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Abstract

This paper introduces ATR’s project named Corpus-Centered
Computation (C3), which aims at developing a translation
technology suitable for spoken language translation.

C3 placescorpora at the center of its technology. Trans-
lation knowledge isextracted from corpora, translation qual-
ity is gauged by referring to corpora, the best translation
among multiple-engine outputs isselected based on corpora,
and the corpora themselves areparaphrased or filtered by
automated processes to improve the data quality on which
translation engines are based.

In particular, this paper reports the hybridization archi-
tecture of different machine translation systems, our tech-
nologies, their performance on the IWSLT04 task, and para-
phrasing methods.

1. Introduction

There are two main strategies used in corpus-based transla-
tion:

1. Example-Based Machine Translation (EBMT) [1]:

EBMT uses the corpus directly. EBMT retrieves the
translation examples that are best matched to an input expres-
sion and then adjusts the examples to obtain the translation.

2. Statistical Machine Translation (SMT) [2]:

SMT learns statistical models for translation from cor-
pora and dictionaries and then searches for the best transla-
tion at run-time according to the statistical models for lan-
guage and translation.

By using the IWSLT04 task, this paper describes two
endeavors that are independent at this moment: (a) ahy-
bridization of EBMT and statistical models, and (b) a new
approach for SMT,phrase-based HMM. (a) is used in the
“unrestricted” Japanese-to-English track (Section 2), and (b)
is used in “supplied” Japanese-to-English and Chinese-to-
English tracks (Section 3). In addition, paraphrasing tech-
nologies, which are not used in the IWSLT04 task but boost
translation performance, are also introduced in Section 4.

2. Hybrid MT System (Unrestricted J-to-E
Track)

No complete translation system has emerged nor is likely to
emerge in the foreseeable future. Every approach to trans-
lation has its own way of acquiring translation knowledge
and using the knowledge. Each system generates its pe-
culiar errors in attempting translation. As a result, trans-
lation performance differs sentence-by-sentence, system-by-
system. There is the possibility of boosting translation per-
formance through exploitation of multiple translations gener-
ated by different systems. Among several possible architec-
tures to integrate multiple translation engines (Section 2.5),
we demonstrate the acrchitecture below (Sections from 2.1
to 2.4) as one effective approach.

2.1. A Hybridization: Multiple EBMTs Followed By A
Selector Based On SMT Models

It is important to integrate “different” types of element ma-
chine translation systems in order to boost the overall per-
formance by having them compensate each other. We pro-
pose an architecture in which multiple EBMT engines work
in parallel and their outputs are passed to a post-process that
selects the best candidate according to SMT models.

Most EBMT systems employ phrases or sentences as
the translation unit so that they can translate while taking
a wider perspective in order to handle case relations, id-
iomatic expressions, sentence structure, and so on. However,
when there is ambiguity in translation, EBMT selects the best
translation mainly by the similarity between the input and the
source part of the example. EBMT’s validation of its transla-
tion is flawed.

On the other hand, SMT employing IBM models trans-
lates an input sentence by a combination of word transfer and
word re-ordering. Therefore, when it is applied to a language
pair in which the word order is much different (e.g. English
and Japanese), it is difficult to find a globally optimal solu-
tion due to the enormous search space. However, SMT can
sort translations in the order of their quality according to its
statistical models.

We show two different EBMT systems here, briefly ex-
plain each system, and then compare them. Finally, we ex-
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plain the selector used to determine the best from multiple
translations based on SMT models.

2.2. Two EBMTs

2.2.1. D3, DP-based EBMT

Sumita [3] proposed D3 (Dp-match Driven transDucer),
which exploits DP-matching between word sequences.

Let’s illustrate the process with a simple sample below.
Suppose we are translating a Japanese sentence into English.
The Japanese input sentence (1-j) is translated into the En-
glish sentence (1-e) by utilizing the English sentence (2-e),
whose source sentence (2-j) is similar to (1-j). The com-
mon parts are unchanged, and the different portions, shown
in bold face, are substituted by consulting a bilingual dictio-
nary.

;;; A Japanese input
(1-j) iro/ga/ki/ni/iri/masen
;;; the most similar example in corpus
(2-j) dezain/ga/ki/ni/iri/masen
(2-e) I do not like thedesign.
;;; the English output
(1-e) I do not like thecolor.

We retrieve the most similar source sentence of exam-
ples from a bilingual corpus. For this, we useDP-matching,
which tells us theedit distance between word sequences
while giving us the matched portions between the input and
the example.

