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Motivation

We begin with a simple problem: a lexicon of some natural language
is given as a list of words. Suggest a data structure that will provide
insertion and retrieval of data. As a first solution, we are looking for time
efficiency rather than space efficiency.

The solution: trie (word tree).
Access time: O(jw|). Space requirement: O{>"  fuw|}.
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A trie can be augmented to store also a morphoiogical dictionary
specifying concatenative affixes, especially suffixes. In this case it is
better to turn the tree into a graph.

The obtained model is that of finite-state automata.
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Finite-state technology

Finite-state automata are not only a good model for representing the
lexicon, they are also perfectly adequate for representing dictionaries
(lexicons+additional information), describing morphological processes
that involve concatenation etc.

A natural extension of finite-state automata — finite-state transducers —
is a perfect model for most processes known in morphology and
phonology, including non-segmental ones.
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Formal language theory — definitions

Format languages are defined with respect to a given alphabet, which
is a finite set of symbols, each of which is called a letter.

A finite sequence of letters is called a string.

Example; Strings
Let ¥ = {0, 1} be an alphabet. Then all binary numbers are strings
over .

if X = {a,b,¢,d....,y, -} is an alphabet then cat, incredulous and
supercalifragilisticexpialidocious are strings, as are tac, qqq and
Kishdfikwjehr.
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Formal language theory - definitions

The length of a string w, denoted |w|, is the number of letters in w. The
unique string of length 0 is called the emply string and is denoted «.

If wy = (£1,...,2,) @and ws = (41, ..., ¥m), the concatenation of v, and
ws, denoted w, - ws, is the stting (z1,..., 20, ¥1, - Um). Jwy - wo] =
fwy] + jwol.

Foreverystringw, w-e =¢-w = w.
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Formal language theory — definitions

Example: Concatenation

Let ¥ = {a,b,c.d,...,u, 2z} be an alphabet. Then master- mind =
mastermind, mind - master = mindmaster and master - master =
mastermaster. Similarly, learn - s = learns, learn - ed = learned
and learn - ing = learning.
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Formal language theory — definitions

An exponent operator over strings is defined in the following way: for
every string «, " = ¢. Then, for n > 0, w" = "1 . w,

Example: Exponent
lf u* = go, then u” = ¢, w! = w = o, w? = w' - w = w - w = gogo,
..... = gogogo and so on.
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Formal language theory — definitions

The reversal of a string « is denoted «'* and is obtamed by writing «: in
the reverse order. Thus, if w = {oy. 20, .. o)y @ = (o 201, .. g1

Given a string w, a substring of w is a sequence formed by taking
contlguous symbols of « in the order in which they occur in w. If
w = w0, any thenforany i, jsuchthatl < < j <n, {&,. .. 2; I8
a substring of .

Two special cases of substrings are prefix and suffix: if w = wy; - w, - w,
then wy; is a prefix of « and ., is a suffix of w.
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Formal language theory — definitions

Example: Substrings

Let ¥ = {a.b.....2} be an alphabet and « = indistinguishabie a
string over =. Then ¢, in, indis, indistinguish and indistinguishable
are prefixes of w, while the suffixes of w are ¢, e, able,
distinguishable and indistinguishable. Substrings that are neither
prefixes nor suffixes include distinguish, gui and Js.
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Formal language theory — definitions

Given an alphabet X, the set of all strings over X is denoted by ¥*.

A formal language over an alphabet ¥ is a subset of *.
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Formal language theory — definitions

Example: Languages

LetX = {a, b ¢ ..., ¥ z}. Then * is the set of all strings over the
Latin alphabet. Any subset of this set is a language. In particular,
the following are formal languages:
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Formal language theory — definitions

e 2%

¢ the set of strings consisting of consonants only;

o the set of strings consisting of vowels only;

¢ the set of strings each of WhICh contains at least one vowel and at
least one consonant;

s the set of palindromes;

the set of strings whose length is less than 17 letters;
the set of single-letter strings;

the set {i, you, he, she, it, we, they},

the set of words occurring in Joyce’s Ulysses;

the empty set;

Note that the first five languages are infinite while the last five are
finite.
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Formal language theory — definitions

The string operations can be lifted to languages.

