n" being typically 1, 2 and 3 and "grams" being both 
simple words (i.e. without correspondence link) or prime 
amphigraphs. 
This material will enable us to compute a "secability" 
index on each delimiter of the segment. To make things 
simple, let's assume that separators are white spaces 
only. On each separator in a segment, we can compute 
an estimation of the mutual information of the two parts 
of the segment thus delimited by estimating its value on 
a small window, for example two words before and two 
words after the separator. Thus, we have a score on 
each separator on the segment. We can then assign a 
rank on separators, from 1 where the mutual information 
is the highest, to n-1 (for n words) where the mutual 
information is the lowest. We call this rank secability. It 
gives us an indication on whether delimitating chunks on 
this separator is more or less appropriate. The fact that 
we only consider ranks, i.e. whole numbers, and not 
mutual information values, should be emphasized. In the 
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case of ties, the leftmost separator is arbitrarily given a 
higher secability index. 
For instance, on this schema, where 'x's stand for 
different tokens in the segment, secability indexes are 
placed under each white space separator. 

 
Computing secability indexes on a segment is the same 
as bracketing the segment. We split the segment in two 
parts at the highest secability point. Then we split each 
subsegment in two parts, at the locally highest secability 
point. This is the final result, from the example above: 

 
It is also equivalent to defining a binary tree. On this 
picture, each node of the binary tree bears a secability 
index. 

 
In what follows, we will refer to high nodes, which are 
closer to the root, and low nodes which are closer to the 
leaves. Thus, the root of the tree is the top node while 
leaves are at the bottom (the metaphor follows the 
drawings more than Mother Nature). The leaves of the 
tree are the segment tokens: prime amphigraphs and 
words. We will say that a node "dominates" other nodes 
or leaves when it is above them, i.e. closer to the root. 

II.3. Alignment of subsegments 
To convert pairs of binary trees obtained in the two 
segments of a bisegment into a single abstract tree of 
amphigraphs, a TransTree structure, we will study 
several options to map them on one another. We first 
exhibit two properties of nodes in binary trees, based on 
prime amphigraphs: "saturation" and "congruence". 
These properties concern the geometry of the binary 
trees. 
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a- Saturation 
We will call "saturation" a property of some particular 
nodes in a binary tree. A node that dominates a given set 
of prime amphigraphs, such that any node above it 
dominates a strict superset of prime amphigraphs will be 
called a saturated node. In the figure below, saturated 
nodes are marked with a hyphen ( � ). Note that not all 
nodes are saturated: 

 
In this figure, 'X's stand for prime amphigraphs and 'o's 
for simple words. Horizontal bars are placed at saturated 
nodes. A given saturated node dominates either two 
saturated nodes or two non saturated nodes. The root 
node is always considered saturated, and a leaf can be 
saturated or not. It is possible for a saturated node to be 
dominated by a non saturated node (not on this picture). 
b- Congruence 
Having built binary trees on both segments of a 
bisegment, a new property emerges: some pairs of 
nodes in the two trees dominate the same set of prime 
amphigraphs. We call that property congruence. Pairs of 
congruent nodes ignore simple words that they 
dominate. 
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On this picture, two binary trees have been represented, 
one for each segment of the bisegment. The bisegment 
has four prime amphigraphs, labeled W,X,Y and Z. They 
link words 'W1' through 'Z2' in languages L1 and L2. 
Each node of the binary trees dominating at least one 
prime amphigrah is decorated with the set of one or more 
prime amphigraph(s) that it dominates. Because there 
are many pairs of congruent nodes, we have 
materialized only a few for the sake of clarity. The reader 
is invited to find them all... 
With our definition, a given set of prime amphigraphs can 
be involved in many pairs of congruent nodes. The 
simplest congruent nodes are prime amphigraphs: we 
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have materialized an example of a prime amphigraph on 
this sketch, between the two (X) leaves. 
An important feature appears on this drawing: there can 
not be congruent nodes involving sets {W,X}, {X,Y} or 
{W,Y}. The only possibility is a pair of congruent nodes 
for the set {W,X,Y}. Thus, the congruence property 
provides us with indications as how to determine an 
optimal granularity in the analysis of the segment, based 
on both monolingual and bilingual constraints. 
c- Alignment 
Basically, any pair of congruent nodes can be rewritten 
as a general amphigraph, without considering further 
structuration: 
Thus, the pair of congruent nodes involving {W,X,Y}, 
shown on the sketch above, could be converted in the 
following general amphigraph: 
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This is the fundamental method to create amphigraphs, 
based on the comparison of two binary trees. 

Conclusion of part II. 
Prime amphigraph acquisition and binary trees are the 
basic blocks of a statistics-based TransTree construction. 
Several strategies to convert pairs of binary trees into the 
TransTree formalism are possible, that are beyond the 
scope of this article. We will now examine how we can 
use the TransTree formalism in a real computed-aided 
translation scenario. 