The edit distance is calculated as follows. The count of
the inserted words, the count of the deleted words, and the se-
mantic distance of the substituted words are summed. Then,
this total is normalized by the sum of the lengths of the input
and the source part of translation example. The semantic dis-
tance between two substituted words is calculated by using
the hierachy of a thesaurus[4].

Our language resources in addition to a bilingual corpus
are a bilingual dictionary, which is used for generating target
sentences, and thesauri of both languages, which are used
for incorporating the semantic distance between words into
the distance between word sequences. Furthermore, lexical
resources are also used for word alignment.

2.2.2. HPAT, Grammar-based EBMT

The second EBMT is different from the first EBMT in that
it parses bitexts of a parallel coupus with grammars for both
source and target languages.

Imamura [5] proposed a new phrase alignment approach
called Hierarchical Phrase Alignment (HPA). First, two sen-
tences are tagged and parsed independently. This operation
obtains two syntactic trees. Next, words are linked by the
word alignment program. Then, HPA retrieves equivalent
phrases that satisfy two conditions: 1) words in the pair cor-
respond with no deficiency and no excess; 2) the phrases are

of the same syntactic category.
Imamura [6] subsequently proposed HPA-based transla-

tion (HPAT). HPAed bilingual trees include all information
necessary to automatically generate transfer patterns. Trans-
lation is done according to transfer patterns using the TDMT
engine [7]. First, the source part of transfer patterns are uti-
lized, and source structure is obtained. Second, structural
changes are performed by mapping source patterns to target
patterns. Finally, lexical items are inserted by referring to
a bilingual dictionary, and then a conventional generation is
performed.

Finally, Imamura [8] proposed afeedback cleaning
method that utilizes automatic evaluation to remove incor-
rect/redundant translation rules. BLEU was utilized to mea-
sure translation quality for the feedback process, and the hill-
climbing algorithm was applied in searching for the combi-
natorial optimization. Utilizing the features of this task, in-
correct/redundant rules were removed from the initial solu-
tion, which contains all rules acquired from the training cor-
pus. Our experiments showed a considerable improvement
in MT quality.

2.2.3. Comparison of Two EBMTs

As can be seen in Section 2.2.1, Section 2.2.2, and Table 1,
the main difference between the two EBMT systems is in
their use of grammars.

Table 1: Resources used for two EBMTs in IWSLT04 un-
resticted Japanese-to-English track.

D3 HPAT

bilingual corpus travel domain (20K) travel domain (20K)
bilingual dictionary in-house in-house

thesaurus in-house in-house
grammar N.A. in-house

D3 achieves a good quality, when there is a similar trans-
lation example in the parallel corpus, otherwise D3 may fail
to produce a good translation. On the contrary, HPAT pro-
duces a modest quality translation for most of the inputs (Ta-
ble 2).

Table 2:Features of the two EBMTs.

D3 HPAT

Unit sentence grammatical unit
Coverage narrow wide
Quality good modest

This is confirmed by the subjective evaluation of qual-
ity in Table 3. Here, we show MT’s quality by using five
ranks, S, A, B, C, and D1, from good quality to poor qual-

1The five grades are defined as follows: (S) Splendid: fluent like a naitive
speaker; (A) Perfect: no problem with either information or grammar; (B)
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ity. This is judged by English native-speakers who are also
familiar with Japanese. The evaluator investigates bilingual
information, i.e., the source sentence and its MT output. This
is an overall score that considers both adequacy and fluency,
which are particular scores used in the IWSLT evaluation
campaign. The IWSLT evaluator makes a monolingual eval-
uation, i.e., a reference translation made in advance by a pro-
fessional translator and MT output, and judges the adequacy
and fluency of the MT translation.

Table 3:ATR’s Overall Subjective Evaluation - percentages
of S, A, B, C, and D ranks.

D3 HPAT

S 57.00 38.60
A 13.00 21.20
B 7.60 17.60
C 5.80 6.00
D 16.60 16.60

The portion of translations with rank “S” for D3 is very
large, while the portions of translations with ranks “A,” “B,”
and “C” are relatively small. Thus, the slope is very steep,
while the slope of HPAT is gentle.

2.3. SMT-based Selector

We proposed an SMT-based method of automatically select-
ing the best translation among outputs generated by multiple
machine translation (MT) systems [9].