If L is a language then the reversal of L, denoted L%, is the language
{wiw?elL}.

If L; and L, are languages, then
Ly Lo = {wl © W9 i wn € Ly andwsy € Lz}

Example: Language operations
L, = {i, you, he, she, it, we, they}, L, = {smile, sleep}.

Then L;® = {i, uoy, eh, ehs, ti, ew, yeht} and L, - L, = {ismile,
yousmile, hesmile, shesmile, itsmile, wesmile, theysmile, isleep,
yousleep, hesleep, shesleep, itsleep, wesleep, theysleep}.
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Formal language theory - definitions

If L is a language then L% = {¢}.
Then, fori >0, L* = L - L*~%.

Example: Language exponentiation

Let L be the set of words {bau, haus, hof, frau}. Then L® = {¢},
L' = L and L? = {baubau, bauhaus, bauhof, baufrau, hausbau,
haushaus, haushof, hausfrau, hofbau, hofhaus, hofhof, hoffrau,
fraubau, frauhaus, frauhof, fraufrau}.
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Formal language theory - definitions

The Kleene closure of L and is denoted L* and is defined as { J;-, L%
Lt = U, I

Example: Kleene closure

Let L = {dog, cat}. Observe that L® = {¢}, L! = {dog, cat}, L? =
{catcat, catdog, dogeat, dogdog}, etc. Thus L* contains, among
its infinite set of strings, the strings ¢, cai, dog, caicat, catdog,
dogcat, dogdog, catcatcat, catdogcat, dogcatcat, dogdogcat, etc.

The notation for £* should now become clear: it is simply a special
case of L*, where L = .
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Regular expressions

Regular expressions are a formalism for defining (formal) languages.
Their “syntax” is formally defined and is relatively simple. Their
“semantics” is sets of strings: the denotation of a regular expression
is a set of strings in some formal language.
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Regular expressions

Regular expressions are defined recursively as follows:

o ) is a regular expression

¢ is a regular expression

if o € ¥ is a letter then « is a regular expression

if 1 and r, are regular expressions then so are (r; + r2) and (ry - r2)

if » is a regular expression then so is (r)*

nothing else is a regular expression over 3.,
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Regular expressions

Example: Regular expressions
Let 3 be the alphabet {3, b, ¢, .. ., ¥, z}. Regular expressions over
this alphabet include:

o

®

e ((c-a)-t)

¢ (({m-e)-(0)7) w)

o (a4 {e+ (i+{0+u)))

e ((a+(e+ (24 (o+u)))
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Regular expressions

For every regular expression r its denotation, fr], is a set of strings
defined as follows:

o j#] =10
o ] = {¢}
o if a ¢ ¥ is a letter then [a] = {a}

e if ry and r, are regular expressions whose denotations are [r} and
{?‘23, l'eSpeCtiV9|y, Ehen [(7‘1 -+ 7‘2)} == [?"1]U[7'2], {(‘!‘1 . 7’2)] = [7‘11 . E‘Y‘g]
and [(r,)*] = [r4]
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Regular expressions

Example: Regular expressions and their denotations

¢ : ¢

e {a}
((c-a)-t) {cra-1}
(((m-e) - (0)")-w) {mew, meow, mecow, meooow, ...}

(@+{e+(i+{o+w)))  {aei0u}
({a+(e+ i+ (o+u))))* all strings of 0 or more vowels
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Regular expressions

Example: Regular expressions
Given the alphabet of all English letters, £ = {a,b.¢,...,y,z}, the
language X* is denoted by the regular expression X*.