III. A possible application of TransTree 
How can we use the TransTree formalism to help a 
human translator get the most of an 
automatically-computed fuzzy match, in a 
translation-memory-based translation environment? 

III.1 A simple scenario 
We suppose that we have a segment to translate, and 
that the system selected a fuzzy match from a translation 
memory. A fuzzy match is a source segment for which 
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there is a known translation that almost matches the 
source segment to be translated. In a translation 
environment such as Translation Manager, only the 
target side of the fuzzy match is shown. To display the 
original source segment of the fuzzy match, an additional 
action has to be taken. The available information is then 
the following:  
1. Segment to be translated, in the source 
language, 
2. Target language version of the fuzzy match,  
3. Optionally, source language version of the 
fuzzy match.  
Identifying useable parts of the fuzzy match can be 
rather confusing with only 1. and 2. because of the 
difference of languages. Requesting the display of 3. 
helps the translator to understand why the fuzzy match is 
indeed considered a fuzzy match by the system but also 
adds supplementary information that may cause 
confusion. Further adding to the confusion, the system 
often proposes more than one fuzzy match. 
Let’s see how the use of TransTree can help the user 
grasp the useable information faster. 

III.2 Determining useable information in a glimpse 
The segment to be translated and its fuzzy match can be 
compared to determine where the two strings are 
identical and where the differences lie, in the source 
language.  
For example we have a pair like this:  
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We separate common parts from differing parts by 
parenthesizing out substrings that do not belong to both 
strings, thus: 
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We know now where the differences lay between the two 
segments in the source language, but without 
correspondences, we cannot use this material to help 
the translator any further. The TransTree formalism will 
give us some clues. 
TransTree gives a hierarchical view of correspondences 
of different lengths between the two segments of a 
bisegment. Although individual words may not have a 
directly-matching words, correspondences can be found 
between larger chunks of text. We now need to 
determine which corresponding parts of the fuzzy match 
are relevant to the translator. 
A more reader-friendly, static way of expressing nested 
correspondences between the source and target 
segments consists in bracketing chunks in both 
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segments. Numbers in superscript identify prime 
amphigraphs, while lower-case letters in subscript 
denote general amphigraphs.  
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The algorithm we use to match the-parenthesized 
English string and the bracketed English string works as 
follow: we can use a general amphigraph whenever all 
its content is not in a parenthesis, i.e. when it is common 
to both the fuzzy match and the segment to be translated. 
The bracketed substrings that appear at a lower level are 
not taken into account. Thus, we can make use of the 
following bracketed substrings, indexed a and c, from 
the English string: 
330��4+�3�� �4-4���
33(�	����
47�!������3�� 48�3 ������49�3����%4:�4��
This rule enables us to transpose parts of the fuzzy 
match for which we have no prime amphigraph 
equivalent, here the English word “within”. 
In the translator environment, this gives way to an 
implementation where only relevant parts of the fuzzy 
mach are active. If we compare the three segments in 
play, we get the following picture, where non-active parts 
of the segments have been disabled: 

Even without the help of the source segment of the fuzzy 
match, usable parts are easy to spot out, thus:  

The translator can then choose either to use this material 
in her translation or to use parts of it. At any moment, she 
can check what part of the original source segment 
matches what part of the translated fuzzy match. In the 
example given below, matching parts keep their 
dynamical behavior, so that the translator can wander 
with the pointing device and highlight matching chunks. 

If the translator decides to import all or parts of the 
relevant chunks of the fuzzy match translation into her 
editing area, the system can keep a trace of the parts 
from the original segment that are now translated. If 
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another fuzzy match is available, missing chunks may be 
translated in turn. 

Conclusion of part III. 
TransTree is a formalism suitable to matching chunks 
during the translation process. This can be used to help 
translators identify the relevant parts of a 
system-selected, translated fuzzy match automatically in 
a memory-based translation environment. Moreover, 
supervised translation by chunks can be performed with 
accuracy and speed. 

Conclusion and further work 
In this article, we have described a new formalism to 
represent nested subsegmental correspondences in a 
bisegment as an abstract tree, that we call TransTree. A 
dynamic presentation of data encoded with this 
formalism can be used to help translators benefit from 
pre-translated material of smaller size than whole 
segments. It is also suitable for other types of users, 
such as students of foreign languages. TransTree can 
easily be extended to support linguistic data and to 
encode correspondences between three or more 
languages. 
We have also given a general methodology to 
programmatically compute a TransTree representation 
of a given bisegment that relies solely on aligned 
bilingual material such as can be found in large 
translation memories. Several implementations can be 
derived from this methodology. 
We have then given a simple example of how TransTree 
can be used in a translation-memory-based 
computer-aided translation environment, leading to 
accurate and flexible supervised translation by chunks. 
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