Conventional approaches to the selection problem in-
clude a method that automatically selects the output to which
the highest probability is assigned according to a language
model (LM). [10] These existing methods have two prob-
lems. First, they do not check whether information on source
sentences is adequately translated into MT outputs, although
they do check the fluency of MT outputs. Second, they do
not take the statistical behavior of assigned scores into con-
sideration.

The proposed approach scores MT outputs by using not
only the language but also a translation model (TM). To con-
duct a statistical test later, this scoring is done by using each
of multiple pairs of language and translation models. The
method, then, checks whether the average TM∗LM score of
an MT output is significantly higher than that of another MT
output. This check uses a multiple comparison test based on
the Kruskal-Wallis test [11].

2.4. Results

2.4.1. Selecting Effect

As shown in Table 4, all of the metrics taken together show
that the proposed selector outperforms both element trans-

Good: easy to understand, with either some unimportant information miss-
ing or flawed grammar; (C) Fair: broken, but understandable with effort; (D)
Unacceptable: important information has been translated incorrectly.

lation systems; for example, mWER is decreased by 2.55
(about 7.5% reduction) from 28.86 to 26.31.

Table 4:Objective Evaluation.

D3 HPAT SELECT DIFF.

BLEU 60.36 49.33 63.06 +3.00
NIST 10.35 9.78 10.72 +0.37
GTM 77.70 76.88 79.67 +1.97

mWER 28.86 37.18 26.31 -2.55
mPER 26.07 31.06 23.33 -2.97

Table 5: ATR’s Overall Subjective Evaluation - cumulative
percentages of S, A, B, C, and D ranks.

D3 HPAT SELECT DIFF.

S 57.00 38.60 59.80 +2.80
S,A 70.00 59.80 73.00 +3.00
S,A,B 77.60 77.40 82.40 +4.80
S,A,B,C 83.40 83.40 87.80 +4.40
D 16.60 16.60 12.20 -4.40

Next, the relationship between translation quality of ele-
ment systems and gain by the selector was analyzed. Table
5 shows that the proposed selector reduces the number of
low-quality translations (ranked “D”) while it increases the
number of high-quality translations (ranked “S” to “B”).

2.4.2. Performance vs. Corpus Size

Since the methods are corpus-based, the quantity of the cor-
pus determines the system performance.

Table 6:mWER vs. Corpus size.

Training corpus D3 HPAT

IWSLT-supplied (2K) 45.71 47.28
(20K) 28.86 37.18
DIFF. -16.85 -10.10

The corpus used in this experiment is ten times larger
than the supplied corpus, and the drastic reduction in mWER
has been demonstrated (Table 6).

However, the quality with the small corpus is not so bad
in the subjective evaluation shown in Table 7. We conjecture
that adequacy is not low even with the supplied corpus, and
the translation become similar to native English, that is, its
fluency improves as the size of corpus increases.

2.5. Discussion

Related works have proposed ways to merge MT outputs
from multiple MT systems [12] in order to output better
translations. When the source language and the target lan-
guage have similar sentence structures, this merging ap-
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Table 7:ATR’s Overall Subjective Evaluation - IWSLT sup-
plied corpus.

D3 HPAT SELECT

S 34.80 25.20 34.00
S,A 47.40 44.20 50.60
S,A,B 62.60 70.40 72.20
S,A,B,C 73.40 80.40 81.80
D 26.60 19.60 18.20

proach is very attractive. On the other hand, when the
source language and the target language have different sen-
tence structures, such as English and Japanese, we often have
translations whose structures are different from each other
for a single input sentences. Thus, the authors regard the
merging approach as less suitable than the approach of se-
lecting.

Hybridization can be implemented in several arichitec-
tures, for example,SMT followed by EBMT, SMT and EBMT
in parallel, and so on. Which archtecture is best is still an
interesting open question.

In addition to the merging and selecting approaches, a
modification approach can be taken. For example, Marcu
[14] proposed a method in which initial translations are
constructed by combining bilingual phrases from translation
memory, which is followed by modifying the translations by
greedy decoding [15]. Watanabe et al. [16] proposed a de-
coding algorithm in which translations that are similar to the
input sentence are retrieved from bilingual corpora and then
modified by greedy decoding.

3. Phrase-based HMM SMT System (Supplied
J-to-E and C-to-E Tracks)

This section describes an innovative approach to statistical
translation modeling, namely the phrase-based HMM trans-
lation model. The model directly structures the phrase-based
translation approach in a Hidden Markov structure and pro-
poses an efficient way to estimate and induce phrase transla-
tion pairs in a uniform fashion.