The set of all strings which contain a vowel is denoted by X* - (a +
e+i+o+u) X%

The set of all strings that begin in “un” is denoted by (un)¥*.

The set of strings that end in either “tion” or “sion” is denoted by
¥ (s-+t)- (ion).

Note that all these languages are infinite.
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Properties of regular languages

Closure properties:

A class of languages £ is said to be closed under some operation ‘s’ if
and only if whenever two languages L., L. are in the class (L, L, € L),
also the result of performing the operation on the two languages is in
this class: L, e L, € L.
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Properties of regular languages

Regular languages are closed under:
¢ Union

e Intersection

e Complementation

» Difference

¢ Concatenation

¢ Kleene-star

¢ Substitution and homomorphism
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Finite-state automata

Automata are models of computation: they compute languages.

A finite-state automaton is a five-tuple (@, g9, ¥, 4, F'}, where X is a finite
set of alphabet symbols, ¢ is a finite set of states, 4, € @ is the initial
state, F' C @ is a set of final (accepting) statesandé: Q@ x Ex Qisa
relation from states and alphabet symbois to states.
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Finite-state automata

Example: Finite-state automaton

® Q = {QO: 91:‘125‘}3}
o L= {ca,tr}

o F={qgs} |
e )= {(q@: c, Q'1>, <q13 a, Q2>? <Q23 L, QS>1 (Q2a r, QS)}

4
~@-*-@_®
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Finite-state automata

The reﬂe;;ive transitive extension of the transition relation ¢ is a new
relation, 4, defined as follows:

o forevery state g € Q, (¢,¢,¢) € é

o for every string w € T* and letter a € I, if (¢ w,q¢") € & and
(¢',a,q") € §then (q,w - a,q") € 4.



Finite State Technology 26

Finite-state automata

Example: Paths
For the finite-state automaton:

t
@@L ®

4 is the following set of triples:

(‘-?O: €, QO>= (Qh €, QI>J (‘.?2: €, (h)s (93: €, (1'3>a
(q{)s c, (h)s ({h, a, Q2>s (QTZ& [ Q3> (QQ: r, 9'3)3
((109 ca, q2)a (QIa at, Q?,); (ql: ar, Q3>:

(QCH C-G,f,, Q3>a (Q’O; car, f}a)
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Finite-state automata

A string w is accepted by the automaton A = (¢, g9, X, 6, F) if and only
if there exists a state ¢; € F' such that (g, w, ¢5) € 6.

The language accepted by a finite-state automaton is the set of all string
it accepts.

Example: Language
The language of the finite-state automaton:

1t

is {cat, car}.
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Finite-state automata

Example: Some finite-state automata

Finite State Technology
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Finite-state automata

Example: Some finite-state automata

ta}
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Finite-state automata

Example: Some finite-state automata

{e}

Finite State ‘I‘echnology
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Finite-state automata

Example: Some finite-state automata

——q“—-D a {a, aa, aaa, aaaa, ...}
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Finite-state automata

Example: Some finite-state automata

Finite State Techndogy

Finite-state automata

Example: Some finite-state automata

E*
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Finite-state automata

An extension: e-moves.
The transition relation ¢ is extended to: § C Q x (X U {e}) x @
Example: Automata with e-moves

The language accepted by the following automaton is {do, undo,
done, undone}.

U nd onqse
2ootoreiep
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Finite-state automata

Theorem (Kleene, 1956): The class of languages recognized by finite-
state automata is the class of regular languages.
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Finite-state automata

Example: Finite-state automata and regular expressions

((c-a)-1)
(((m-€) - (0)*) - w)

a@i
mew

:)a,,e,i,o,'u,

((a+{(e+ i+ {o+u))))”
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Operations on finite-state automata

¢ Concatenation
+ Union

¢ Intersection

¢ Minimization

o Determinization
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Minimization and determinization

Example: Equivalent automata

n @4
3/0—-—-0——-0
g oin e

Ay G Qs e e @

g/.o.g..o—?_'.oﬁ.o_g..
Ay g o n_e

= Q= Q—rO0——0
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Applications of finite-state automata in NLP

Finite-state automata are efficient computational devices for generating
regular languages.

An equivalent view would be to regard them as recognizing devices:
given some automaton A and a word w, applying the automaton to the
word yields an answer to the question: Is w a member of L(4), the
language accepted by the automaton?

This reversed view of automata motivates their use for a simple
yet necessary application of natural language processing: dictionary
lookup.
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Applications of finite-state automata in NLP

Example: Dictionaries as finite-state automata

(.
go: 9.2,
o 1 n 9

g/~o-—-o—-o—-o‘—-0
go, gone, going: 49 .2, ,€,

g

Qe

z/‘o——vo—-.
go, gone, going: ¢ J.,0.lm ¢

O——— O — O —r O
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Applications of finite-state automata in NLP

Example: Adding morphological information

Add information about part-of-speech, the number of nouns and
the tense of verbs:

Y.={abec..,¥2-N,-V-sg, -pl, -inf, -prp, -psp}

g 0 1 7 g v -pp
-] (o3 Q ] [w] [»] O [ ]
L e -V -psSp
o o o .
-V

-inf
[w) [ ]
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The appeal of regular languages for NLP

+ Most phonological and morphological process of natural languages
can be straight-forwardly described using the operations that reguilar
languages are closed under

s Most algorithms on finite-state automata are linear
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Regular relations

While regular expressions are sufficiently expressive for some natural
language applications, it is sometimes useful to define relations over
two sets of strings.
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Regular relations

Part-of-speech tagging:

! know some new tricks
PRON V DET ADJ N

said the Cat in the Hat
Vv DET N P DET N
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Regular relations

Morphological analysis:

i know some new
[-PRON-1-sg know-V-pres some-DET-indef new-ADJ
tricks said the ’ Cat
trick-N-pl say-V-past the-DET-def cat-N-sg
in the Hat

in-P the-DET-def hat-N-sg
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Regular relations

Singular-to-plural mapping:

cat hat ox child mouse sheep goose
cats hats oxen children mice sheep geese
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Finite-state transducers

A finite-state transducer is a six-tuple (Q, ¢o, 21, £2, 9, F'). Similarly to
automata, ¢ is a finite set of states, g9 € @ is the initial state, ' C 0 is
the set of final (or accepting) states, £, and 3, are alphabets: finite sets
of symbols, not necessarily disjoint (or different). 6 : Q@ x X, x Lo x Qis
a relation from states and pairs of alphabet symbols to states.

gig @o:e@o:e@szb‘e:e
s:S@h:h e:ee:e_P?P
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Finite-state transducers

Shorthand notation:
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Finite-state transducers

The language of a finite-state transducer is a set of pairs: a binary
relation over £} x X3. The language is defined analogousiy to how
the language of an automaton is defined.

T{(w) = {u | (g0, w,u,qs) € § for some f € F).
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Finite-state transducers

Example: The uppercase transducer

a:Ab:B,c:C,...

Example: English-to-French

e:h a:a t:¢
O O O L]
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Properties of finite-state transducers

Given a transducer (), go, 21, X2, 8, F),

e its underlying automatonis (@, gy, £1 x 22,8’ F), where (¢, (e, ), ¢2) €
Jf iﬁ (QI'_! a, b:\ qz) < 5

e its upper automaton is (Q, g0, L1, 61, F), where (g;,a,¢) € 6, iff for
some b € X, (q1,a,b,q2) €6

e its Jower autornaton is (Q, qu, L2, 62, F), where (q1,b,¢42) € &, iff for
somea &€ Ea’ (QL a, b? Q2) € é
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Properties of finite-state transducers

A transducer T is functional if for every v € 3, T(w) is either empty or
a singleton.