In the statistical approach to machine translation, orig-
inally proposed in [2], the problem of translating a source
text in a foreign language,f , into a target language, for in-
stance English,e is formulated as the maximization problem
of

ê = argmax
e

P (e|f) (1)

The noisy channel modeling of the above problem resulted
in

ê = argmax
e

P (f |e)P (e) (2)

Many previous efforts in the phrase-based approach to
statistical machine translation basically approximated the
former term,P (f |e), as the products of sequence of phrase

translations with additional constraints [17, 18, 19]:

P (f |e) ≈
∏

i

P (f̄i|ēai) (3)

wheref̄i is theith phrase of the phrase-segmented sentence
f̄m
1 for f , and ai is the phrase alignment for the phrase-

segmented texts.2

Instead, we introduced two new hidden variables,f̄ and
ē, to explicitly capture the phrase translation relationship:

P (f |e) =
∑

f̄ ,ē

P (f , f̄ , ē|e) (4)

The termP (f , f̄ , ē|e) is further decomposed into three terms:

P (f , f̄ , ē|e) = P (f |f̄ , ē, e)P (f̄ |ē, e)P (ē|e) (5)

The first term of Equation 5 represents the probability
that a segmented input sentencef̄ can be reordered and gen-
erated as the input text off . The second term indicates the
translation probability of the two phrase sequences ofē and
f̄ . The last term is the likelihood of the phrase-segmented text
ē generated frome. We call these terms the Phrase Segmen-
tation Model, the Phrase Translation Model, and the Phrase
Ngram Model, respectively.

3.1. Phrase Ngram Model

The phrase ngram model is approximated as:

P (ē|e) ≈
∏

i

P (ēi|ēi−1) (6)

P (ēi|ēi−1) is treated as the bigram constraints of adjacent
translated phrases̄ei andēi−1.

The phrase ngram model can be easily estimated with
the Forward-Backward algorithm by expanding all possible
phrase segmentations ofe into a lattice structurēE as shown
in Figure 1. Each node in the lattice represents a particular
phrasēEi in a sentencee connected by edges with associated
probability ofP (Ēi|Ēi′).

The estimation procedure can be roughly summarized as
follows.

1. Initialize the probability table.

2. For each sentencee in the training corpus, estimate
the posterior probabilitiesP (Ēi, Ēi′ |e) on the lattice
using the Forward-Backward algorithm.

3. Estimate the prior probabilities based on the maxi-
mum likelihood estimation by using the estimated pos-
terior probabilities as the frequency of the occurrence
of words:

P (Ēi|Ēi′) =
∑

e P (Ēi, Ēi′ |e)∑
e

∑
Ēi

P (Ēi, Ēi′ |e)
(7)

4. Iterate steps 2 and 3 until a termination condition is
satisfied.

2A phrase is simply a consecutive sequence of words and is not always
linguistically coherent.
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Ē2 Ē4

Ē1 Ē3 Ē6

Ē5

P (Ē2|Ē1)

Figure 1: Phrase Ngram Model

3.2. Phrase Segmentation Model

According to the generative modeling represented in Equa-
tion 5, the termP (f |f̄ , ē, e) can be regarded as the distortion
probability of how a phrase segmented sentencef̄ will be re-
ordered to form the source sentencef .

Instead, we model this as the likelihood of a particular
phrase segment̄fj observed inf :

P (f |f̄ , ē, e) ∝ P (f̄ |f) (8)

≈
∏

j

P (f̄j |f) (9)

The segmentation model is realized as the unigram posterior
probability of the phrase ngram model presented in Section
3.1. To briefly summarize, the unigram posterior probability
can be efficiently computed by the Forward-Backward algo-
rithm using the lattice structurēF for f :

P (F̄j |f) =
P (F̄j , f)∑
F̄j

P (F̄j , f)
(10)

The phrase segmentation model can be viewed as the
prior term to assign a certain weight to a particular phrase
given a source text. If we restrict the phrase length to 1, i.e.
each phrase consisting of only one word, then the phrase seg-
mentation model will assign 1 to all phrases.

3.3. Phrase Translation Model

The phrase translation model is approximated so that the
phrase translation can be captured as the product of the in-
dividual phrase translations.

P (f̄ |ē, e) ≈
∏

j

P (f̄j |ēaj) (11)

where theai represents phrase alignment as seen in word
alignment based translation model, such as the IBM Models.