Transducers are closed under union: if T, and 7% are transducers, there
exists a transducer 7" such that for every w € X7, T'(w) = Ti{w) UTo(w).

Transducers are closed under inversion: if T is a transducer, there exists
a transducer 7! such thatforevery w ¢ £}, T (w) = {u € D |w €

T(u)}.

The inverse transducer is {Q), g0, X2, 23,071, F), where (q1,a,b,q2) €
5V iff (g1, b,a.q2) € 5.
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Properties of regular relations

Example: Operations on finite-state transducers

R, = {tomato:Tomate, cucumber.Gurke,
grapefruit:Grapefruit, pineapple:Ananas,
coconut:Koko}

R, = {grapefruit:pampelmuse, coconut:Kokusnuf3}

R, U Ry = {tomato:Tomate, cucumber:Gurke,
grapefruit:Grapefruit, grapefruft:pampeimuse,
pineapple:Ananas,
coconut:Koko ,coconut:Kokusnui3}
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Properties of finite-state transducers

Transducers are closed under composition: if 7} is a transduction from
31 to X3 and and T3 is a transduction from 233 to 33, then there exists a
transducer T' such that for every w € 33, T'(w) = To(To{w)).

The number of states in the composition transducer might be |(Q; x Q5.
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Example: Composition of finite-state transducers

R; = {tomato:Tomate, cucumber:Gurke,
grapefruit:Grapefruit, grapefruit.pampelmuse,
pineapple:Ananas,
coconut:Koko ,coconut:Kokusnuf3}

Rs = {tomate:tomato, ananas:pineapple,
pampelmousse:grapefruit, concombre:cucumber,
cornichon:cucumber, noix-de-coco:coconut}

R, o Ry = {tomate:Tomate, ananas:Ananas,
pampeimousse:Grapefruit,
pampeimousse:Pampelmuse,
concombre:Gurke,cornichon:Gurke,
noix-de-coco:Koko, noix-de-coco:Kokusnuf3e}



Finite State Technology 56

Properties of finite-state transducers

Transducers are not closed under intersection.

Ti{c™) = {a™™ | m > 0}
(™) = {a™b" | m >0} =
(Ty NTp)(c") = {a™b"}

Transducers with no «<-moves are closed under intersection.
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Properties of finite-state transducers

e Computationally efficient

s Denote regular relations

¢ Closed under concatenation, Kieene-star, union

¢ Not closed under intersection (and hence complementation)
¢ Closed under composition

¢ Weights
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Introduction to XFST

« XFST is an interface giving access to finite-state operations
(algorithms such as union, concatenation, iteration, intersection,
composition etc.)

¢ XFST includes a regular expression compiler

¢ The interface of XFST includes a lookup operation (apply up) and a
generation operation (apply down)

« The regular expression language employed by XFST is an extended
version of standard regular expressions
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Introduction to XFST

a a simple symbol

cat a concatenation of three symbols

[c a t] grouping brackets

? denotes any single symbol

$+ the literal plus-sign symbol

g * the literal asterisk symbol (and similarly for £2, %,

%] etc.
‘‘4+Noun’’  single symbol with multicharacter print name
$+Noun single symbol with multicharacter print name

cat a single multicharacter symbol
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Introduction to XFST

{cat} equivalentto [c a t]

[ ] the empty string

0 the empty string

[A] bracketing; equivalent to A

A|B union

(A) optionality; equivalentto [A| 0]

A&B intersection

A B concatenation

A-B set difference
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Introduction to XFST

A* Kleene-star

A+ one or more iterations

2% the universal language

~A the complement of A; equivalentto [?2* - A]

~[2%] the empty language
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Introduction to XFST - denoting relations

A .x. B Cartesian product; relates every string in A to every

string in B
a:b shorthand for [a .x. bl
%+Pl:s shorthand for [$+P1 .x. sl

$+Past:ed shorthand for [$+Past .x. ed]

$+Prog:ing shorthand for [3+Prog .x. ing]

Finite State Technology 63

Introduction to XFST - useful abbreviations

$A the language of all the strings that contain a; equivalent
to [?* A ?2%*]

A/B the language of all the strings in 2, ignoring any strings
from B, e.g.,

a*/b includes strings such as a, aa, aaa, ba, ab,
aba eftc.