3.4. Phrase-based HMM Statistical Translation

Combining all of the submodels – the phrase ngram model,
the phrase segmentation model, and the phrase translation
model – Equation 4 can be rewritten as

P (f |e) ≈
∑

ē,f̄

∏

j,i

P (f̄j |f)P (f̄j |ēi)P (ēi|ēi′) (12)

If the phrase segmented sentencesē and f̄ are expanded
into the corresponding lattice structures ofĒ and F̄, then

Ē2 Ē4

Ē1 Ē3 Ē6

Ē5

P (Ē3|Ē1)

F̄2

P (F̄2|f)
F̄6

F̄1 F̄3 F̄4 F̄5

P (F̄2|Ē3)

Figure 2: Phrase-based HMM Statistical Translation Model

Equation 12 can be regarded as a Hidden Markov Model in
which each source phrasēFj in the latticeF̄ is treated as an
observation emitted from a statēEi, a target phrase, in the
latticeĒ, as shown in Figure 2.

The use of the phrase-based HMM structure has already
been proposed in [20] in the context of aligning documents
and abstracts. In their approach, jump probabilities were ex-
plicitly encoded as the state transitions that roughly corre-
sponded to the alignment probabilities in the context of the
word-based statistical translation model. The use of the ex-
plicit jump or alignment probabilities served for the com-
pleteness of the translation modeling at the cost of the enor-
mous search space needed to train the phrase-based HMM
structure.

In our approach, the state transitions are governed by the
phrase ngram model, bigram of phrase connection probabil-
ities, but this method ignores phrase alignment probabilities.
Therefore, the phrase-based HMM translation model is a de-
ficient model. However its simplicity contributes to the faster
estimation of parameters.

3.5. Parameter Estimation

The parameters for the phrase-based HMM translation model
can be efficiently estimated by using the Forward-Backward
algorithm briefly described in Section 3.1.

For the Forward-Backward procedure, we define two
auxiliary variables,α(ei2

i1
, f j2

j1
) andβ(ei2

i1
, f j2

j1
). α(ei2

i1
, f j2

j1
)

represents the forward estimates of the probability of the
phraseei2

i1
translated intof j2

j1
after the emission of the

all phrase combinations presented inei1−1
1 . Similarly,

β(ei2
i1

, f j2
j1

) represents the backward estimates of the proba-

bility of the phraseei2
i1

translated intof j2
j1

considering the all
right phrase combinations ofel

i2+1.

Therefore, the Forward-Backward algorithm can be for-
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mulated to solve the recursions

α(ei2
i1

, f j2
j1

) =
i1−2∑

i′=1

∑

f
j′2
j′1

∩f
j2
j1

=∅

α(ei1−1
i′ , f j′2

j′1
)

×P (ei2
i1
|ei1−1

i′ )P (f j2
j1
|ei2

i1
)P (f j2

j1
|f) (13)

β(ei2
i1

, f j2
j1

) =
l∑

i′=i2+2

∑

f
j′2
j′1

∩f
j2
j1

=∅

β(ei′
i2+1, f

j′2
j′1

)

×P (ei′
i2+1|ei2

i1)P (f j′2
j′1
|ei′

i2+1)P (f j′2
j′1
|f)
(14)

To overcome the problem of local convergence often ob-
served in the EM algorithm [21], we use the lexicon model
from the GIZA++ [22] training as the initial parameters for
the phrase translation model. In addition, the phrase ngram
model and the phrase segmentation models are individually
trained over the monolingual corpus and remained fixed dur-
ing the HMM iterations.

3.6. Phrase Segment Induction

Equations 13 and 14 involve summation over all possible
contexts, either in its left-hand-side or right-hand-side on the
lattice structure of̄E, and the summation over all possible
segmentation over̄F. Since the computation is still enor-
mous, even with the help of dynamic programming, we re-
strict the possible segmentation to those phrase translation
pairs induced before the estimation.

The phrase pairs are induced by first considering all pos-
sible bilingual phrase pairs in a training corpus using the
product of two phrase translation probabilities:

P (ē|f̄)P (f̄ |ē) =
count(ē, f̄)2∑

f̄ count(ē, f̄)
∑

ē count(ē, f̄)
(15)

wherecount(ē, f̄) is the cooccurrence frequency of the two
phrases̄e and f̄ . The basic idea of Equation 15 is to cap-
ture the bilingual correspondence while considering two di-
rections.

Additional phrases were exhaustively induced based on
the intersection/union of the viterbi word alignments of the
two directional models,P (e|f) and P (f |e), computed by
GIZA++ [17].