\A any single symbol, minus strings in A. Equivalent to [?
- aAl,eg.,

\b any single symbol, except ‘b’. Compare to:

~A the complement of 4, i.e., [?* - A]
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Introduction to XFST - example

[ [leave $+VBZ .x. 1l e ave sg] |

[l1eave %VB .x. 1eave] |

[leave%+VBG .x. leavingl |

[l1eave %$+VBD .x. 1 e £ t] |

[leave %$+tNN .x. 1 e av el |

[1 eave%+NNS .x. 1 eaves] |

[l1eaf $+NNS .x. lLeaves] |

[1 e ft %+J7 .x. 1 e £ t] ]
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Introduction to XFST - user interface

prompt% H:\class\data\shuly\xfst

xfst>
xfst>
xfst>
xfst>
xfst>
xfst>
xfst>
xfst>
xfst>
xfst>

help

help union net

exit

read regex [d o g | ¢ a t];
read regex < myfile.regex
apply up deog

apply down dog

pop stack

¢lear stack

save stack myfile.fsm
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Introduction to XFST -~ example of lookup and

generation

APPLY DOWN> leave+VBD

left

APPLY UP> leaves
leave+NNS
leave+VBZ
leaf+NNS

Finite State Technology

&7

xfst>
xfst>
xfst>

xfst>
xXfst>
xfst>
xfst>
xfst>
xfst>

Introduction to XFST - variables

define Myvar;
define Myvar2 [d o g | c a t];
undefine Myvar;

define
define
define
define
define
define

varl
varz
var3
var4d
varb
vareé

bird| frog| dodgl;
[dog | c at];

varl | var2;

varl var2;

varl & var2;

varl - wvar2;
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Introduction to XFST - variables

xfst> define Root [wa lk | talk | workl;
xfet> define Prefix [0 | r e];

xfst> define Suffix [0 | s [ ed | i n g];

xfst> read regex Prefix Root Suffix;

xfst> words

xfst> apply up walking
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Introduction to XFST - replace rules

Replace rules are an extremely powerful extension of the regular
expression metalanguage.

The simplest replace rule is of the form

upper — lower || leftcontext _ rightcontext

its denotation is the relation which maps string to themselves, with the
exception that an occurrence of upper in the input string, preceded by
leftcontext and followed by rightcontext, is replaced in the output by
lower.
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introduction to XFST - replace rules

The languageé Bambona has an underspecified nasal morpheme N that
is realized as a labial m or as a dental n depending on its environment:
N is realized as m before p and as n elsewhere.

The language also has an assimilation rule which changes p to m when
the p is followed by m.

xfst> clear stack ;
xfst> define Rulel N -> m
xfst> define Rule2 N -> n

xfst> define Rule3 p ->m || m _ ;

xfst> read regex Rulel .o. Rule2 .o. Rulel3 ;
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Introduction to XFST - replace rules

Word boundaries can be explicitly referred to:

xfst> define Vowel [a|el|ilo|ul;
xfst> e -> 7 || [.#.]1 e | & | 1] 8] _ [% Vowell;
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Introduction to XFST - replace rules

Contexts can be omitted:

xfst> define Rulel N ->m || _ p ;
xfst> define Rule2 N -»> n ;
xfst> define Rule3 p -> m || m _ ;

This can be used to clear unnecessary symbols introduced for
“bookkeeping”:

xfst> define Rulel %"MorphmeBoundary -> 0;
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introduction to XFST — replace rules

Rules can define multiple replacements:

[ A ->B, B ->A]

or multiple replacements that share the same context:
[A->8B, B->A||L_R]

or multiple contexts:

[A->B || L1 _R1, L2 _ R2]

or multiple replacements and multiple contexts:

[A->B, B->A|] L1 R, L2 R2]
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Introduction to XFST - replace rules

Rules can apply in parallel:

xfst> c¢lear stack

xfst> read regex a -> b .0. b -> a ;
xfst> apply down abba

aaaa

xfst> clear stack

xfst> read regex b -> a .0. a -» b ;
xfst> apply down abba

bbbb

xfst> clear stack

xfst> read regex a -> b , b ~-> a ;
xfst> apply down abba

baab
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Introduction to XFST - replace rules

When rules that have contexts apply in parallel, the rule separator is a
double comma:

xfst> clear stack

xfst> read regex ,

b->a || #.s8°?2* _,, a->b || _2*e .#. ;
xfst> apply down sabbae

sbaabe
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Introduction to XFST — marking

The special symbol “..” in the right-hand side of a replace rule stands
for whatever was matched in the left-hand side of the rule.

xfst> clear stack;

xfst> read regex [a|efilo|ul -> %[ ... %];
xfst> apply down unnecessarily
[ulnnfelclelss[alr([i]ly
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Introduction to XFST - marking

xfst> clear stack;

xfst> read regex [a|eli|o|ul+ -> %[ ... %];
xfst> apply down feeling

fle]l [elllilng

fleelllilng

xfst> apply down poolcleaning

plo]l [o]llel[e] [alnlilng

ploollel(e] [aln[ilng

plol]l [ollcl[ealnfilng

ploollcl[ealnlilng

xfst> read regex [a|e|i|o|ul+ @-> %[ ... %];
xfst> apply down poolcleaning
ploocllcl[ealn(ilng
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introduction to XFST - shallow parsing

Assume that text is represented as strings of part-of-speech tags, using
‘d’ for determiner, ‘a’ for adjective, ‘n’ for noun, and ‘v’ verb, etc. In other
words, in this example the regular expression symbols represent whole
words rather than single letters in a text.

Assume that a noun phrase consists of an optional determiner, any
number of adjectives, and one or more nouns:

[{(d}) a* n+]

This expression denotes an infinite set of strings, such as “n” (cats),
“aan” (discriminating aristocratic cats), “nn” (cat food), “dn” (many cats),
“dann” (that expensive cat food) etc.
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Introduction to XFST -~ shallow parsing

A simple noun phrase parser can be thought of as a transducer that
inserts markers, say, a pair of braces { }, around noun phrases in a
text. The task is not as trivial as it seems at first glance. Consider the
expression

[(d) a* n+ -> ${ ... %}1

Applied to the input “danvn” (many small cats like milk) this transducer
yields three alternative bracketings:

xfst> apply down danvn
da{n}v{n}
d{an}v{n}
{dan}v{n}
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introduction to XFST - longest match

For certain applications it may be desirable to produce a unique parse,
marking the maximal expansion of each NP: “{dan}v{n}”. Using the
left-to-right, longest-match replace operator @- > instead of the simple
replace operator - > yields the desired result:

[(d) a* n+ @-> %{ ... %}]

xfst> apply down danvn

{dan}v{n}
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Introduction to XFST - the coke machine

A vending machine dispenses drinks for 65 cents a can. It accepts any
sequence of the following coins: 5 cents (represented as ‘n’), 10 cents
(‘d’) or 25 cents ('q’). Construct a regular expression that compiles into
a finite-state automaton that implements the behavior of the soft drink
machine, pairing “PLONK” with a legal sequence that amounts to 65
cents.
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introduction to XFST — the coke machine

The construction A" n denotes the concatenation of A with itself » times.

Thus the expression [n .x. ¢”5] expresses the fact that a nickel is

worth 5 cents.