After the extraction of phrase translation pairs, their
monolingual phrase lexicons were extracted and used as the
possible segmentation for the source and target sentences.

3.7. Decoder

The decision rule to compute the best translation is based on
the log-linear combinations of all subcomponents of transla-
tion models as presented in [23].

ê = argmax
e

1
Z(f)

∑

j

λj log Prj(e, f) (16)

wherePrj(e, f) are the subcomponents of translation mod-
els, such as the phrase ngram model or the language model,
and λj is the weight for each model. The weighting pa-
rameters,λj , can be efficiently computed based either on
the maximum likelihood criterion [23] by IIS or GIS algo-
rithms or on the minimum error rate criterion [24] by some
unconstrained optimization algorithms, such as the Downhill
Simplex Method [25].

The decoder is taken after the word-graph-based decoder
[26], which allows the multi-pass decoding strategies to in-
corporate complicated submodel structures. The first pass of
the decoding procedure generates the word-graph, or the lat-
tice, of translations for an input sentence by using a beam
search. On the first pass, the submodels of all phrase-based
HMM translation models were integrated with the word-
based trigram language model and the class 5-gram model.
The second pass uses A* strategy to search for the best path
of translation on the generated word-graph.

3.8. Results

The results appear strange in two points: (1) Our proposal
didn’t work well for the Japanese-to-English track but did
work well for the Chinese-to-English track; (2) Our proposal
achieved high fluency but marked low adequacy.

The former was attributed to the fact that we had to nar-
row down the beamwidth for handling long Japanese input.
The latter was attributed to the fact that we tuned our param-
eter to mWER and we exploited phrase models as well.

Table 8: Evaluation - IWSLT Chinese-to-English supplied
task.

System mWER Fluency Adequacy

Top 45.59 38.20 33.38
Our 46.99 38.20 29.50

Bottom 61.69 25.04 29.06

4. Other Features of C3

This section introduces another feature of C3: paraphrasing
and filtering corpora, which are not used in the IWSLT04
task but are useful for boosting MT performance.

The large variety of possible translations in a corpus
causes difficulty in building machine translation on the cor-
pus. Specifically, theis variety makes it more difficult to
find appropriate translation examples for D3, to extract good
transfer patterns for HPAT, and to estimate the parameters for
SMT.

We propose ways to overcome these problems by para-
phrasing corpora through automated processes or filtering
corpora by abandoning inappropriate expressions.
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4.1. Paraphrasing

Three methods have been investigated for automatic para-
phrasing. (1) Shimohata et al. [27] grouped sentences by
the equivalence of the translation and extract rules of para-
phrasing byDP-matching. (2) Finch et al. [28] clustered
sentences in a paraphrase corpus to obtain pairs that are sim-
ilar to each other for trainingSMT models. Then by using
the models, the decoder generates a paraphrase. (3) Finch et
al. [29] developed a paraphraser based on data-oriented pars-
ing, which utilizes synatactic information within an example-
based framework.

The experimental results indicate that the EBMT based
on normalization of the source side had increased coverage
[30] and that the SMT created on the normalized target sen-
tences had a reduced word-error rate [31]. Finch et al. [32]
demonstrated that the expansion of reference sentences by
paraphrasing is effective for automatic machine translation
evaluation.

In addition, longer sentences, which are inherent in spo-
ken language, can be translated effectively by splitting them
into short sentences and then concatenating the translated
short sentences. Doi proposed a new splitting method based
on N-gram and sentence similarity [33].

4.2. Filtering

Imamura et al. [34] proposed a calculation that measures the
literalness of a translation pair and called it Translation Cor-
respondece Rate (TCR). After the word alignment of a trans-
lation pair, TCR is calculated as the rate of the aligned word
count over the count of words in the translation pair. Af-
ter abandoning the non-literal parts of the corpus, the HPAT
transfer patterns are acquired. The effect of this measure has
been confirmed by the improvement in translation quality.

5. Conclusions

Our project, called C3, places corpora at the center of speech-
to-speech technology.

In this paper, (1) a hybridization of multiple EBMTs
followed by a statitical selector, (2) a new SMT, phrase-
based HMM SMT, and (3) paraphrasing methods are in-
troduced. Good performance by translation components is
demonstrated through experiments, including the IWSLT04
task.

Furthermore, we plan to pursue a better blend of multiple
processes, EBMT, SMT and other innovations such as para-
phrasing.
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