A mapping from all possible sequences of the three symbols to the

corresponding value:
[{n .x. ¢"5) | [d .x. ¢”10) | [g .x. c"25]]*
The solution:

[[n .x. ¢”5) | [d .x. ¢"10) | [g .x. ¢"25]]1*
.0.
[c"65 .x. PLONK]
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introduction to XFST - the coke machine

clear stack
define SixtyFiveCents

[n .x. ¢"5] | [4d .x. ¢"10] | [q .x. ¢”25}}* ;

define BuyCoke
SixtyFiveCents .o. [¢765 .x. PLONK] ;
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Introduction to XFST - the coke machine

In order to ensure that extra money is paid back, we need to
modify the lower language of BuyCoke to make it a subset of
[PLONK* g* d* n*].

To ensure that the extra change is paid out only once, we need to make
sure that quarters get paid before dimes and dimes before nickels.

clear stack

define SixtyFiveCents

[[n .x. ¢75] | [d .x. ¢"10] | [g .x. ¢"25}1* ;
define ReturnChange SixtyFiveCents .o.

[[¢"65 .x. PLONK]* [¢c"25 .x. g]*

[e”10 .x. d]* [c”5 .x. n}*] ;
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Introduction to XFST ~ the coke machine

The next refinement is to ensure that as much money as possible is
converted into soft drinks and to remove any ambiguity in how the extra
change is to be reimbursed.

clear stack

define SixtyFiveCents

[[n .x. ¢"5) | [d .x. c"10] | [g .x. ¢"25]11* ;
define ReturnChange SixtyFiveCents .o.

[[c"65 .x. PLONKl* [c"25 .x. ql]*

[e®10 .x. d)* [c"5 .x. nl*] ;

define ExactChange ReturnChange .o.
["$laggq | [gg | Al @d [d | n]l | nn}] ;
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introduction to XFST —~ the coke machine

To make the machine completely foolproof, we need one final
improvement. Some clients may insert unwanted items into the machine
(subway tokens, foreign coins, etc.). These objects should not be
accepted; they should passed right back to the client. This goal can
be achieved easily by wrapping the entire expression inside an ignore
operator. '

define IgnoreGarbage
[ [ ExactChange 1/[\[g | @ | nl1] ;
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Applications of finite-state technology in NLP |

+ Phonology; fanguage models for speech recognition

Representing lexicons and dictionaries

Morphology; morphological analysis and generation

Shallow parsing

Named entity recognition
¢ Sentence boundary detection; segmentation

e Translation...



Finite State Technology 88

Further reading

Theory A very good formal exposition of regular languages and the
computing machinery associated with them is given by Hopcroft and
Ullman (1979, chapters 2-3). Another useful source is Partee, ter
Meulen, and Wall (1990, chapter 17).

Koskenniemi (1983) is the classic presentation of Two-Level
Morphology, and an exposition of the two-level rule formalism, which
is demonstrated by an application of finite-state techniques to the
morphology of Finnish. Kaplan and Kay (1994) is a classic work that
sets the very basics of finite-state phonology, referring to automata,
transducers and two-level rules.
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Further reading

NLP applications Roche and Schabes (1997a) is a collection
of papers ranging from mathematical properties of finite-state
machinery to linguistic modeling using them. The introduction
(Roche and Schabes, 1997b) can be particularly useful, as will be
Karttunen (1991).

Karttunen et al. (1996) is a fairly easy paper that relates regular
expressions and relations to finite automata and transducers, and
exemplifies their use in several language engineering applications.
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Further reading

Systems XFST is available from:

http://www.xrce.xerox.com/competencies/
content-analysis/fst/

A very recent book describing the system, with an abundance of
linguistic examples, is Beesley and Karttunen (2003).

Two other systems are freely available: The FSM Library from AT&T:

http://www.research.att.com/sw/tools/fam/
and van Noord’s FSA Utilities:

http://odur.let.rug.nl/ "vannoord/Fsa/fsa.html
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